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Abstract

Recent advances in our structural understanding of telomerase and telomere-associated proteins

have contributed significantly to elucidating the molecular mechanisms of telomere maintenance.

The structures of telomerase TERT domains have provided valuable insights into how

experimentally identified conserved motifs contribute to the telomerase reverse transcriptase

reaction. Additionally, structures of telomere-associated proteins in a variety of organisms have

revealed that, across evolution, telomere-maintenance mechanisms employ common structural

elements. For example, the single-stranded 3′ overhang of telomeric DNA is specifically and

tightly bound by an OB-fold in nearly all species, including ciliates (TEBP and Pot1a), fission

yeast (SpPot1), budding yeast (Cdc13), and humans (hPOT1). Structures of the yeast Cdc13, Stn1,

and Ten1 proteins demonstrated that telomere maintenance is regulated by a complex that bears

significant similarity to the RPA heterotrimer. Similarly, proteins that specifically bind double-

stranded telomeric DNA in divergent species use homeodomains to execute their functions

(human TRF1 and TRF2 and budding yeast ScRap1). Likewise, the conserved protein Rap1, found

in budding yeast, fission yeast, and humans, contains a structural motif that is known to be critical

for protein-protein interaction. In addition to revealing the common underlying themes of telomere

maintenance, structures have also elucidated the specific mechanisms by which many of these

proteins function, including identifying a telomere-specific domain in Stn1 and how the human

TRF proteins avoid heterodimerization. In this review, we summarize the high-resolution

structures of telomerase and telomere-associated proteins and discuss the emergent common

structural themes among these proteins. We also address how these high-resolution structures

complement biochemical and cellular studies to enhance our understanding of telomere

maintenance and function.
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Introduction

Telomeres are nucleoprotein complexes required for chromosomal stability. They shield the

ends of linear chromosomes from recognition by DNA damage machinery and provide a

solution to the end-replication problem through the action of the reverse transcriptase

telomerase (de Lange, 2009; Greider and Blackburn, 1987). Protection of the chromosomal

end is conferred by essential protein complexes that prevent the severe and lethal

consequences of a cellular response to exposed DNA ends, including chromosomal end-to-

end fusions and nucleolytic processing (de Lange, 2009). Additionally, the limitations of

semiconservative DNA replication result in gradual telomere shortening, limiting the

number of cell divisions as short telomeres trigger cellular senescence (Harley et al., 1990;

Hayflick, 1979; Lundblad and Szostak, 1989). This limitation can be circumvented by the

telomerase-mediated extension of telomeric DNA, as observed in unicellular eukaryotic

organisms and proliferative metazoan cells (Bodnar et al., 1998; Lundblad and Szostak,

1989; Yu et al., 1990). Both the end-protection and telomerase activities are tightly

controlled (de Lange, 2009), and their dysregulation is associated with several human

diseases (Armanios, 2009; Calado and Young, 2009; Garcia et al., 2007).

The sequences of telomere-associated proteins diverge rapidly (Linger and Price, 2009),

confounding our ability to identify the unifying themes underlying telomere maintenance.

Fortunately, the high-resolution structures of telomere-associated factors have revealed the

repeated use of common structural elements with some intriguing elaborations. In particular,

some apparently divergent telomere-associated proteins in distantly related species share

folds, while others are similar to well-characterized non-telomeric proteins, suggesting the

evolution of telomere-specific function. These structures, both through their similarities and

their differences, provide direction for biochemical and cellular studies that aim to define the

mechanisms of action of telomere-associated factors. In this review, we will discuss the

emergent common structural themes in telomere-associated proteins and describe how these

high-resolution structures have enhanced our understanding of telomere maintenance and

function.

Telomerase reverse transcriptase

The ends of linear chromosomes terminate in G-rich single-stranded 3′ overhangs

(Klobutcher et al., 1981; Larrivee et al., 2004; McElligott and Wellinger, 1997; Moyzis et

al., 1988; Shampay et al., 1984; Wright et al., 1997). In vitro, telomeric single-stranded

DNA (ssDNA) readily forms higher order G-quadruplex structures amenable to high-

resolution characterization (Burge et al., 2006; Neidle and Parkinson, 2003), although these

structures have only been reported in vivo at ciliate telomeres (Lipps and Rhodes, 2009;

Paeschke et al., 2005). Chromosome ends also form large DNA duplex “t-loops”, where the

ssDNA overhang invades the duplex region to form a structure similar to a recombination

intermediate, which may represent the higher-order structure in vivo (de Lange, 2004;

Griffith et al., 1999; Munoz-Jordan et al., 2001), but they have not yet been amenable to

high-resolution structural studies in vitro.

Telomerase catalyzes the addition of telomeric repeats onto this 3′ overhang using an

integrated ribonucleoprotein complex that consists of a reverse transcriptase protein (TERT)
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and a large RNA component (TR) which provides the template sequence for the telomeric

repeat (Greider and Blackburn, 1989; Lingner et al., 1997). Within the family of reverse

transcriptases, telomerase is anomalous in that its RNA component is a constitutive

component of the transcriptase with multiple functions (Autexier and Lue, 2006). TERT and

TR associate with additional proteins in vivo to form a functional holoenzyme (Lendvay et

al., 1996; Lingner and Cech, 1996; Venteicher et al., 2009; Witkin and Collins, 2004;

Witkin et al., 2007). Although the structure of an intact telomerase holoenzyme has yet to be

solved, structures of individual telomerase and TR subdomains have informed our

understanding of its organization and the mechanisms of its unique reverse transcriptase

activity (Kelleher et al., 2002). Here, we limit our discussion to structures of TERT, as the

structures of domains within telomerase RNA have been expertly reviewed elsewhere

(Zhang et al., 2011a).

