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On the definition and utilization of heritable variation among
hosts in reproduction ratio R0 for infectious diseases

MT Anche1,2, MCM de Jong2 and P Bijma1

Infectious diseases have a major role in evolution by natural selection and pose a worldwide concern in livestock.
Understanding quantitative genetics of infectious diseases, therefore, is essential both for understanding the consequences
of natural selection and for designing artificial selection schemes in agriculture. The basic reproduction ratio, R0, is the key
parameter determining risk and severity of infectious diseases. Genetic improvement for control of infectious diseases in host
populations should therefore aim at reducing R0. This requires definitions of breeding value and heritable variation for R0, and
understanding of mechanisms determining response to selection. This is challenging, as R0 is an emergent trait arising from
interactions among individuals in the population. Here we show how to define breeding value and heritable variation for R0 for
genetically heterogeneous host populations. Furthermore, we identify mechanisms determining utilization of heritable variation
for R0. Using indirect genetic effects, next-generation matrices and a SIR (Susceptible, Infected and Recovered) model, we
show that an individual’s breeding value for R0 is a function of its own allele frequencies for susceptibility and infectivity and
of population average susceptibility and infectivity. When interacting individuals are unrelated, selection for individual disease
status captures heritable variation in susceptibility only, yielding limited response in R0. With related individuals, however,
there is a secondary selection process, which also captures heritable variation in infectivity and additional variation in
susceptibility, yielding substantially greater response. This shows that genetic variation in susceptibility represents an indirect
genetic effect. As a consequence, response in R0 increased substantially when interacting individuals were genetically related.
Heredity (2014) 113, 364–374; doi:10.1038/hdy.2014.38; published online 14 May 2014

INTRODUCTION

Infectious diseases are widespread in humans, animals and plants. In
natural populations, infectious diseases have a major role in the
process of evolution by natural selection (Haldane, 1949; O’Brien and
Evermann, 1988). In domestic populations, particularly in livestock,
infectious diseases are imposing a worldwide concern owing to their
impact on the welfare and productivity of livestock, and in the case of
zoonosis, also because of the threat for human health. To contain the
threat imposed by infectious diseases, different control strategies such
as vaccination, antibiotic treatments and management practices have
been implemented widely. However, the evolution of resistance to
antibiotics by bacteria, evolution of resistance to vaccines by viruses
and undesirable environmental impacts of antibiotic treatment put
these strategies under question (Gibson and Bishop, 2005). Thus,
there is a need to investigate additional control strategies, so as to
extend the repertoire of possible interventions. A greater repertoire is
favourable (1) because it allows for a change in approach when certain
control measures fail and (2) because the use of combinations of
control measures make emergence of resistance against control more
difficult.

Several studies have demonstrated the existence of genetic variation
for different disease traits for a wide variety of infectious diseases.
Examples are clinical mastitis and Mycobacterium bovis infections in

dairy cattle (Heringstad et al., 2005). Such studies usually focus on
estimating the genetic variance in individual disease status. As this
approach connects an individual’s own disease status to its own
pedigree, it only captures heritable variation in susceptibility (or
resistance) to disease (Lipschutz-Powell et al., 2012). However, host
genetic variation may be present also in other traits that affect the
dynamics of infectious diseases in populations. Thus, to use a general
term for such other traits, infectivity will also have an impact on the
transmission of infectious diseases. There clearly exists (phenotypic)
variation in infectivity as it can be seen from the occurrence of
superspreaders (Lloyd-Smith et al., 2005). Thus, it is most likely that
the classical quantitative genetic analysis based on individual disease
status captures only part of the possible heritable variation in the
host underlying infectious disease dynamics (Lipschutz-Powell et al.,
2012).

The ultimate goal of selective breeding for disease traits is to reduce
the risk of an epidemic and/or to reduce the level of the endemic
equilibrium. In epidemiology, the key parameter determining the risk
and size of an epidemic and/or the level of the endemic equilibrium
is the basic reproduction ratio, R0. R0 is the average number of
secondary cases produced by a typical infectious individual during
its entire infectious life time, in an otherwise naive population
(Diekmann et al., 1990). R0 has a threshold value of 1, which
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determines whether a major disease outbreak can occur or whether
the endemic equilibrium exists. When R0o1, the epidemic will die
out. On the other hand, when R041 major outbreaks or an endemic
equilibrium (persistence) can occur. Hence, breeding strategies to
reduce the risk and prevalence of an infectious disease should aim at
reducing R0, preferably to below a value of 1.

