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Abstract

Anxiety is one of the most common clinical problems among children, adolescents, and adults

with autism spectrum disorder (ASD), yet we know little about its etiology in the context of ASD.

We posit that emotion regulation (ER) impairments are a risk factor for anxiety in ASD.

Specifically, we propose that one reason why anxiety disorders are so frequently comorbid with

ASD is because ER impairments are ubiquitous to ASD, stemming from socio-cognitive,

physiological, and neurological processes related to impaired cognitive control, regulatory

processes, and arousal. In this review, we offer a developmental model of how ER impairments

may arise in ASD, and when (moderating influences) and how (meditational mechanisms) they

result in anxiety.

Emotion regulation (ER) refers to the ability to modulate experienced and expressed

emotion in the service of goal-directed or value-based behavior. For example, becoming

transiently angry when someone takes your parking space may be a normative response, but

it is not adaptive to act on that anger in an aggressive manner. In such situations, optimal ER

Corresponding author: Susan W. White, Ph.D., 460 Turner St., Child Study Center, Blacksburg, VA 24060, Tel (540)231-8511, Fax
(540)231-3652, sww@vt.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered
which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Int J Dev Neurosci. Author manuscript; available in PMC 2014 December 01.

Published in final edited form as:
Int J Dev Neurosci. 2014 December ; 39: 22–36. doi:10.1016/j.ijdevneu.2014.05.012.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



skills allow for the down-regulation of negative emotions to proceed with the task at hand

(i.e., find another place to park). An impoverished ability to cope with and control intense,

especially negative, emotions is associated with a range of psychiatric conditions and

symptoms (Aldao, Nolen-Hoeksema, & Schweizer, 2010; Berking et al., 2012; Berking &

Wupperman, 2012), and the goal of this review is to explore ER impairment in relation to

manifest anxiety in autism spectrum disorder (ASD).

Over the last several years, there has been burgeoning scientific interest in the possibility

that ER impairments are nearly ubiquitous in ASD (Mazefsky et al., 2013). Impaired ER

may underlie many of the behavior problems commonly seen in children and adults with

ASD, such as aggression, irritability, and anxiety (Mazefsky & White, 2013). Anxiety is

among the most commonly observed and impairing associated (i.e., non-core) symptoms in

ASD (e.g., White, Oswald, Ollendick, & Scahill, 2009). As many as four out of five children

with ASD are diagnosed with comorbid psychiatric disorders (Simonoff et al., 2008) and,

although there is evidence that diagnostic practices that take into account the ASD-related

impairments would result in fewer comorbid diagnoses (Mazefsky, Oswald, Day, Eack,

Minshew, & Lainhart, 2012), children, adolescents, and adults with ASD are clearly at

increased risk of experiencing a range of secondary behavioral and emotional problems.

In this review, we consider socio-cognitive, physiological, and neural mechanisms that may

serve as mediators of ER impairments in ASD. We then explore possible pathways between

disrupted ER and the behavioral manifestations of anxiety in ASD, with a focus on intra-

individual moderating influences. The goals of this paper are to synthesize the extant

literature related to specific processes involved in ER impairments in ASD and to identify

factors that may cause ER deficits to manifest as anxiety. We conclude with

recommendations for future research to systematically evaluate the plasticity of ER

mechanisms and thereby reduce anxiety in ASD.

Overview: Emotion Regulation and Anxiety in ASD

Anxiety is an emotional response with both affective and physiologic components. Anxiety

can be defined as nervous tension and autonomic arousal, often accompanied by general

distress (Clark & Watson, 1991). The regulation of emotion is distinct from the experience

of that emotion. For example, a child might cope with anxiety about speaking in front of

peers by reminding himself that most other children his age also get anxious or by feigning

illness on the morning of a class presentation. Reappraisal and avoidance behaviors such as

these are strategies to modulate or regulate the emotion responses. Emotional experience is

automatic and often intense, whereas the regulatory strategies used for coping with the

situation are often explicit and intentional.

ER is a broad, multilevel process, involving inter-related systems (e.g., attention,

physiology, neurological processes; e.g., Calkins, 2010). Regulatory strategies are typically

used to increase, or heighten, an emotional experience (up-regulation), decrease the emotion

itself, or dampen the outward expression of the emotion (down-regulation). Derived from

Gross’ (2001) process model of ER, strategies can also be categorized in relation to

emotional experience. Regulation can occur prior to the experience of the emotion or in
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response to the emotion, termed antecedent-focused and response-focused strategies,

respectively. For example, avoidance of situations likely to trigger an unpleasant emotion is

an antecedent strategy whereas suppression of an emotion is response-focused and occurs

after the emotion generating experience. Additionally, some regulatory strategies are explicit

and intentional (e.g., reappraisal, suppression), whereas others are implicit, or occurring

without conscious intention (e.g., affect labeling; Gyurak, Gross, & Etkin, 2011).

A person’s ‘regulatory style’ is associated with general well-being (Gross & John, 2003)

and, in some cases, the development of psychopathology (Ciccetti, Ackerman, & Izard,

1995). Developmentally, regulatory ability improves dramatically during the first few years

of life (Calkins, 2010) and is predictive of positive outcomes. A child’s ability to effectively

manage emotions, for example, predicts better adaptive behavior and social relationships

(Eisenberg & Fabes, 2006). People who consistently engage in adaptive cognitive

reappraisal tend to have stable, close interpersonal relationships and more positive emotions

than do people who do not readily engage in reappraisal. Those who habitually suppress

emotion, on the other hand, experience more negative affect and often experience

inauthenticity, or a sense of externally presenting a false persona (Gross & John, 2003).

Emotion dysregulation is a transdiagnostic risk factor (i.e., a fundamental process

underlying multiple disorders or symptoms) for psychopathology. In the developmental

psychopathology literature, for example, there is a strong association between ER

impairments and development of internalizing problems, such as anxiety and depression

(e.g., Southam-Gerow & Kendall, 2000). McLaughlin and colleagues (2011) demonstrated,

in one of the few longitudinal studies in the field, that ER deficits prospectively predicted

not only changes in adolescents’ anxiety but also aggressive behavior and eating pathology.

Conversely, psychopathology did not predict subsequent ER deficits.

Although there is little empirical research on ER in ASD, there has been considerable study

of the experience and expression of emotion in ASD. This research has demonstrated that

people with ASD often have poorly differentiated emotional responses and self-knowledge,

tend to experience more negative emotion, and are harder to soothe once aroused, relative to

peers without ASD (e.g., Konstantareas & Stewart, 2006). From infancy through adulthood,

individuals with ASD are often described as having low levels of positive affect along with

heightened negative affect and dysregulated behavior, compared to peers without ASD

(Garon et al., 2009; Mazefsky, Pelphrey, & Dahl, 2012). Children with ASD, when

frustrated, display more intense and prolonged periods of resignation (i.e., giving up) and

less effective ER strategies (e.g., more avoidance) compared to typical peers (Jahromi,

Meek, & Ober-Reynolds, 2012). They tend to show poor emotional insight and struggle to

adequately express emotion via verbalization, facial expression, or other nonverbal means

(e.g., Losh & Capps, 2006).

Our goal is to offer an evidence-informed heuristic for understanding ER impairments as a

risk factor that may manifest as anxiety in people with ASD. Among psychiatric

comorbidities seen in ASD, anxiety disorders are the most common (de Bruin, Ferdinand,

Meester, de Nijs, & Verheij, 2007; Joshi et al., 2010; White et al., 2009), affecting about

40% of children and adolescents with ASD (van Steensel, Bogels, & Perrin, 2011). As noted
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above, we propose that ER impairments, through a host of biological and nonbiological

mechanisms, are fundamentally related to ASD. In this model, ER impairment is viewed as a

transdiagnostic risk factor affected by multiple mechanisms, which are etiologically linked

to ASD (i.e., equifinality), whereas anxiety is only one possible, though likely, outcome of

impaired ER in ASD (i.e., multifinality).