TERTs contain a reverse transcriptase domain (RT) that possesses the canonical RT motifs

1, 2, A, B′, C, D, and E, including the three invariant catalytic aspartate residues (Lingner et

al., 1997). Three additional domains fully define a TERT protein: a “telomerase essential N-

terminal” domain (TEN); a telomerase RNA binding domain (TRBD); and a C-terminal

extension (CTE) (Fig. 1A) (Blackburn, 2005; Bryan and Cech, 1999; Wyatt et al., 2010).

Much of our current structural understanding of TERT has come from the Tetrahymena

thermophila TRBD and TEN domain structures and the structure of the putative TERT from

the flour beetle Tribolium castaneum (TcTERT). TcTERT is somewhat removed from other

known telomerases; it lacks the TEN domain that is present in all other known telomerases,

the RNA component has not been identified, and as yet there is no in vivo evidence for

telomerase-mediated telomere maintenance in this organism (Osanai et al., 2006). However,

TcTERT is clearly a reverse transcriptase that contains telomerase-specific sequence motifs

(see below), which suggests that, if not an active telomerase, it may be an evolutionary

intermediate. TcTERT thus serves as a judicious starting point for understanding the

structural framework of telomerase action while we await a high-resolution structure of an

intact TERT+TR holoenzyme.

TcTERT forms a ring-like structure with the TRBD making considerable contact with the

CTE even though they are separated in primary sequence by the RT domain (Gillis et al.,

2008) (Fig. 1A,B). The RT folds into a palm-and-fingers organization reminiscent of other

reverse transcriptases (Das and Georgiadis, 2004; Rodgers et al., 1995). The active site is in

the palm of the RT, and contains universally catalytic aspartates and a Mg2+ ion (Gillis et

al., 2008; Mitchell et al., 2010a) (Fig. 1B). The CTE curls around to contact the TRBD and

complete the ring (Fig. 1B). A co-crystal of TcTERT and a hybrid RNA/DNA hairpin shows

that, analogous to retroviral reverse transcriptases, the nucleic acid docks in the center of the

ring, contacting elements from the TRBD, RT, and CTE (Mitchell et al., 2010a). The

TcTERT structure also reveals the context of two previously characterized telomerase-

specific motifs in the RT palm that affect activity: motif 3 and IFD (Fig. 1A,C). Motif 3 is

located between motifs 2 and A in the primary sequence (Xie et al., 2010) (Fig. 1A). In

TcTERT, motif 3 forms two helices on the RT surface adjacent to the active site (Fig. 1C).

IFD is an insertion between the A and B′ motifs, originally named the “insertion in the

fingers domain” based on mapping to the HIV-1 structure (Lue et al., 2003) (Fig. 1A,C).
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The TcTERT IFD is part of the solvent-exposed surface on the outside of the RT domain

(Fig. 1C), where it likely affects the active site through a helix that interacts with the IFD on

one side and with the RNA substrate in the active site on the other (Lue et al., 2003).

The specialized RNA-binding activity of TERT is conferred by the essential and highly

conserved TRBD, which uses the telomerase-specific T and CP motifs to recognize essential

elements of TR (Bryan et al., 1998; Nakamura et al., 1997; O’Connor et al., 2005). TRBD

structures are available in isolation from T. thermophila and within the full-length T.

castaneum TERT. These structures are very similar; both consist of two asymmetrical

helical lobes connected by a β-hairpin hinge region (Gillis et al., 2008; Rouda and

Skordalakes, 2007) (Fig. 1D). This novel topology places the phylogenetically conserved T

and CP motifs adjacent on the hinge surface (Lai et al., 2001; Rouda and Skordalakes, 2007)

(Fig. 1D). The details of RNA binding will require a co-crystal structure, although

mutagenesis suggests that RNA binding employs hydrophobic interactions within the

conserved T and CP motifs. Full understanding of nucleic acid recognition will also require

analysis of the structurally uncharacterized N-terminal region of the T. thermophila TRBD

(residues 195–253), which was found to be required for biochemical activity (Lai et al.,

2001) but was not contained in the structurally characterized construct (residues 254–519)

(Rouda and Skordalakes, 2007).

Telomerases are additionally distinguished from canonical reverse transcriptases by the TEN

domain, which is essential for telomerase activity in vivo and in vitro (Bryan et al., 2000;

Friedman and Cech, 1999; O’Connor et al., 2005; Xia et al., 2000). The TEN domain binds

both TR and the telomeric ssDNA substrate, and is critical for the telomerase-specific

repeat-addition processivity (RAP) activity (Moriarty et al., 2004; Zaug et al., 2008). The T.

thermophila TEN domain adopts a novel protein fold, consisting of N-terminal and C-

terminal subdomains ending in a C-terminal tail (Jacobs et al., 2006) (Fig. 1E, key tail

residues highlighted in red). The structure was used to direct mutagenesis experiments that

identified the C-terminal tail (residues 177–191) as essential for RNA binding and weak

binding of telomeric ssDNA primers (Jacobs et al., 2006) (Fig. 1E). Protein flexibility may

contribute to nucleic acid binding, as deletion of the disordered C-terminal tail of TEN

compromises its ability bind RNA (Jacobs et al., 2006).