Breeding to reduce R0 raises a conceptual difference between
quantitative genetics and epidemiology: R0 is an epidemiological
parameter referring to an entire population, whereas quantitative
genetics rests on the concept of breeding value, which refers to a
single individual. It is clear that in a genetically heterogeneous
population, R0 is a function of individual genotypes in the popula-
tion, which in turn are a function of allele frequencies. Moreover, a
change in allele frequencies will change R0, indicating R0 can respond
to selection. Genetic improvement aiming to reduce R0 should ideally
be based on the effects of an individual’s genes on R0, which would
require defining individual breeding values for R0. Moreover, defining
a breeding value for R0 would also allow defining heritable variation
in R0, that is, the variation in individual breeding values for R0, which
would give an indication of the prospects for genetic improvement
with respect to R0.

For domestic populations, the subsequent question would be how
to design breeding programs, so as to utilize optimally heritable
variation in R0 and achieve the greatest possible rate of reduction in
R0. The equivalent issue for natural populations would be what
ecological conditions are favourable for efficient reduction of R0 by
natural selection. For emergent traits that depend on multiple
individuals, research in the field of indirect genetic effects (IGEs)
suggests that group selection and relatedness among interacting
individuals (‘kin selection’) can be used to increase response to
selection (Griffing, 1976; Bijma, 2011). This suggests that relatedness
and group selection may be important mechanisms affecting the
utilization of heritable variation in R0, either by natural or artificial
selection.

Here we show how to define breeding value and heritable variation
for R0 for a genetically heterogeneous host population, where
individuals differ for susceptibility and infectivity. For that purpose,

we have adapted the theory of IGEs commonly applied to socially
affected traits, using the epidemiological concept of next-generation
matrices (NGMs) (Diekmann et al., 1990, 2010). Furthermore, we
examine the mechanisms determining the utilization of heritable
variation in R0, focusing on the effects of kin selection on response in
R0, and in susceptibility and infectivity.

MATERIALS AND METHODS
Dynamic model of infection
In a completely naive population where a microparasitic infection is

introduced, the disease dynamics can be modelled with a basic compartmental

stochastic SIR (Susceptible, Infected and Recovered) model. In this model,

individuals move through the states in the order S-I-R (Anderson et al.,

1992). Therefore, the possible events that an individual may encounter are

infection and recovery. With stochasticity, these events occur randomly at a

certain rate (probability per unit of time) specified by the model parameters.

In the SIR model, these parameters are the transmission rate parameter (b) for

S-I, and the recovery rate parameter (a) for I-R. The transmission rate

parameter b is the probability per unit of time that a typical infected individual

infects another individual in a totally susceptible population (Diekmann et al.,

1990; Anderson et al., 1992). When constant population density is assumed,

the rate at which the susceptible population becomes infected is bSI/N, where S

denotes the number of susceptible individuals, I the number of infectious

individuals and N the total number of individuals in the population (Kermack

and McKendrick, 1991). The recovery rate parameter a is the probability per

unit of time for an infective to recover from an infection. In other words, for

constant a, the infectious period is exponentially distributed with a mean

duration of a�1 time units.

The transmission rate parameter, b, depends on the infectivity of infectious

individuals and on the susceptibility of uninfected recipient individuals. Thus,

in a homogeneous population where all individuals have the same level of

infectivity and susceptibility, there is a single b that applies to the whole

population, which can be defined as a function of these parameters,

b ¼ gjc; ð1Þ
where g is susceptibility, j is infectivity and c is average number of contacts an

infectious individual makes per unit of time (see Table 1 for a notation key).