Most clinical affective neuroscience research has focused on emotions as discrete categories,

where each emotion is thought to emerge from independent neurobiological systems (for a

review, see Posner, Russell, & Peterson, 2005), and this approach has yielded important

advances in the understanding of neurobiological mechanisms of affect. However, there is

strong evidence that discrete emotion categories are constructed of more general brain

networks, suggestive of a dimensional model that conceptualizes that all affective states

arise from common, overlapping neurophysiological systems (Lindquist, Wager, Kober,

Bliss-Moreau, & Barrett, 2012). Dimensional models of affect have a long history in

psychological research (Russell, 2003) including the circumplex model of affect that

proposes that all affective states arise from two fundamental neurobiological systems

defined by the near-orthogonal dimensions of valence (i.e., pleasure-displeasure) and arousal

(i.e., alertness or vigor; Russell, 1980). This framework suggests that every emotion may be

represented on the basis of varying degrees of valence and arousal. For example, feeling

tense is the product of a negatively valenced and highly aroused emotional state; whereas

feeling serene is the product of a positively valenced and low arousal state.

The circumplex model of affect suggests that dysregulated arousal systems would have a

direct impact on the experience of all emotions, and Tseng and colleagues (2013) recently

found that a circumplex model of experienced affect is characteristic of individuals with

ASD. One potential mechanistic account for impaired ER, and the resultant increased

anxiety, in ASD is that individuals on the spectrum may experience heightened levels of

basal or reactive arousal. Arousal is regulated by connections between the reticular

formation in the brainstem and the limbic system, including the amygdala, and the thalamus

and parietal lobes (Heilman, 2000), and there is evidence of impairments in functional and

structural connectivity between the brainstem and limbic system in ASD (Elison et al., 2013;

Fatemi, et al., 2012). Additionally, a comprehensive functional neuroimaging literature

implicates impaired processing of emotional stimuli in ASD (for a review, see Dichter,

2012). To the extent that arousal systems may be dysregulated in ASD, this would have a

direct influence on the experience of affective states, potentially contributing to impaired ER

in ASD.

In addition to neural and physiological mechanisms that affect regulatory capacity, there are

cognitive and social processes that influence the experience of, and ability to intentionally

alter, emotion. In typical development, ER emerges rapidly, largely through interactions

between the child and parent. Just as altered interactions between a child (or infant) and the

social environment can affect, and be affected by, the child’s temperament (Dawson, 2008),

this interaction can also affect ER development. In the following sections, we explore these

broad domains of mediational mechanisms – socio-cognitive, neural, and physiological, as

they relate to understanding impaired ER in people with ASD.
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Socio-Cognitive Mechanisms

Recognition, Expression, and Socialization of Emotion

Familial socialization of appropriate emotional responding, often referred to as emotion

coaching, plays a critical role in the development of ER in non-ASD populations (e.g.,

Dunsmore, Booker, & Ollendick, 2013). Theoretical models, supported by a wealth of

research, indicate that young children develop ER skills through observational learning,

modeling, and social referencing (Morris, Silk, Steinberg, Myers, & Robinson, 2007). This

is largely a spontaneous process that happens through family interactions without explicit

instruction or directive teaching for most children. However, child characteristics can

moderate this process (Morris et al., 2007), and the prominent social deficits in ASD may

interfere with the observational learning of ER in early childhood.

Whereas typically developing infants demonstrate a natural preference for others’ faces,

early development in ASD is characterized by reduced social attention and motivation (e.g.,

Dawson, Meltzoff, Osterling, Rinaldi, & Brown, 1998), and diminished salience and

abnormal perception of social cues, based on eye-tracking and electrophysiological studies

(Dawson, Webb, & McPartland, 2007). Further, attention to others’ eyes may decline by 6

months of age in infants later diagnosed with ASD (Jones & Klin, 2013). This suggests that

reduced social interest is evident by the time young children who later develop ASD should

be vicariously learning foundational ER skills from their interactions with others (e.g.,

parents, siblings). Given the interdependence of social and emotional development, it is not

surprising that individuals with ASD present with ER impairments.

One of the fundamental ER skills acquired early in development is emotion recognition.

Competence in interpersonal situations is highly dependent on awareness of one’s own

emotions and those of others (Saarni, 1999). Accuracy in emotion recognition is requisite for

higher level emotional and social understanding (Jones et al., 2011). Difficulty recognizing,

and especially labeling, emotions in self and others may directly and indirectly impede

effective ER. Tupak and colleagues (2014) found that affect labeling was associated with

activation of the ventrolateral prefrontal cortex (VLPFC) in a healthy population. These

findings suggest that an inability to recognize and label emotions could lead to under-

activation of neural regions directly involved in implicit ER. Indirectly, misperception or

misinterpretation of emotional signals could hamper ER.

Findings from research on emotion recognition deficits in ASD are quite mixed (e.g.,

Harms, Martin, & Wallace, 2010; Jones et al., 2011). Kennedy and Adolphs (2012), for

example, found that adults with ASD demonstrated decreased sensitivity in emotion

perception relative to non-affected adults. Likewise, Tanaka and colleagues (2012) reported

decreased ability to generalize facial emotions across identities. On the other hand, Ozonoff

and colleagues (1990) found that although children with ASD displayed some deficits in

emotion perception relative to non-affected controls, the deficits were not seen uniformly

across experimental tasks and were not present when the control children were matched to

those with ASD on verbal ability.
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Although the existence of a global and pervasive deficit in emotion recognition in ASD has

not been firmly established, Uljarevic and Hamilton (2013) reported results from a meta-

analysis of 48 emotion recognition studies representing data from over 980 participants with

ASD, indicating that ‘basic’ emotions (anger, sadness, surprise, fear, disgust) were

recognized less accurately in ASD, with the exception of happiness, which appeared to be

(marginally) intact overall. Interestingly, neither age nor IQ moderated this effect,

suggesting that although the effect may not be truly global (due to apparently preserved

recognition of happiness), the mixed results may be due to the dramatic heterogeneity in

tasks used to measure this process (e.g. emotion-labeling tasks, emotion-matching tasks) as

well as heterogeneity in the participant groups involved in these studies. Despite these

inconsistencies, it can be concluded that more demanding tasks with subtle stimuli are most

challenging, there are some emotion-specific difficulties (e.g., fear and sadness; Tell,

Davidson, & Camras, 2014), and people with ASD improve developmentally in this skill but

never reach typical adult proficiency (Rump, Giovannelli, Minshew, & Strauss, 2009).

Although the exact nature of emotion recognition deficits in ASD is not resolved, it is

generally agreed that the manner in which emotional expression is processed and interpreted

is atypical in ASD. Research in both children and adults suggests that individuals with ASD

are more likely than typically-developing individuals to interpret ambiguous or neutral faces

as negative, suggesting a possible bias (Eack, Mazefsky, & Minshew, 2014; Kuusikko et al.,

2009). Moreover, neuroimaging and eye-tracking research has generally found differences

between people with and without ASD, across metrics, on emotion recognition tasks even

when performance deficits are not found (see Harms et al., 2010 for review), which suggests

engagement of compensatory approaches for emotion recognition. One such compensatory

strategy may be application of a rule-based approach (e.g., smile indicates happiness) to

emotion interpretation, rather than the more typical application of a ‘prototype’ of a given

emotion (Walsh et al., 2014). Prior eye-tracking research has indeed found differences in the

visual scanpaths of people with ASD when viewing emotional faces (Gross, 2004; Klin,

Jones, Schultz, Volkmar, & Cohen 2002). This line of reasoning was first suggested based

on failure to find an inversion effect in ASD, which involves slowed facial identification

when a face is presented upside down (see Sasson, 2006 for review). In further support of

this, Tanaka et al. (2012) reported a tendency to process facial features as isolated, non-

integrated parts within a sample of children, adolescents, and adults with ASD. Additionally,

affect-matching paradigms tend to result in more sizeable group differences in facial

emotion recognition ability than do affect labeling paradigms (e.g., Davies et al., 1994;

Piggot et al., 2004; Rump et al., 2009). This suggests that more cognitively and verbally able

individuals with ASD might engage less automatic cognitive and linguistic strategies to

decode emotions than typically developing individuals (Harms et al., 2010).