Telomere-Associated Proteins

Our knowledge of telomere organization is being built from the ground up, focusing on the

structural characterization of individual proteins and subcomplexes from a range of

organisms (Fig. 2). This review focuses on the structurally characterized protein domains

and their complexes of factors whose primary cellular role is linked to telomere

maintenance. Metazoan telomeres contain the six-member shelterin complex (Palm and de

Lange, 2008) (Fig. 2), comprised of the double-stranded binding proteins TRF1 and TRF2,

which bind telomeric dsDNA as homodimers and interact with RAP1 and TIN2. TIN2

interacts with hTPP1, which in turn binds the telomeric ssDNA binding protein, hPOT1

(Fig. 2). Fission yeast also employ a shelterin-like complex, comprised of a single TRF1/2

homolog, Taz1, which interacts with a Rap1 homolog. This Rap1 also interacts with Poz1,

which then binds the hTPP1-hPOT1 homologs SpTpz1-SpPot1 (de Lange, 2009; Miyoshi et
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al., 2008) (Fig. 2). Budding yeast appear to use a distinct mechanism of telomere

maintenance through the Rap1/Rif1/Rif2 complex, which binds telomeric dsDNA, and a

telomere-specific RPA-like complex containing Cdc13/Stn1/Ten1 (t-RPA), which binds

telomeric ssDNA (Shore and Bianchi, 2009) (Fig. 2). Fission yeast and metazoan telomeres

also employ an RPA-like complex (Martín et al., 2007; Miyake et al., 2009; Song et al.,

2008). While the double-stranded DNA-binding factors in ciliates have not been reported, O.

nova amitotic macronuclear telomeres employ the heterodimeric complex TEBP

(Gottschling and Zakian, 1986), while T. thermophila contains a Pot1/TPP1-like complex

(Jacob et al., 2007; Linger et al., 2011).

Single-stranded DNA binders and their complexes

High-resolution structures have revealed similarities among the telomere end-protection

(TEP) proteins that were not predicted from their primary sequences. TEP proteins

universally bind the ssDNA overhang using the oligosaccharide/oligonucleotide/

oligopeptide binding (OB) fold, a common Greek key motif in ssDNA and RNA binding

proteins (Theobald et al., 2003). Since ssDNA is present throughout the genome during

replication, TEP proteins must discriminate between telomere and non-telomere sequence.

Some TEPs execute this exquisite specificity while also accommodating degeneracy or

variable spacer sequences within the telomeric repeats. All of this is accompanied by very

high binding affinities, with unusually tight KD values often in the low pico- to nanomolar

range (Croy and Wuttke, 2006). The high-resolution structures of several TEP domains have

provided insight into how OB folds perform these myriad duties simultaneously.

OnTEBP—The first high-resolution TEP structures were of the heterodimeric telomere

end-binding protein complex (TEBP) from the hypotrichous ciliate Oxytricha nova (“On”,

now called Sterkiella nova (Foissner and Berger, 1999)). TEBP consists of two subunits, α

and β, which bind tenaciously to O. nova macronuclear chromosomal termini as a

heterodimeric complex specific for T4G4 repeats (Gottschling and Zakian, 1986; Gray et al.,

1991; Horvath et al., 1998). TEBPα consists of two OB folds in an N-terminal domain (OB1

and OB2) and a third OB fold as a C-terminal domain (OB3) (Horvath et al., 1998), while

TEBPβ is comprised of a single N-terminal OB fold (OB4), a central globular domain, and a

lysine-rich unstructured tail (CTD) (Buczek and Horvath, 2006; Horvath et al., 1998) (Fig.

3A,B). This first TEP structure unveiled new mechanisms for OB fold binding and set the

benchmark for how this protein family functions. Notably, OB1 and OB2 were found to

form a single extended ssDNA-binding surface that cooperates with OB4 to form the

complete binding pocket. Additionally, the canonical ligand-binding site in OB3 interacts

with the globular domain of TEBPβ (Horvath et al., 1998) (Fig. 3B). This discovery

expanded the set of known OB fold ligands to include oligopeptides as well as

oligonucleotides and oligosaccharides (Horvath et al., 1998).

The TEBPαβ heterodimer and ssDNA co-fold into a stable complex, with the ssDNA

forming a loop within a groove formed by the N-terminal OB folds of TEBPα and the

globular domain of TEBPβ (Fig. 3B). The nucleotide bases are generally buried, with the 3′

end completely solvent inaccessible, and make extensive contacts with amino acid side

chains through a chemically diverse range of interactions, including aromatic stacking,
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hydrophobic interactions, hydrogen-bonding, and electrostatic interactions, with

electrostatics contributing little to the thermodynamics of binding (Horvath et al., 1998)

(Fig. 3C). The occlusion of the bases and the 3′ end established a physical basis for

sequence-specific binding and end protection (Horvath et al., 1998). The number and

diversity of nucleotide-protein contacts provides a mechanism for the exquisite specificity of

TEP proteins for their cognate ligands. As TEBPα can also bind ssDNA independently, a

model emerged in which TEBPα coats ssDNA with a terminal TEBPβ binding event to form

a stable complex that caps the very end of the chromosome (Classen et al., 2001; Peersen et

al., 2002).

Structures of TEBPαβ bound to a panel of noncognate ligands showed that OnTEBPαβ

accommodates sequence variation using modest changes in side chain conformation and

dramatic shifts in nucleic acid binding register to retain key specificity contacts (Theobald

and Schultz, 2003). The ligand rearrangement explains why profound nucleotide sequence

alterations caused less than a 10-fold change in affinity (Theobald and Schultz, 2003). Such

nucleotide shuffling may be a primary mechanism by which TEP proteins bind variable 3′

overhangs; evidence for similar ligand accommodation is present in fission and budding

yeast, although those mechanisms are currently structurally undefined.

Pot1 and hTPP1—Weak sequence identity between TEBPα OB1 and an uncharacterized

S. pombe protein led to the identification of Pot1 (protection of telomere-1) in fission yeast

and humans (Baumann and Cech, 2001). Pot1 binds telomeric ssDNA as part of shelterin,

and is conserved in eukaryotes from S. pombe (SpPot1) to humans (hPOT1) (Croy and

Wuttke, 2006). Deletion of Pot1 from either S. pombe or vertebrate cells is catastrophic,

resulting in telomeric instability, chromosomal end-to-end fusions, and cell death (Baumann

and Price, 2010). Like TEBPα, Pot1 is comprised of an N-terminal DNA-binding domain

(DBD) and a C-terminal protein-protein interaction domain (Fig. 4A). Also like TEBPα,

Pot1 binds an OB-fold containing partner protein (hTPP1/SpTpz1) (Liu et al., 2004; Miyoshi

et al., 2008; Ye et al., 2004).

Human hPOT1 and hTPP1: The hPOT1-DBD comprises residues 1–340, and has been co-

crystallized with ssDNA (Lei et al., 2004; Nandakumar et al., 2010) (Fig. 4B, dark green and

dark gray, respectively). The DBD is comprised of tandem OB folds (OB1 and OB2). OB1

was predicted by a variety of sequence alignments, but OB2 was only weakly predicted

using a profile-based sequence analysis (Theobald and Wuttke, 2004). The DNA adopts an

extended conformation and makes specific contacts with both OB folds, where hydrogen

bonds between amino acid side chains and nucleotide bases provide a structural basis for the

biochemically observed nucleotide specificity preference for the 5′ end of the ligand and the

terminal 3′ guanine (Lei et al., 2004) (Fig. 4B).

hPOT1 is localized to the larger multimeric shelterin complex through the interaction of its

C-terminal domain with a central domain in hTPP1 (Hockemeyer et al., 2007; Xin et al.,

2007; Ye et al., 2004). hTPP1 also contains an N-terminal OB fold that bears striking

resemblance to that of TEBPβ (residues 90–250) and an as-yet uncharacterized C-terminal

hPOT1-interaction domain (Wang et al., 2007). hTPP1 additionally enhances hPOT1

affinity by 10-fold (Gray et al., 1991; Wang et al., 2007), and also refines hPOT1
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discrimination against ribonucleic acids (Nandakumar et al., 2010). Although the isolated

domains of hPOT1/hTPP1 closely correspond structurally to those of TEBPαβ, the two

complexes exhibit somewhat different biochemical behavior (Fig. 4C). The DNA-binding

domains of TEBPα and hPOT1 alone exhibit modest preference for the nature of the 3′ base

(Classen et al., 2003; Lei et al., 2004), and the structures reveal a partially buried 3′OH. In

contrast, TEBPαβ completely buries the 3′G (Horvath et al., 1998). While no structure is yet

available of the hPOT1/hTPP1 complex, biochemically the 3′ end requirement is relaxed

(Wang et al., 2007). Both the TEBPα and TEBPαβ complexes inhibit telomerase activity,

presumably through steric occlusion of the 3′ end (Froelich-Ammon et al., 1998). Similarly,

when localized to the 3′ end, hPOT1 alone inhibits human telomerase in vitro (Lei et al.,

2005). However, when bound coincidentally with hPOT1, hTPP1 triggers recovery of

telomerase activity, behaving as a telomerase processivity factor by decreasing the rate of

primer dissociation (Abreu et al., 2010; Latrick and Cech, 2010; Tejera et al., 2010; Wang et

al., 2007; Xin et al., 2007). The structural similarity and functional divergence of hTPP1 and

TEBPβ is a prime example of the species-specific adaptations that are characteristic of

telomere maintenance complexes throughout phylogeny.

S. pombe Pot1: Like hPOT1, S. pombe Pot1 is also comprised of a DBD (1–389) and a C-

terminal domain (Croy et al., 2006) (Fig. 4A). Although sequence homology is limited to the

N-terminal OB fold, protein threading models and biochemical data strongly suggest that the

DBD, like hPOT1, contains two tandem OB folds, SpPot1pN and SpPot1pC (Croy et al.,

2006; Croy et al., 2009). Only SpPot1pN has been structurally characterized to date (Fig.