Compared with research on the perception of emotion in others, there has been less work on

the ability of people with ASD to recognize and express their own affect. There is, however,

evidence for impaired access to and expression of consciously felt emotion (Shalom et al.,

2006). Children with ASD smile less often and tend to not show self-conscious affect,

relative to children without ASD (Dawson & McKissick, 1984; Mundy & Sigman, 1989;

Spiker & Ricks, 1984). Finally, difficulty in identifying, distinguishing, and describing one’s

own emotions (often referred to alexithymia) has been documented in ASD samples (e.g.,
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Rieffe, Terwogt, & Kotronopoulou, 2007). These impairments may interfere with successful

ER in ASD given that the capacity to label, and communicate about, one’s own emotions are

essential aspects of effortful ER (Mazefsky & White, 2013).

Attention, Working Memory, and Cognitive Control

Monitoring and altering the course of emotional experience requires attentional and

cognitive processes. There has been a wealth of research on cognitive processes in ASD,

including research on attention, working memory, and information processing. Although this

research has rarely explicitly focused on how differences in these cognitive processes impact

emotional functioning in ASD, research in typically developing samples and other clinical

populations has established the importance of higher order cognitive processes and

executive functions in ER (Ochsner & Gross, 2005; Zelanzo & Cunningham, 2007). Below

we consider how understanding cognitive functioning in ASD may inform the understanding

of observed ER deficits in ASD.

Effective ER is characterized by adaptive, goal-directed behavior, which requires the

integration of multiple components of executive function. For example, internal goal

representations must be kept in awareness while inhibiting interfering cognitions and

behaviors (Solomon, Ozonoff, Cummings, & Carter, 2008). Cognitive control refers to the

ability to reallocate mental resources in the service of values and goals. Key components of

cognitive control related to ER include attentional control and controlled cognitive change

(Ochsner & Gross, 2005). For example, an adaptive response may require limiting attention

to a negative stimulus and focusing attention on salient aspects of the context to arrive at the

most appropriate response. Flexible, integrated cognitive responses are required to generate

or regulate an emotion.

Impairments in cognitive flexibility and the ability to shift attentional focus have been well-

documented in ASD (Hill, 2008; Ozonoff, Coon, Dawson, Joseph, Klin, & McMahon, 2004;

Ozonoff & Strayer, 1997; Rinehart, Bradshaw, Moss, Brereton, & Tonge, 2001). This has

been demonstrated as a tendency to perseverate, or cogitate on one thought or task to the

exclusion of other thoughts and behaviors. Perseveration is a clinical concern because such

focused attention impedes appropriate task switching. Problems with shifting attention are

also observed in the form of difficulty disengaging attention to perform a task (e.g., Landry

& Bryson, 2004). The tendency to hyper-focus on aspects of a situation at the exclusion of

other, potentially more relevant, signals extends beyond perceptual processes (Ozonoff,

Strayer, McMahon, & Filloux, 1994) to a problem with higher-order demands for conceptual

integration.

Manifest difficulties with cognitive rigidity can be couched in the theory of Weak Central

Coherence (WCC; Frith, 1989; Frith & Happé, 1994), which holds that individuals with

ASD have relative strengths in local processing and may lack the automatic drive to

integrate stimuli to make global meaning of context. The information processing approach

of people with ASD is often piecemeal and detail-oriented, regardless of salience or

meaning of the gestalt. This may also present as over-reliance on specific responses or

scripts, even when such behaviors are not ideal for the situational demands.
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Inflexibility can also reflect difficulty inhibiting a response that interferes with goal-directed

behavior. In a cross-sectional study, Ozonoff et al. (2004) found that adolescents with ASD

made more errors than typically developing adolescents on a task requiring inhibition of

prepotent responses compared with children under the age of 12. In addition, adolescents

with ASD made more errors than did younger children with ASD, suggestive of a lack of

age-related improvement during adolescence in ASD.

Problems with the conceptual integration of information in ASD can result in a host of

cascading and reciprocal effects on behaviors with relevance to ER, including difficulty with

perspective-taking, an inability to think hypothetically, and an impaired ability to develop

novel behavioral solutions to problems (Dunlop, Knott, & MacKay, 2008; Hill, 2008;

Pugliese & White, 2014; Reed & Peterson, 1990). For example, set-shifting difficulties may

also be related to the inability to recognize that one’s solution is faulty (Perner, 1998).

Arguably, most situations that demand regulation of emotion in daily life are not planned,

lack clear rules for how to best handle the situation, and require disengagement from the

emotional trigger. Cognitive perseveration, along with deficits in perspective-taking, may

contribute to the inability to see more than one side of a situation (making reappraisal

difficult) and contribute to emotional rumination, collectively leading to impaired ER.

Summary

The rich research on the maturation of ER abilities in typically developing children can shed

light on how ER impairments arise in ASD. From very early in life, caregivers play a

considerable role in helping the young child self-regulate emotion (e.g., Rothbart & Bates,

2006). As the child’s inhibitory control, attention, and ability to self-soothe improve,

parental control over the child’s regulation is gradually scaffolded (Eisenberg & Sulik,

2012). In ASD, normative social orienting (e.g., child attending to parent) is derailed early in

development (Dawson, 2008; Jones & Klin, 2013). There are often deficits in cognitive

control, flexibility, and problemsolving (e.g., Ozonoff et al., 1994; Rinehart et al., 2001), all

higher order skills involved in ER. Although the research has been mixed, there is evidence

too of deficits in foundational skills for ER, such as emotion awareness, recognition, and

accurate expression (e.g., Eack et al., 2014; Harms et al., 2010; Rieffe et al., 2007). As such,

the development of ER ability may be hindered in ASD, via processes related to wayward

socialization, impaired executive function, and fairly rudimentary emotion awareness and

recognition skills.

Physiological Mechanisms

The idea that ASD is a disorder of irregular resting-state physiology dates back to Hutt and

colleagues (1964), who suggested that those with ASD have a “chronically high state of

arousal” (p. 908), and is now supported by multiple lines of evidence suggesting that ASD is

characterized by altered levels of basal and reactive arousal. One indirect line of evidence is

the well-documented finding that individuals with ASD gaze less at the eye regions of

images of faces (Kliemann, Dziobek, Hatri, Steimke, & Heekeren, 2010; Klin et al., 2002;

Pelphrey, et al., 2002), a pattern that has been suggested to reflect a state of over-arousal

(Levine et al., 2012; Riby, Whittle, & Doherty-Sneddon, 2012) linked to hyperactive

amygdala activation when looking at the eye regions of the face (Dalton et al., 2005).
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Below, we describe some of the most prominent approaches utilized in physiological

research on emotion processes and their application to understanding ASD.

Startle Responses

A number of studies have suggested differences in basal states of arousal on the basis of

altered magnitudes of the startle eyeblink response. The startle eyeblink response is an

obligatory reflex elicited by a startling probe, the magnitude of which is modulated by

internal states of arousal, attention, and valence (Bradley, Codispoti, Cuthbert, & Lang,

2001; Lang & Davis, 2006). Fear-potentiation of the startle response is mediated by

projections from the central nucleus of the amygdala (Hitchcock & Davis, 1991), and there

is a large literature documenting altered fear-potentiated startle responses in anxiety

disorders (Lang, Davis, & Ohman, 2000). Although Sterling and colleagues (2013) reported

normal threat-potentiated startle responses in adolescents with ASD and found that startle

responses did not predict levels of anxiety or social impairments, Chamberlain and

colleagues (2013) reported greater absolute startle responsivity at baseline and throughout a

threat-potentiated startle experiment in adolescents with ASD, despite no differences in

startle modulation due to cued or uncued threat, suggesting context-general enhanced

arousal in threatening contexts.

Modulation of the startle response may be measured in the context of both pleasant and

unpleasant stimuli, and the degree of startle attenuation in appetitive contexts and

augmentation in withdrawal contexts (i.e., affective modulation of the startle response) is

known to reflect both the arousal and valence properties of the contextual affective stimuli

(Lang, Bradley, & Cuthbert, 1998). Studies of affective modulation of the startle response in

ASD have found evidence of startle eyeblink magnitude potentiation while viewing pleasant

normative images, despite no differences in affective ratings of images relative to subjects

without ASD (Dichter, Benning, Holtzclaw, & Bodfish, 2010; Wilbarger, McIntosh, &

Winkielman, 2009) as well as potentiation while viewing pleasant social images (Cohen,

Masyn, Mastergeorge, & Hessl, 2013). Wilbarger and colleagues (2009) also reported intact

implicit valence responses, reflected in facial electromyography (EMG), suggesting that

aberrant startle eyeblink responses to pleasant pictures may reflect impaired processing of

picture arousal rather than valence. In addition, Dichter and colleagues (2010) found

evidence of impaired startle-induced postauricular modulation in the context of unpleasant

pictures, further suggesting that patterns of altered startle responses are not due to picture

valence, but instead more likely picture arousal, in contexts where startle reflexes should be

attenuated but rather are amplified. Finally, Mathersul and colleagues (2013) found no

differences in startle modulation or electromyography activity (i.e., orbicularis,

zygomaticus, corrugator) in adults with ASD to normative neutral, pleasant, and unpleasant

images, though this study used extremely intense images (e.g., erotica and mutilation) which

may have elicited more normative responses. In summary, available startle eyeblink

modulation data suggests mixed evidence of enhanced fear-potentiated startle, but more

consistent evidence of startle potentiation in positive affective contexts likely linked to

processing the arousing properties of affective images. Though more research is needed, this

pattern suggests that altered states of arousal in ASD may impact processing of arousing

positive stimuli, including images of faces.
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Skin Conductance Responses

The skin conductance response (SCR; electrodermal activity) is a psychophysiological index

of autonomic arousal, reflecting an orienting response that is elicited by salient

environmental stimuli (particularly socially relevant information) (Critchley, 2002;

Sequeira, Hot, Silvert, & Delplanque, 2009). It mobilizes physiologic resources to facilitate

behavioral responses and reflects arousal and motivation (Lang, 1995). Research into

autonomic responsivity, as measured by SCRs in ASD, is highly inconsistent and does not

clearly indicate altered states of autonomic arousal in ASD. A number of SCR studies have

found evidence of hyper-arousal in children and adolescents with ASD. van Engeland and

colleagues (1991) reported larger SCRs to novel stimuli but normalized SCR when

subjective, idiosyncratically arousing stimuli were added to the novel stimuli. Kylliainen and

Hietanen (2006) reported higher SCRs to socially-relevant stimuli in children with ASD, and

Joseph and colleagues (2008) reported relatively larger SCRs in children with ASD to face

images with direct and averted gaze. Hirstein and colleagues (2001) reported that children

with ASD did not show a larger SCR to images of their mother versus an image of a cup.

Finally, Cohen and colleagues (2013) reported that adolescents with ASD and with ASD

plus Fragile X had larger SCRs than controls while viewing pleasant and unpleasant

pictures, reflective of a general state of hyper-arousal.

However, research on atypical SCRs in people with ASD has not consistently been

suggestive of hyper-arousal. Indeed, a number of studies have found lower SCRs in ASD.

Hubert and colleagues (2009) reported lower SCRs in adults with ASD during an emotional

face judgment task. Mathersul and colleagues (2013) found an overall dampening of SCRs

to socially pleasant, but not neutral, images in adults with ASD. This was interpreted as a

failure to orient to socially relevant stimuli and a greater relative allocation of attention to

neutral images. This study also reported decreased evoked cardiac acceleration (ECA) to

social pleasant images, suggesting reduced perceived motivational intensity of these images,

yet no differences in evoked cardiac deceleration (ECD) to any image category. The authors

interpreted these findings to reflect intact initial automatic orienting to affective stimuli

(reflected in the ECD response) but that this attentional allocation fails to sustain over time,

reflected in dampening of SCRs. Finally, Riby and colleagues (2012) found lower SCRs in

individuals with ASD relative to controls and to participants with Williams Syndrome, and

did not show physiological reactivity differentiation between groups to happy, sad, and

neutral live and video faces, suggestive of decreased arousal across social contexts. Kushki

and colleagues (2013) reported elevated SCRs while watching a neutral movie but blunted

SCRs during an anxiety-provoking Stroop task (and elevated heart rate during both

conditions) in children with ASD, suggesting context-specific and perhaps paradoxical

autonomic system dysfunction in contexts eliciting anxiety (i.e., a larger SCR at baseline but

smaller SCR during a task meant to elicit anxiety).

Finally, Shalom and colleagues (2006) found no differences in SCRs to pleasant, neutral,

and unpleasant images between children with ASD and controls despite divergent affective

ratings of the images, and Louwerse and colleagues (2014) found no group differences in

SCRs, heart rate, or subjective responses to social and nonsocial affective image in

adolescents with an ASD. Blair (1999) reported no differences in SCRs to distressing,
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threatening, or neutral stimuli in children with ASD, indicative of intact autonomic and

subjective responses to stimuli with and without a social content. South and colleagues

(2011) recorded SCR during a simple discrimination conditioning task in children and

adolescents with and without ASD and found no differences in baseline SCRs or group

differences in SCRs to conditioned stimuli. However, they found that SCRs to conditioned

fear stimuli in the ASD group was associated with symptoms of social anxiety (positive

association) and social functioning (negative association).

Cardiovascular Activity

Respiratory sinus arrhythmia (RSA) is a measure of heart rate variability related to breathing

that is influenced by the parasympathetic branch of the autonomic nervous system. The

amplitude of RSA is widely applied as an index of the myelinated vagus function or cardiac

vagal tone (Berntson, Cacioppo, & Grossman, 2007; Grossman & Taylor, 2007). Vagal

tone, RSA, and other measures of heart rate may be useful metrics for understanding

parasympathetic responses to stress related to ER (Porges, Doussard-Roosevelt, & Maiti,

1994). The interpretation of RSA is dependent on state, with different expectations for

resting state versus change-related measures (Mazefsky et al., 2013). Polyvagal theory

proposes that higher baseline RSA is associated with better social interaction and ER,

whereas low levels, as well as unreliable RSA modulation, confer risk for problems in these

areas (Porges, 2007). This theory has been widely supported, with high frequency heart rate

and reduced vagal control (as measured by RSA) found in populations with anxiety or

depression (Licht et al., 2009; Rottenberg, 2007).

Consistent with Polyvagal Theory, there is some research supporting a link between higher

baseline RSA amplitudes and better social behavior in ASD (Patriquin, Scarpa, Friedman, &

Porges, 2013). Along the same lines, Klusek and colleagues (2013) reported dampened

vagal tone in boys with ASD that was correlated with pragmatic (i.e., social) language

impairments. These findings are consistent with research indicating low parasympathetic

activity, including lower heart rate variability, at rest in ASD (Cohen et al., 2013; Ming et

al., 2005). On the other hand, research investigating the relationship between RSA and vagal

tone modulation and ER-related concepts in ASD is quite limited and findings are mixed.

Levine et al. (2012) found no difference in vagal tone responses to stress between

participants with ASD and typical controls. Conversely, a study of 14 children with ASD

found lower baseline levels of RSA, lower heart rate variability, and higher heart rates,

reflective of decreased parasympathetic nervous system activity, compared to typically

developing controls (Guy, Souders, Bradstreet, DeLussey, & Herrington, 2014). Further,

decreased RSA was associated with more severe parent-reported anxiety symptoms (Guy et

al., 2014). Similarly, Moskowitz et al (2013) found that lowerfunctioning children with ASD

had higher heart rates and lower RSA in high versus low anxiety conditions. These two

studies suggest lower baseline levels of RSA in ASD, as well as an association between

resting RSA and anxiety. Although one might also expect poorly modulated RSA in ASD,

more research is needed to determine whether or not this is uniformly the case.
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Pupillometry

Pupillometry involves the measurement of changes in pupil diameter, to index the intensity

of mental activity and changes in attention and perception (Laeng, Sirois, & Gredebäck,

2012). Given its noninvasive nature, this metric has grown more popular as a general

measure of overall brain activity or emotional reactivity. Nuske and colleagues (2014)

reported no differences in resting-state (tonic) pupil size in children with ASD, although two

studies (Anderson & Colombo, 2009; Anderson, Colombo, & Unruh, 2013) reported larger

tonic pupil sizes, indicative of hyperarousal, in young children with ASD. Martineau and

colleagues (2011) also found a difference, but in the opposite direction. Specifically, they

reported smaller mean pupil size in children with ASD while viewing neutral faces, virtual

faces, and objects. Fan and colleagues (2009) reported that children with ASD had longer

transient pupillary light reflex (PLR) latency, smaller constriction amplitude and lower

constriction velocity than children with typical development. In sum, although the majority

of pupillometry studies in ASD have found differences compared to typically-developing

children, the type of differences and direction of effects have been variable. Additional

research is needed to better understand how pupillometry measures differ in ASD, including

consideration of the impact of within group heterogeneity (particularly related to ER) on

pupilometry indices.