4B), and as the first Pot1 structure to be elucidated, it provided initial insight into how Pot1

specifically recognizes ssDNA (Lei et al., 2003). SpPot1pN superpositions well on hPOT1-

OB1, with the central ligand bases overlaying tightly with more divergence at the 3′ and 5′

ends. Stacking interactions between aromatic amino acid on the protein and bases of the

ssDNA are largely conserved (Fig. 4B). Solution dynamics analysis of the free and bound

states of SpPot1pN suggests that specificity is achieved by a conformational selection

mechanism where residues involved in forming the specific contacts experience dynamics

that are quenched upon binding (Croy and Wuttke, 2009; Croy et al., 2008).

In contrast to TEBPα and hPOT1, the SpPot1 OB folds exhibit independent DNA-binding

activities, allowing for characterization of how these domains work in concert to perform

sequence-specific recognition of DNA. SpPot1pN binds a single S. pombe telomeric repeat,

d(GGTTAC), while SpPot1pC minimally binds to one and a half repeats (Croy et al., 2009;

Lei et al., 2002). These binding activities are decoupled in the intact SpPot1-DBD, which

binds the combined two-and-a-half repeat ssDNA with low picomolar affinity (Croy et al.,

2009). Interestingly, SpPot1-DBD can also bind ssDNA of two repeats with identical

affinity but with different specificities and tolerance for substitution as the longer ligand

(Altschuler et al., 2011). These biochemical observations suggest that SpPot1 is capable of

remarkable conformational plasticity and ligand accommodation. Supporting this

hypothesis, structures of SpPot1pN complexed with non-cognate ligands identified novel

ligand conformations that nonetheless bound with similar thermodynamic parameters (Croy

et al., 2008). As the core S. pombe telomere sequence repeats are often separated by a

variable number of nucleotides (Trujillo et al., 2005), the ability to accommodate alternate
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telomeric sequences with minimal thermodynamic impact may be an essential element of

SpPot1 function.

RPA-like complexes—An additional widely conserved complex also contributes to

telomere function. This complex, first discovered in S. cerevisiae, is composed of three

essential proteins Cdc13, Stn1, and Ten1 and impacts several aspects of telomere

maintenance (Grandin et al., 2001; Grandin et al., 1997; Nugent et al., 1996) (Fig. 5). Cdc13

positively regulates telomere length by recruiting telomerase (Bianchi et al., 2004; Nugent et

al., 1996; Pennock et al., 2001), and all three proteins are also genetically implicated in

negative length regulation (Chandra et al., 2001; Grandin et al., 2001; Grandin et al., 1997;

Qi and Zakian, 2000). Cdc13 specifically binds yeast telomeric ssDNA with 300 pM affinity

through its DBD, which is a single OB fold with no sequence similarity to TEBP or Pot1

proteins (Anderson et al., 2002; Nugent et al., 1996) (Fig. 5A). The isolated DBD binds

more tightly, with 3 pM affinity, using an unusually long, structured loop between β2 and β3

(L2–3) to extend the binding interface (Eldridge and Wuttke, 2008; Mitton-Fry et al., 2002;

Mitton-Fry et al., 2004). As seen in TEBP and Pot1, aromatic stacking and hydrophobic

interactions mediate recognition of nucleotide bases and electrostatics stabilizing the

backbone phosphates (Anderson et al., 2003; Mitton-Fry et al., 2002). As observed in the

Pot1 proteins, the most critical protein-DNA contacts are located in the 5′ end of the ligand,

where these contacts define the highly sequence-specific binding behavior of Cdc13

(Anderson et al., 2003; Eldridge et al., 2006) (Fig. 5A).

Exciting insights into the function of this complex came from the proposal that Cdc13, Stn1,

and Ten1 form a telomere-specific RPA-like heterotrimer (t-RPA) (Gao et al., 2007) (Fig.

5), based on sequence analysis of Cdc13, Stn1, and Ten1 and in vivo domain swapping (Gao

et al., 2007; Theobald and Wuttke, 2004). This was a paradigm-shifting idea, as RPA

nonspecifically binds to ssDNA throughout the genome but Cdc13 specifically recognizes

telomeric ssDNA. Structural data have been central to refining this hypothesis (Fig. 5). Like

RPA70, Cdc13 has an OB fold in the extreme N-terminus (N-OB), but unlike RPA70, this

domain contains a long helix that mediates dimerization (Mitchell et al., 2010b; Sun et al.,

2011) (Fig. 5A). The N-OB has been alternately proposed to bind either ssDNA or DNA

polymerase α (Mitchell et al., 2010b; Sun et al., 2011). In addition to the N-OB and DBD

domains, two additional OB folds flanking the DBD have been predicted (Sun et al., 2011;

Theobald and Wuttke, 2004). The demonstrated presence of four OB folds in Cdc13 would

conclusively establish a domain organization analogous to RPA70 (Fig. 5A). However,

several elaborations confer the unique telomere functions of Cdc13, namely that the DBD is

a single OB fold with specificity for telomeric DNA, the observation of dimerization, and

the presence of a telomerase regulatory domain (RD) within the N-terminus (Fig. 5A).