Salivary Cortisol

Hydrocortisone, usually referred to as cortisol, is a steroid hormone that is excreted during

or after stress in humans as part of the systematic arousal of the HPA axis (Staufenbiel,

Penninx, Spijker, Elzinga, & van Rossum, 2013). Whereas some studies of cortisol in ASD

have suggested chronic cortisol over-responsiveness (e.g., Bitsika, Sharpley, Sweeney, &

McFarlane, 2014), others have found a blunted or decreased cortisol response (Levine et al.,

2012). Wide variability in cortisol levels between children with ASD has been reported

(Corbett, Schupp, Levine, & Mendoza, 2009). Among non-ASD samples, large

intraindividual variability exists as well, with genetics, gender, and smoking noted as some

key contributors to this variability (see Kirschbaum & Hellhammer, 1994 for review). The

degree of social impairment appears to play a role in cortisol levels in ASD, with lower

cortisol levels associated with more social motivation (Corbett et al., 2013).

There is also a well-established relationship between cortisol levels and stress responses in

the non-ASD literature (see Dickerson & Kemeny, 2004 for review). Research on cortisol

levels in samples with clinical anxiety varies across the specific disorder studied, though

most often there is a reduction in cortisol levels with effective treatment (see Elnazer &

Baldwin, 2014 for review). One would expect that degree of emotion dysregulation and

anxiety may also drive cortisol differences in ASD. Indeed, there is some support for higher

peak cortisol and prolonged duration and recovery of cortisol elevation in children with

ASD after a stressful experience (e.g., blood draw; Spratt et. al, 2011). One might similarly

expect the degree of anxiety in ASD to correspond with cortisol levels; however, one small

study found no relationship between self-reported anxiety and salivary cortisol in children

with ASD (Simon & Corbett, 2013).
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Summary

In summary, the literature addressing physiological measures of arousal in ASD, though

mixed, is generally supportive of altered states of basal and reactive arousal. Evidence of

larger startle responsivity at baseline, in threatening contexts, and while processing positive

and social stimuli is suggestive of heightened states of arousal in ASD. The literature on

SCRs in ASD is particularly mixed, with evidence of unimpaired, larger, and smaller

reactivity, but the preponderance of studies support altered SCRs, suggesting a failure to

orient appropriately to both social and nonsocial environmental stimuli. There is also

support for low parasympathetic activity at rest in ASD, as indicated by relatively low

baseline RSA and vagal tone, a pattern that is typically associated with greater social and

emotional impairment (Porges, 1997). Studies utilizing both pupillometry and cortisol

measures in ASD generally report differences compared to typically-developing controls,

though the direction of effects is variable. Given the ability of many of these these

physiologic measures of arousal to index very rapid responses to the environment (i.e., on

the order of milliseconds), these data suggest altered orienting to the environment very early

in the stream of information processing in ASD.

Neural Mechanisms

Neural Substrates of ER in Non-Clinical participants

We first review the extensive literature on the neural mechanisms of ER in non-clinical

participants (Beauregard, Levesque, & Bourgouin, 2001; Blair et al., 2007; Kim & Hamann,

2007; Ochsner & Gross, 2005; Phan et al., 2005) prior to discussing neural substrates of

impaired ER in ASD. The majority of these studies has assessed the neural substrates of

explicit ER strategies, with a particular focus on cognitive reappraisal, which involves

reinterpreting an emotion-eliciting stimulus to consciously change one's emotional response

(Ochsner and Gross, 2005; though see Etkin et al., 2009, 2010 for studies of implicit ER).

Increasingly, these data suggest that consciously deployed attempts to alter an emotional

experience are mediated via effects of prefrontal cortex (PFC) on limbic regions that alter

experiential, behavioral, and neurobiological aspects of emotional responses (Dillon &

Labar, 2005; Eipprt et al., 2007; Gross, 1998; Jackson, Malmstadt, Larson, & Davidson,

2000; Johnstone, van Reekum, Urry, Kalin, & Davidson, 2007; Ray, McRae, Ochsner, &

Gross, 2010; Urry et al., 2006). Specifically, conscious changes in emotional responses are

brought about by dorsolateral, ventrolateral, and medial PFC regions involved in cognitive

control as well as by subcortical regions involved in arousal and motivation, including

limbic and brainstem regions and medial and orbitofrontal prefrontal cortices (Critchley,

2005; Dolan, 2002; Johnstone et al., 2007) and the interplay among these areas (Derryberry

& Rothbart, 1997; Urry et al., 2006).

Medial PFC (mPFC) has been linked to the regulation of amygdala and other cortico-limbic

activity (Phelps, Delgado, Nearing, & LeDoux, 2004; Quirk, Likhtik, Pelletier, & Pare,

2003) and varies with the direction of regulation (Eippert et al., 2007; Harenski & Hamann,

2006; McRae et al., 2010; Ochsner, Bunge, Gross, & Gabrieli, 2002; Ohira et al., 2006;

Schaefer et al., 2002). Specifically, cognitive strategies that down-regulate responses to

aversive stimuli recruit dorsal and ventral prefrontal cognitive control regions, including
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dorsal, lateral, and medial PFC, and anterior cingulate cortex, while simultaneously reducing

activation in areas associated with emotion processing, including the amygdala, medial and

lateral OFC, and nucleus accumbens (Kalisch, 2009; Kim & Hamann, 2007; Levesque et al.,

2003; Ochsner et al., 2002; Ochsner et al., 2004; Phan et al., 2005). Reductions in negative

affect predict lateral and medial PFC activation (Ochsner et al., 2002; Phan et al., 2005) and

negatively correlate with amygdala activation (Ochsner et al., 2004; Phan et al., 2005). This

pattern highlights an important relationship between emotion and cognition in ER contexts,

such that dorsal cognitive abilities modulate ventral affective responses (Ayduk, Mischel, &

Downey, 2002).

Largely overlapping PFC regions mediate intentional attempts to change positive emotional

responses (Kim & Hamann, 2007); however the corresponding activation of limbic regions,

including the amygdala and nucleus accumbens, is increased (Heller et al., 2009; Ochsner et

al., 2004) suggesting that cognitive control affects both the up- and down-regulation of

emotion and depends on the valence of the ER target. The degree of success of reappraisal

has also been correlated with activity in regions of PFC (Eippert et al., 2007; Kober et al.,

2008; Levesque et al., 2003; Wager, Davidson, Hughes, Lindquist, & Ochsner, 2008),

anterior cingulate cortex (Phan et al., 2005), and amygdala (Eippert et al., 2007; Phan et al.,

2005), and with the degree of correlation between the amygdala and mPFC (Banks, Eddy,

Angstadt, Nathan, & Phan, 2007). Thus, top-down regulatory projections from PFC

modulate limbic activity in response to emotional stimuli, forming a frontolimbic circuit of

ER (Bishop, Duncan, Brett, & Lawrence, 2004; Ochsner et al., 2005; Urry et al., 2006).