Structures of Stn1 and Ten1 domains revealed that they closely mimic their RPA

counterparts (Fig. 5B,C). The N-terminal domains of Stn1 (Stn1-N) from the divergent

yeasts S. pombe and Candida tropicalis are OB folds that superimpose on the RPA32 OB

fold (Sun et al., 2009) (Fig. 5B). The C-terminal domain (Stn1-C) from S. cerevisiae is

comprised of tandem winged helix-turn-helix (wHTH) motifs (Gelinas et al., 2009; Sun et

al., 2009). The N-terminal wHTH superimposes on the lone wHTH of RPA32 (Fig. 5B),

while in vivo studies identified a telomere-specific function for the C-terminal wHTH in
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negative telomere length regulation (Gelinas et al., 2009). Like RPA14, both the S. pombe

and C. tropicalis Ten1proteins are single OB folds (Gelinas et al., 2009; Sun et al., 2009)

(Fig. 5C). Furthermore, RPA32/14 and Stn1-N/Ten1 form stable heterodimers in vitro

(Bochkarev et al., 1999; Gao et al., 2007; Sun et al., 2009). The presence of multiple OB

folds in Cdc13 and the remarkable structural identity between Stn1/Ten1 and RPA32/14

strongly support the hypothesis that Cdc13, Stn1, and Ten1 are RPA-like proteins (Fig. 5).

Although the RPA-like telomere proteins have been studied most extensively in budding

yeast, a heterotrimeric complex composed of the well-conserved Stn1 and Ten1 proteins and

a less conserved DNA-binding large subunit contributes to telomere function in a diverse set

of species, including fission yeast, plants, and mammals (Casteel et al., 2009; Martín et al.,

2007; Miyake et al., 2009; Surovtseva et al., 2009). In fission yeast, stn1-Δ and ten1-Δ

strains exhibit the same phenotype as a Pot1 knockout, with rapid telomere degradation

accompanied by high levels of inviability (Martín et al., 2007). Knockout of a Stn1 homolog

in Arabidopsis, AtStn1, also exhibits a telomere shortening phenotype and severe

morphological defects (Song et al., 2008). However, the rapid divergence of the large

subunit has confounded the analysis of this complex. Even Cdc13 proteins from other yeast

do not retain the level of telomere-specific DNA binding observed for S. cerevisiae Cdc13

(Mandell et al., 2011). Structural studies will clearly play a major role in the refinement of

these models, including high-resolution structures of multimeric complexes and structure-

directed in vivo mutagenesis.

Double-stranded DNA binders and their complexes

A separate set of factors specifically binds double-stranded telomeric DNA, where they

function in chromosomal protection and telomere-length regulation (de Lange, 2009; Shore

and Bianchi, 2009) (Fig. 2). These proteins share common folds despite considerable

sequence variability and differences in domain topology. As observed in the ssDNA-binding

proteins, dsDNA-protein interactions and protein-protein interactions at the telomere in

evolutionarily divergent species employ similar structural solutions to execute telomere-

specific functions.

ScRap1—S. cerevisiae telomeric dsDNA is bound by ScRap1, which interacts with the

proteins Rif1 and Rif2 to regulate telomere length (Shore and Bianchi, 2009). ScRap1 also

mediates gene silencing both at the telomere and at mating-type loci through interactions

with Sir3 and Sir4 (Moretti and Shore, 2001). The DNA-binding domain (DBD; residues

361–596), the BRCT domain (residues 6–102), and the C-terminal protein-protein

interaction domain (CTD; residues 672–827) have been structurally characterized, revealing

the physical bases for these interactions and providing functional insights (Fig. 6A).

The structure of ScRap1-DBD was seminal for the field, and demonstrated that DNA

binding activity is carried out by two homeodomains, each comprised of an N-terminal arm

and a Myb-like three-helical bundle that includes a recognition helix, followed by a C-

terminal tail (Konig et al., 1996) (Fig. 6B). The N-terminal arms of each homeodomain

make specific contacts within the minor groove and nonspecific contacts on the backbone of

the dsDNA, and the recognition helix lies within the major groove. The tandem
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homeodomains wrap around the dsDNA with a separation of 8 basepairs (Fig. 6B). The C-

terminal tail contacts major groove bases and the recognition helix of the first homeodomain

as it wraps back around the DNA to fully enclose the substrate (Konig et al., 1996).

Specificity is mediated through direct and water-mediated hydrogen-bond contacts between

the recognition helix and nucleotide bases of both strands.

The C-terminal protein-protein interaction domain of ScRap1 (RCT, for Rap1 C-terminus)

adopts an entirely novel helical topology, in which the N-terminal helices form a highly

hydrophobic cleft (Feeser and Wolberger, 2008) (Fig. 7A). A recent crystal structure of

ScRap1-RCT complexed with a Sir3 peptide showed the peptide buried in the hydrophobic

cleft (Chen et al., 2011). Recently, the structure of the ScRap1 BRCT domain was found to

contain less secondary structure and more flexible loops than observed in canonical BRCT

domains, but the physiological relevance of the more flexible structure has yet to be

elucidated (Zhang et al., 2011b).

TRF1, TRF2 and human Rap1—Human TRF1 and TRF2 bind to telomeric dsDNA as

homodimers, with each monomer containing a single dsDNA-binding homeodomain that is

similar to those that comprise ScRap1-DBD (Bianchi et al., 1999) (Fig. 6A,C). The free and

bound forms of TRF1-DBD and TRF2-DBD were independently solved by both solution

NMR and x-ray crystallography (Court et al., 2005; Hanaoka et al., 2005; Nishikawa et al.,

1998; Nishikawa et al., 2001). Specificity of binding is achieved primarily by the DNA

recognition helix, H3, which lies in the major groove of the DNA where it makes numerous

sequence-specific contacts with the telomeric dsDNA. Additionally, the N-terminal arms

become more rigid in the bound state as they make specific contacts in the minor groove,

similar to the specific contacts made between the ScRap1 loops and its cognate DNA (Court

et al., 2005; Nishikawa et al., 2001) (Fig. 6C).

Homodimerization of the TRF proteins is mediated by their TRF homology domains

(TRFH) (Fig. 6A). TRF1-TRFH and TRF2-TRFH share 27% sequence identity, and the

crystal structures showed highly similar tertiary structures between the two homodimers

(Fairall et al., 2001) (Fig. 6D). Despite their structural similarity, TRF1 and TRF2 do not

heterodimerize, due to incompatible hydrophobic networks that form the dimerization

interface (Fairall et al., 2001) (Fig. 6E). A superposition of the α1 helices from the TRF1

and TRF2 homodimers shows the incompatibility between sidechains (Fig. 6E).

While the high-resolution structure of the full shelterin complex has yet to be achieved,

insights into higher order protein assembly have been obtained from structures of shelterin

domains complexed with peptides derived from binding partners. For example, the TRFH

homodimers harbor interfaces for protein-protein interactions that stabilize shelterin and

bind shelterin-interacting factors (Chen et al., 2008). Both TRF1 and TRF2 bind a TIN2-

derived peptide; TRF2 also binds a peptide from the nuclease Apollo, which is associated

with telomere protection during S phase (van Overbeek and de Lange, 2006). These peptides

share a common binding interface, in a groove at the base of the homodimer horseshoe, and

interact through a conserved hydrophobic surface (Chen et al., 2008) (Fig. 6F). This peptide-

based approach has also been employed to understand the mechanism of interaction between

Rap1 proteins and their potential binding partners (Fig. 2). Although the Rap1 DBD is not
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conserved, the C-terminal domains of the S. pombe and human Rap1 proteins share

significant structural homology with the C-terminal domain of S. cerevisiae Rap1 (Fig. 7A,

B), and also bind α-helices from their respective interaction partners in a helical cleft (Chen

et al., 2011) (Fig. 7C). The hRAP1 C-terminal domain (RAP1-RCT) (residues 303–399)

binds to a peptide derived from the intervening sequence between the TRFH and DBD

domains of TRF2. SpRap1-RCT (residues 639–693) binds a peptide derived from the S.

pombe TRF-like protein Taz1 (Fig. 8C). As the shelterin complex is reconstituted, it will be

exciting to see how many more structural and mechanistic similarities exist between species

that were not detectable by sequence homology.

Conclusion

High-resolution structures have been instrumental in informing telomere function and

guiding biological studies aimed at elucidating the underlying mechanisms of telomere

maintenance. The three-dimensional structures of several sets of telomerase and telomere-

associated proteins revealed that they often display similar topologies in the absence of

discernible sequence relationship, while variations on these shared protein folds highlight

the unique ways in which organisms address their species-specific functions. With the

structural picture of telomere function coming into focus, the next challenges will be the

study of larger and larger complexes, as well as to probe the alteration in their state as a

function of outside triggers, such as phosphorylation. The next frontier is to understand how

regulation of the telomere is achieved, and how interactions between DNA, RNA, and

proteins work dynamically together to perform telomere biogenesis, regulation, and

maintenance.
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Figure 1. Telomerase enzymes are telomere-specific reverse transcriptases
(A) Telomerase domain topology (TEN, yellow; TRBD, orange; fingers, gray; RT, blue;

CTE, magenta) with conserved motifs (T, green; CP, red; IFD, cyan; and left to right in

black, motifs 1, 2, 3, and the canonical RT motifs A, B′, C, D, E, and F, black). (B) Surface

representation of T. castaneum TERT. Domains are labeled and colored as in (A), with the

active site residues in yellow (PDB: 3DU6). (C) The T. castaneum RT domain is shown in

light blue, showing the locations of the telomerase-specific motifs 3 (dark blue) and IFD

(cyan). As in (B), the active site residues are in yellow. (D) The T. thermophila TRBD

domain is shown as a surface representation, with the T motif (red) and CP motif (green)

highlighted (PDB: 2R4G). (E) The T. thermophila TEN domain is also shown as a surface

(PDB: 2B2A). Mutations that alter nucleotide binding are shown as red sticks and red

surface lining the pocket formed by the C-terminal tail, which is labeled. All structures were

modeled using the PyMol Molecular Graphics System, Version 1.3 Schrödinger, LLC

(Schrodinger, 2010).
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Figure 2. Telomere-associated protein complexes in different species
The proteins that are shown in color indicate that high-resolution structural data are

available for either that protein or a close homolog. Metazoans: shelterin complex of TRF1,