Neural Substrates of Emotion Processing in ASD

Despite the increasing evidence that ER impairments play a key role in ASD, studies

examining the neural mechanisms of ER in individuals with the disorder are rare. However,

a growing literature points to neural anomalies during emotion processing that may underlie

ER impairments in ASD. These studies have focused largely on neural functioning in the

socioaffective domain (e.g., Alaerts et al., 2011). Neuroimaging studies examining

incidental socio-emotional processing have often used a facial identification task in which

participants are asked to identify the gender of emotional faces; participants with ASD

typically do not differ from non-psychiatric controls in behavioral accuracy when

identifying gender (e.g., Spencer et al., 2011). In a large study using this task in individuals

with ASD, their unaffected siblings, and matched controls, Spencer et al. (2011) reported

reduced activity in a network of socio-affective brain regions including superior temporal

sulcus (STS), orbitofrontal cortex, anterior cingulate cortex and fusiform face area (FFA).

Of note, these patterns were observed in both the affected ASD group and the unaffected

siblings and were specific to happy (but not fearful) faces, suggesting that neural anomalies

in emotion processing may be potential neural endophenotypes of ASD. Using the same

gender-identification task, acute tryptophan depletion (resulting in reduced serotonin

synthesis) was found to differentially affect neural activation depending on emotion type,

such that those with ASD, following acute tryptophan depletion, showed generally

decreased responses in socio-affective brain regions to emotional faces, except those

expressing fear (Daly et al., 2012). Also in an incidental emotion processing task, ASD

participants showed decreased amygdala habituation to both sad and neutral (but not fearful
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or happy) faces, and the diminished habituation was associated with increased autism

symptom severity (Swartz, Wiggins, Carrasco, Lord, & Monk, 2013). Moreover, the ASD

group showed reduced mPFC-amygdala connectivity while viewing sad faces, and this

connectivity predicted amygdala habituation to sad faces in controls, suggesting that

abnormal modulation of the amygdala by the mPFC may play a role in decreased

habituation and the socio-affective impairments in ASD.

Medial PFC anomalies have also been reported in ASD participants performing emotion

identification tasks and social decision-making tasks, suggesting neural impairments in self-

related socio-affective processing. Specifically, when asked to identify emotions in pictures

of themselves and others, individuals with ASD performed as well as non-psychiatric

controls when identifying emotions in others, but show diminished ventral mPFC activation

coupled with impaired behavioral accuracy particularly in the 'self' condition (Schulte-

Ruther et al., 2011). Similarly, in a social decision-making task involving monetary

exchange between human partners, high-functioning adolescents with ASD showed

diminished dorsal cingulate cortex activity specifically during the 'self' decision-making

phase, and the diminished neural responses varied parametrically with autism symptom

severity (Chiu et al., 2008). In this study, similar to research employing the gender-

identification task, the ASD group did not differ from matched controls in behavioral

responses to signals of social partners. Together, these neuroimaging data suggest atypical

self-awareness or self-related cognitive strategies in ASD that may contribute to impaired

insight into internal emotional states, a critical skill for optimal emotional functioning and

socio-emotional regulation.

In an intriguing study that hints at behavioral strategies to target ER anomalies, Kliemann

and colleagues (2012) directed participants with ASD to fixate on either the eyes or mouths

of emotional faces. The fixation instruction was effective for both ASD and non-psychiatric

control participants; however, the ASD participants were more likely to look away from the

eyes following initial fixation and also showed relatively greater amygdala activation during

eye fixation and decreased fixation during mouth fixation. These findings are consistent with

those of Dalton and colleagues (2005), who found that amygdala activation to faces was

modulated by gaze fixation in children with ASD but not in control children. The effects on

amygdala activation of eye versus mouth fixation suggest that dysfunctional neural

dynamics in ASD may involve substrates of both affective-avoidance and reduced

orientation. Although this study did not use an explicit ER task, behavioral instructions were

effective at directing initial affective attention, suggesting that behavioral strategies (e.g.,

disengagement, reallocation of attention) may lead to concomitant changes in neural

activation that support improved ER.

Neural Substrates of Explicit ER and Cognitive Control in ASD

The studies summarized above indicate that ASD is characterized by anomalous patterns of

brain activation in emotion-eliciting contexts. However, such paradigms do not directly

address deficits in abilities to explicitly or consciously regulate emotional responses,

processes that require cognitive control of emotional states. Two preliminary studies provide

some insight into explicit ER impairments and their neural substrates in ASD. Pitskel and
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colleagues (2011) reported that typically developing children showed significant down-

regulation of activation in the amygdala and insula when consciously and effortfully

decreasing their affective responses to gross pictures, while children with ASD did not

exhibit similar down-regulation. In addition, Dichter and colleagues (2012) reported

increased right dorsolateral prefrontal cortex activation in adults with ASD despite

decreased modulation of the nucleus accumbens during explicit up-regulation of emotional

responses to neutral social images, suggesting that individuals with ASD show evidence of

compensatory activation in PFC during active ER, but that such compensatory activation

does not result in typical modulation of emotion processing regions.

Outside of these two preliminary studies of cognitively effortful ER in ASD, there is a broad

literature on impairments in cognitive control and associated neural activation in ASD.

Functional MRI studies of cognitive control in ASD have revealed evidence of mostly

hyperactivation (though in some contexts hypoactivation, likely due to task demands and

analysis methods; Dichter, Felder, & Bodfish, 2009) in frontostriatal brain regions, including

middle and inferior prefrontal cortex, anterior cingulate cortex (particularly in the dorsal

region), as well as the basal ganglia. These studies used go/no-go, Stroop, and switching

tasks (Schmitz, et al., 2006), all of which require interference inhibition (Dichter et al.,

2009; Gomot, Belmonte, Bullmore, Bernard, & Baron-Cohen, 2008; Shafritz, Dichter,

Baranek, & Belger, 2008; Solomon, et al., 2009), response monitoring (Thakkar, et al.,

2008), novelty detection (Gilbert, Bird, Brindley, Frith, & Burgess, 2008; Just, Cherkassky,

Keller, Kana, & Minshew, 2007), spatial attention (Gomot, et al., 2008), working memory

(Allen, Muller, & Courchesne, 2004; Muller, Pierce, Ambrose, Allen, & Courchesne, 2001),

and saccadic eye movements (Muller, Kleinhans, Kemmotsu, Pierce, & Courchesne, 2003).

The broad pattern of prefrontal cortex hyperactivation in ASD in these studies is consistent

with the ER findings of Dichter and colleagues (2012) and suggests that ASD may be

characterized by compensatory PFC activation in contexts of cognitive control of both

emotional and non-emotional information.

Neural Connectivity Among Socio-Affective Regions in ASD

The studies reviewed thus far are largely derived from task-based designs in which

participants actively engage in ER-related cognitive processes (increase, decrease, or sustain

emotions); however, studies that evaluate patterns of intrinsic brain connectivity have also

revealed new insights into structural and functional alterations associated with ER

impairments in ASD. Substantial data in non-clinical participants have shown that a key

feature of neural responses to emotional information is modulation of cortico-limbic

connectivity. Though there are no direct connections between lateral and dorsal PFC and the

amygdala, there are indirect connections via mPFC (Maren & Quirk, 2004; Ongur & Price,

2000). Specifically, changes in emotional responses are associated with connectivity

between PFC and limbic regions that has also been associated with self-reported affective

reactions to both negative and positive stimuli (Heller et al., 2009; Johnstone et al., 2007;

Urry et al., 2006).

Theoretical and empirical work has consistently underscored that ASD is likely

characterized by a complex pattern of hyper- and hypo-connectivity (Di Martino et al., 2013;
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Just et al., 2012), and that developmental changes in the topology of connectivity may also

play a role in the emergence and expression of core ASD symptoms (Washington et al.,

2014). While no studies have explicitly targeted the connective properties of ER-related

regions in the context of ASD, the results of several large scale studies of whole-brain

intrinsic connectivity provide some context for understanding how ER networks might be

disrupted.

The largest connectivity study to date was reported by Di Martino and colleagues (2013) and

focused on resting-state analyses of ASD data from the Autism Brain Imaging Data

Exchange (ABIDE) consortium. Whole-brain estimates of intrinsic connectivity and related

graph-theoretic parameters revealed evidence of hypo-connectivity of mid- and posterior

insula and posterior cingulate cortex, a finding highly consistent with related studies in ASD

that report anomalous connective and task-based properties of emotion-relevant regions of

the brain including the insula (Ebisch et al., 2011; Di Martino et al., 2009; Uddin & Menon,

2009). The insula is thought to play a role in task-related information processing and

monitoring of interoceptive information (Cloutman et al., 2012; Kurth et al., 2010;

Mutschler et al., 2009), particularly for the purposes of merging information about visceral

experience with affective context (Dolan, 2002; Phillips, Drevets, Rauch, & Lane, 2003).

The insula may also play a role in coordinating the competitive interactions between task-

positive (i.e., executive control; salience) networks and task-negative (i.e., default-mode)

networks (Uddin & Menon, 2009), that collectively modulate task performance across

behavioral tasks with varying sensory, affective and response demands. Dysfunction in the

connective properties of the insula would likely impact the excitation-inhibition balance of

this region, leading to failures in the coordination of task-based and resting-state networks

and poorer integration of information across sensory modalities and emotional interoception

and empathetic or perspective-taking processes (although, see Bird and colleagues [2010]).

Of interest, alterations in the functionality and connective properties of the insula are also

closely associated with anxiety traits (Baur, Hänggi, Langer, & Jäncke, 2013; Klumpp

Angstadt & Phan, 2012; Paulus & Stein, 2006; Stein, Simmons, Feinstein, & Paulus, 2007),

which may provide some initial clues into to the functional overlap between ASD and

anxiety.

In addition to alterations in the connective properties of brain areas implicated in the

generation and experience of emotions, there is evidence of ASD-specific alterations in

connectivity of other brain regions involved in social cognition. Bachevaliera and Loveland

(2006) have proposed that dysregulated frontostriatal-temporal connectivity mediates social

deficits in ASD, that damage to these structures results in poor social decision making

(Bechara, Damasio, Damasio, & Lee, 1999), and that structural and functional brain imaging

studies have corroborated temporal and frontal lobe abnormalities in ASD (Dichter, 2012).

More recently, resting state functional connectivity among fronto-limbic-social regions has

been shown to be markedly reduced in ASD, and the reduction is associated with increased

communication deficits and predictive of poor emotion recognition performance,

respectively (Abrams et al., 2013; Alaerts et al., 2013). These studies point to disrupted

neural connectivity in ASD and highlight that alterations in connectivity among brain

regions associated with cognitive, emotional or social function may contribute to a broad

collection of deficits in social cognition that subserve ensuing socio-affective dysfunction in
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ASD (Just et al., 2007; Kana, Keller, Minshew, & Just, 2007; Kennedy & Courchesne,

2008).

Summary

Neuroimaging studies have advanced our understanding of the wider networks of interactive

and overlapping brain regions that broadly support ER. Although studies directly examining

ER in ASD remain sparse, the extant findings provide an emerging picture of neural

anomalies associated with emotion processing in ASD that may mediate or moderate

downstream ER impairments. Specifically, the rich literature on brain correlates of social-

affective processing in ASD implicates deficits in overlapping circuitry, including the

mPFC, amygdala, cingulate cortex, and orbitofrontal cortex (though see Vander Wyk,

Hoffman, & Pelphrey (2013) for data suggesting neural activation differences may be driven

by task demands). Of importance, these brain regions are those implicated in ER and have

been identified as disrupted in explicit and implicit ER deficits across anxiety disorders

(Ball, Ramsawh, Campbell-Sills, Paulus, & Stein, 2013; Blair et al., 2012; Etkin, Prater,

Hoeft, Menon, & Schatzberg, 2010; Etkin & Schatzberg, 2011; Goldin, Manber, Hakimi,

Canli, & Gross, 2009; Goldin, Manber-Ball, Werner, Heimberg, & Gross, 2009). Although

the precise interactions among aberrant neural substrates of emotion processing, ASD,

anxiety, and ER remain unknown, these findings emphasize that aberrant emotional

processing in ASD and anxiety may arise through (or be due to) common anomalies in

neural engagement and connectivity associated with socio-affective or cognitive processing.

Disrupted ER as Anxiety in People with ASD

In this section, we explore factors that may moderate the expression of impaired ER, making

it more likely that ER difficulties are expressed as anxiety. Though clearly anxiety is not the

only possible manifestation of impaired ER, and not everyone with ASD presents with

significant anxiety symptoms, it remains a commonly presented clinical problem in ASD.

The moderating factors discussed below are those with the strongest research base, but in no

way capture all of the processes that may contribute to ER deficits manifesting as anxiety.

Cognitive Factors

Cognitive factors, such as biases in perception and interpretation, may contribute to the

experience of anxiety in people with ASD. Cognitive bias to perceived threat is commonly

considered an etiological factor in the development of anxiety disorders. Anxious children

and adults tend to focus attention, overtly and covertly, on potential indicators of threat or

danger (Bar-Haim, Lamy, Pergamin, Bakermans-Kranenburg, & van Ijzendoorn, 2007).

Biased attention and information processing is apparent in orienting, perception, and

interpretation. For instance, anxious people tend to show attentional bias (orienting) toward

threatening faces (e.g., Weissman, Chu, Reddy, & Mohlman, 2012), perceive neutral faces

as threatening (Yoon & Zinbarg, 2008), and interpret ambiguous or novel stimuli negatively

(Pine, Helfinstein, Bar-Haim, Nelson, & Fox, 2009). Attention, essentially, is the gatekeeper

in determining what information we perceive and process.
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In ASD, decreased visual attending to social cues is largely assumed to stem from lack of

appreciation for the social relevance of eye gaze (e.g., Klin, Jones, Schultz, & Volkmar,

2003), such that social stimuli (e.g., human faces) are not as meaningful as they are for

typically developing people (Dawson et al., 2008). Eye-tracking research has generally

supported this view, finding that adolescents (Fletcher-Watson, Leekam, Benson, Frank, &

Findlay, 2009; Klin et al., 2002) and adults (Pelphrey et al., 2002) with ASD visually attend

less to social stimuli than do peers without ASD. However, research assessing gaze patterns,

neural circuitry, and autonomic arousal (e.g., Dalton et al., 2005; Joseph et al., 2008) has

indicated that, for some people with ASD, perhaps aversion and heightened emotional

reactivity, both of which are core components of social anxiety, may contribute to the

observed lack of attending to others’ eye gaze and facial features.

As such, altered alerting and attention to social and non-social stimuli may predict (or

reflect) anxiety. Decreased attending to social stimuli may, for at least some people with

ASD, stem from active avoidance or aversion, rather than decreased salience of the stimuli.

It is also possible that under-attending to social stimuli reflects over-orienting to non-social

sources of potential threat in the environment, or lack of automatic social referencing for

support or comfort when distressed. There is also preliminary evidence for a possible

interpretation bias in ASD. Kuusikko and colleagues (2009) found that youth with ASD

were more likely than peers without ASD to perceive ambiguous faces as portraying

negative emotions, suggesting biased interpretations. Eack et al (2013) similarly found that

adults with ASD perceived neutral faces as negative whereas typically developing adults did

not. In summary, in the presence of atypical visual attending to the environment -

specifically aversion to social stimuli and bias toward threat cues, ER impairments may be

expressed as anxiety.

Social Factors

The social impairment that is the primary defining feature of ASD may both directly (e.g.,

via social confusion) and indirectly (e.g., via negative feedback from others) contribute to

the manifestation of ER deficits as anxiety. Higher functioning individuals with ASD are

often aware of their inability to master social demands, though many such individuals place

as much emphasis on the importance of peer approval as typically developing peers

(Williamson, Craig, & Slinger, 2008), and many individuals with ASD are sensitive to social

feedback. This awareness is hypothesized to contribute to the development of secondary

social anxiety and heightened fear of negative peer evaluation (White & Roberson-Nay,

2009). Awareness of one’s social impairments may interact with poor ER to produce

anxiety, contributing to anxious rumination and distorted interpretation of others’ intentions

and responses.

In addition, it has been proposed that core features of ASD (e.g., odd social behaviors) may

in fact contribute to the development of anxiety, especially during adolescence (White et al.,

2013). Behaviors that are developmentally inappropriate for the social context (e.g.,

intruding into a conversation, saying something inappropriate in class, revealing one’s belief

in mythical entities or superheroes during adolescence) often result in negative feedback

from peers and become quite humiliating for the person with ASD. Such experiences, in the
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context of an inability to cope effectively with these feelings and alter one’s behavior

accordingly, could contribute to various forms (e.g., separation, social) of anxiety.