TRF2, RAP1, TIN2, hTPP1, and hPOT1; RPA-like proteins Stn1 and Ten1. Fission yeast:

shelterin-like complex of Taz1, Rap1, Poz1, Tpz1, Ccq1, and Pot1; also present are Stn1 and

Ten1. Budding yeast: dsDNA-binding complex of Rap1, Rif1, and Rif2; ssDNA-binding

complex of Cdc13, Stn1, and Ten1. Ciliate macronuclei: TEBPα/β.
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Figure 3. OnTEBP proteins bind ciliate telomeric ssDNA
(A) Domain topology of O. nova TEBP proteins. Four OB folds are present, as well as a

structurally uncharacterized C-terminal domain (CTD) in TEBPβ. (B) TEBPα OB1-3

(green) forms a complex with TEBPβ (blue) to bind ssDNA ligand (black; PDB: 2I0Q). The

TEBPβ globular domain that is bound by OB3 is in dark blue. The 3′ base, G12, is colored

red and is fully buried in the groove between the protein subunits. (C) OB1, OB2, and OB4

make critical contacts with the 3′ loop of the ssDNA ligand to sequester the bases from

solvent.
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Figure 4. Pot1 and hTPP1
(A) Domain topology of hPOT1, SpPot1, and hTPP1 proteins. Following the tandem OB

folds that comprise the DNA-binding domain, Pot1 contains a C-terminal protein-protein

interaction domain (CTD), and hTPP1 contains a central Pot1-binding domain (PBD). (B)

Superposition of SpPot1pN (bright green; PDB: 1QZH) on hPOT1-DBD (dark green; rmsd

= 1.09 Å; PDB: 3KJP). ssDNA ligands are modeled as sticks, with 6mer bound to SpPot1pN

(light gray) and 12mer bound to hPOT1-DBD (dark gray). The 3′ bases of both ligands are

shown in red. (C) hTPP1-OB (orange; PDB: 2I46) superimposed on TEBPβ (teal; PDB:

2I0Q; rmsd =2.0 Å).
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Figure 5. Budding yeast Cdc13, Stn1, and Ten1
(A) Cdc13 domain topology and subdomain structures compared to RPA70. N-OB is in

green, with the dimerization helix labeled (PDB: 3NWS). The DBD is shown as a cartoon,

with superimposed transparent surfaces of the residues involved in DNA binding in

increasing thermodynamic contribution from yellow to red (PDB: 1S40). The 11mer ligand

is shown as sticks (gray) with the 3′ base in red. (B) Stn1 domain topology and structures

compared to RPA32. Left, the S. pombe Stn1-N (green) is superimposed on RPA32-N (blue;

rmsd = 1.6Å; PDB: 3KF6 and 1QUQ, respectively); right, the S. cerevisiae Stn1-C

(magenta) is superimposed on RPA32-C (blue; rmsd = 1.9Å; PDB: 3K10 and 1DPU,

respectively). (C) Ten1 domain topology and structure compared to RPA14. The S. pombe

Ten1 (green) is superimposed on RPA14 (blue; rmsd =1.96Å; PDB 3K0X and 1QUQ,

respectively).
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Figure 6. Domains of telomeric dsDNA binding proteins
(A) Domain topology of TRF1, TRF2, and ScRap1. (B) ScRap1 binds to double-stranded

telomeric DNA with two homeodomains (N-terminal, teal; C-terminal, light blue; PDB:

1IGN). (C) Overlay of the homeodomains from ScRap1 (ScRap1-N, teal; ScRap1-C, light

blue; PDB: 1IGN), TRF1-DBD (orange; PDB: 1ITY), and TRF2-DBD (yellow; PDB:

1VF9). (D) Superposition of the TRF1-TRFH homodimer (aqua and light blue; PDB: 1H6O)

with the TRF2-TRFH homodimer (pink and magenta; PDB: 1H6P; rmsd =1.23Å). (E)

Superposition of the α1 helices that comprise part of the homodimerization interface. TRF1,

teal and light blue; TRF2, pink and magenta. Dashes indicate hydrogen bonding between

monomers (TRF1, green; TRF2, blue). (F) Superposition of three peptide ligands on the

structure of the TRF2-TRFH homodimer. TIN2 peptide bound to TRF1, green (PDB:

3BQO); TIN2 peptide bound to TRF2, orange (PDB: 3BU8); Apollo peptide bound to

TRF2, yellow (PDB: 3BUA). For simplicity, only one peptide binding site is shown on the

surface of one monomer in the homodimer.
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Figure 7. Protein-protein interactions
(A) Domain topology of Rap1 proteins. (B) Cartoon overlay of the Rap1 C-terminal

domains (RCT) from S. cerevisiae (green; PDB: 3OWT), S. pombe (cyan; PDB: 2L3N), and

human (magenta; PDB: 3K6G). (C) Surface overlay of the RCTs from S. cerevisiae (dark

gray), S. pombe (medium gray), and human (light gray), shown with their respective peptide

ligands shown as cartoons: Sir3 (green), Taz1 (cyan), and TRF2 (magenta).
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