Some individuals with ASD seek social interaction and experience excessive arousal in

relation to social stimuli (Kleinhans et al., 2010; White, Bray, & Ollendick, 2012; White et

al., 2010). Sensitivity to social cues, in particular faces, may moderate expression of ER

deficits as anxiety. People with ASD who have greater amygdala activation during social

information processing tasks report more difficulty with social anxiety (Kleinhans et al.,

2010). Motivation for interactions, in the context of awareness of critical feedback and one’s

own social deficits, could engender anxiety, especially anxiety related to fear of negative

evaluation, which is a hallmark of social anxiety disorder (APA, 2013). The extant research

on social motivation and anxiety in ASD has not consistently found evidence for social

motivation in ASD, however. In a study examining brain responses to directed versus

averted gaze in emotional faces, Davies and colleagues (2011) showed strong differentiation

in VLPFC between directed and averted gaze in controls, but no such differentiation in

participants with ASD. The authors suggested that this pattern indicates generally reduced

social motivation in ASD, rather than anxiety, as eye gaze cues are thought to contribute to

socio-affective interpretation and regulation.

Individuals prone to neuroticism are more likely to develop clinical anxiety problems, rather

than a non-anxiety disorder, when the environment is chronically threatening (LeDoux,

2000). It is possible that people with ASD, including those without cognitive impairments,

struggle to navigate a social world that is devoid of clear directions or rules, and in which

change is nearly constant. Interpersonal communication may be a threatening and stressful

situation for most people on the spectrum. Adolescents with ASD show greater bilateral

activation in neural substrates involved in processing socio-emotional stimuli, specifically

the amygdala, vPFC, and striatum, relative to peers without ASD (Weng et al., 2011). This

pattern suggests increased ambiguity in interpretation of facial cues and distress owing to

viewing others’ facial expressions. Processing faces may require more effort in people with

ASD, which may be attributable to less experience with faces over the course of childhood

(less cumulative experience, owing to not attending to facial stimuli; e.g., Osterling &

Dawson, 1994) and impaired ability to interpret others’ facial emotions (Weng et al., 2011).

Tupak and colleagues (2014) speculated that anxiety may reflect a lowered threshold for

PFC activation, owing to greater, nearly chronic, demand for regulation of heightened

negative affect, even during nonthreatening tasks. Deficits in recognition and expression of

emotions in self and others, limited social experience, and a near-constant sense of

ambiguity may contribute to chronic confusion about social world, which could give rise to

anxiety.

Behavioral Factors

ER impairments also likely contribute to anxiety via conditioning and avoidance. Inability to

tolerate distress or fear and cope with these feelings contributes to conditioned fear

responses. Avoidance perpetuates anxiety, as reduction in experienced anxiety reinforces

avoidance behavior. Longitudinal research (McLaughlin et al., 2011) supports this

directionality, such that ER deficits predict psychopathology such as anxiety. In addition to
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avoidance and escape being behavioral indicators of the presence of anxiety (Ozsivadjian,

Knott, & Magiati, 2012). Avoidance (as a maladaptive ER strategy) may also contribute to,

or worsen, anxiety in people with ASD. For example, a 10-year-old girl with ASD may

experience dread related to possible changes in her school schedule (a symptom of ASD).

She may struggle to manage the distress and seek constant reassurance from parents and

teachers (poor ER). The distress contributes to her avoidance of school, and she refuses to

work at school (avoidance behaviors). As a result, she may never develop strategies to cope

with schedule changes or to manage the associated negative affect and her anxious avoiding

behaviors are strengthened.

Sensory issues have long been suggested as a possible determinant of anxiety in individuals

with ASD, and sensory symptoms correlate with anxiety severity in children with ASD

(Ben-Sasson et al., 2008), although the potential causal linkages and direction of effects

between anxiety and sensory over-responsivity in ASD have not yet been fully determined

(Green & Ben-Sasson, 2010). One possible mechanistic account of the relation between

anxiety and sensory over-responsiveness in ASD is that anxious individuals with ASD may

exhibit hyper-vigilance regarding the sensory environment that causes impairments in

shifting attention and decreasing accompanying negative affectivity (Craske, 2003), though,

as reviewed earlier, clearly not all individuals with ASD exhibit general hyper-arousal

(Rogers & Ozonoff, 2005). Alternatively, it may be the case that sensory over-

responsiveness and anxiety in ASD are linked via a third common causal factor, such as

functional amygdala abnormalities given the role the amygdala plays in integration of

sensory input with response to perceived threat (Zald, 2003). Whereas the neural substrates

of anxiety in ASD have not yet been fully examined, a recent study testing sensory over-

responsivity in ASD provides initial evidence that sensory issues are related to anxiety. In

this study, in response to aversive auditory stimuli, participants with ASD, relative to

controls, displayed greater activation in primary sensory cortical areas, as well as in the

amygdala and orbital-frontal cortex, regions implicated in ER (Green et al., 2013). Of note,

activation in these areas was correlated with ratings of both anxiety and sensory over-

responsivity.

Conclusions

In this review, we have presented a model that considers causal pathways to ER impairments

in ASD and factors that moderate these impairments to result in anxiety. We have framed

our examination of ER deficits and anxiety in ASD from a developmental psychopathology

lens, within the complementary processes of equifinality and multifinality (cf. Cicchetti &

Rogosch, 1996). We propose that impaired ER may be the result of a number of disease

pathways (i.e., equifinality). Impaired ER, in turn, can be manifested in a multitude of ways

(i.e., multifinality), including anxiety. The clinical expression of ER impairment is affected

by cognitive, social, and behavioral factors. In Figure 1, we propose a developmental model

of ER impairment and anxiety in ASD, that is adapted from Nolen-Hoeksema and Watkins’

(2011) heuristic model for understanding how transdiagnostic processes can help explain

multifinality in developmental psychopathology.
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The primary limitation of this review is that the proposed model is largely, as yet, untested

and draws fairly heavily from research with other forms of psychopathology, due to the

limited body of research on ER functioning in ASD. This is perhaps most apparent in the

dearth of studies that have directly examined relationships between ER and anxiety in

people with ASD. Owing to the limited research base from which to draw, it is difficult to

draw firm conclusions and we have proposed a model which is yet to be tested empirically.

Clearly, more research is needed in this area. Longitudinal research, including studies of the

effects of treatments specifically targeting ER impairments, will be needed to examine the

causal effects of ER on the emergence of anxiety symptoms in children with ASD.

Consideration of possible ER impairments should also inform treatment research.

Specifically, establishing temporal precedence of change in ER function prior to change in

the targeted behavioral outcomes (e.g., anxiety, depression) during intervention could

inform our understanding of mechanisms of change. This focus on linking the hypothesized

mechanism of change with manifest clinical effects is consistent with federal funding

changes related to the structure of clinical trials.

Consistent with the model proposed by Mazefsky and colleagues (2013), we conceptualize

deficits in ER as being intrinsic to ASD, such that ASD itself affects mechanisms that give

rise to ER impairments. This conceptualization differs from how ER impairments are

typically considered in other forms of psychopathology, in which ER problems presage

and/or cause the expressed pathology (McLaughlin et al., 2011). We have applied the

heuristic proposed by Nolen-Hoeksema and Watkins (2011) to examine neural, physiologic,

and socio-cognitive distal risk processes, which mediate the experience of deficiencies in

ER. ER impairments are conceptualized as an intermediate, or proximal, transdiagnostic risk

factor, which can be manifested in a number of ways such as aggression, intense irritability,

self-harm, or anxiety. In the final analysis, moderators of this proximal risk factor determine

what specific symptoms are experienced.
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Highlights

• Anxiety in autism spectrum disorder (ASD) may stem from impaired emotion

regulation.

• Emotion regulation difficulties in ASD are multiply determined.

• Targeting emotion regulation in ASD may be parsimonious and clinically

effective.
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Figure 1.
Mediators of ER Deficits in ASD and Moderators of Anxiety Expression
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