Dynamic model of infection with genetic heterogeneity
In a genetically heterogeneous population, however, the transmission rate

parameter b may vary among pairs of individuals. This pairwise transmission

rate will depend on the infectivity genotype of the infectious individual and on

the susceptibility genotype of the recipient susceptible individual. The

assumption that transmission depends on the infectivity of only the infectious

individual and on the susceptibility of only the recipient individual is known as

separable mixing (Diekmann et al., 1990). Thus, we may define the pairwise

transmission rate parameter bij from an infectious individual j to a susceptible

individual i as

bij ¼ gi jj c; ð2Þ

where gi denotes susceptibility of susceptible individual i and jj denotes

infectivity of infectious individual j. In Equation (2), c represents the average

contact rate; any variation in contact rate among susceptible and infectious

individuals is included in gi and ji because of the assumption of separable

mixing.

In the following, we model genetic heterogeneity in a diploid population

using two biallelic loci, one locus for susceptibility effect (g) and the other

locus for infectivity effect (j). The susceptibility locus has alleles G and g, with

susceptibility values gG and gg, respectively, and the infectivity locus has alleles

F and f, with infectivity values jF and jf, respectively. Furthermore, both loci

are assumed to have additive allelic effects without dominance. Thus,

genotypic values are given by gGG¼ gGþ gG¼ 2gG, ggg¼ ggþ gg¼ 2gg and

gGg¼ ggG¼ gGþ gg for susceptibility, and jFF¼jFþjF¼ 2jF, jff¼jfþ
jf¼ 2jf and jFf¼jfF¼jFþjf for infectivity. As we assumed additive gene

action, average susceptibility in the population is given by

�g ¼ 2pggg þ 2ð1� pgÞgG; ð3Þ

Table 1 Notation key

Symbol Meaning

gG Effect of G allele at susceptibility locus

gg Effect of g allele at susceptibility locus

jF Effect of F allele at infectivity locus

jf Effect of f allele at infectivity locus

pg Frequency of the g allele for susceptibility

pf Frequency of the f allele for infectivity

�g Average individual susceptibility

�j Average individual infectivity

rg Relatedness at susceptibility locus

rj Relatedness at infectivity locus

bij Pairwise transmission rate parameter between susceptible individual i and

infective individual j

a Rate of recovery parameter

c Contact rate

R0 Basic reproduction ratio

AR0;i
Breeding value for R0 of individual i

sAT
Additive standard deviation in total breeding value

D Measure of linkage disequilibrium

FIS Measure of deviation from Hardy–Weinberg equilibrium
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and average infectivity is given by

�j ¼ 2pf jf þ 2ð1� pf ÞjF ; ð4Þ

where pf is the frequency of the f allele, pg the frequency of the g allele and the

‘2’ arises because each individual carries two alleles. Note that �g and �j are

average susceptibility and average infectivity over individuals, and not average

of allele effects. In a population as defined here, there are nine genotypes of

individuals because of the combinations of their genotype for susceptibility

and infectivity.

For this heterogeneous population, we can now construct the NGM. The

NGM describes the number of infectious individual of each type in the next

generation of the epidemic, produced by infectious individuals of each type in

the current generation. Then, we can calculate R0 as the dominant eigenvalue

of the NGM. Under the assumption of separable mixing, the dominant

eigenvalue equals the trace of a matrix, and thus R0 can be obtained as the

trace of the NGM (Diekmann et al., 2010).

Appendix 1 shows the NGM for the population with linkage equilibrium

and in Hardy–Weinberg Equilibrium (HWE) described by Equations (2)–(4).

R0 is given by the trace of the NGM:

R0 ¼ �g �j c=a; ð5Þ
where a is the recovery rate, which is assumed to be the same for all individuals

in the population.

The NGM was also constructed for the more general case of a population

that deviates from HWE and linkage equilibrium. For that case, R0 is given by

(Appendix 2)

R0 ¼ �g �jþD
ð1þ FISÞ

2

ð2gg ��gÞð2jf � �jÞ
ð1� pgÞð1� pf Þ

� �
c

a
; ð6Þ

where FIS is the inbreeding coefficient and measures deviation of the

population from HWE. It is a function of observed heterozygosity (Ho) and

expected heterozygosity (He) in the population,

FIS ¼ 1� Ho

He
:

The D measures the deviation of the population from linkage equilibrium and

expresses the excess of coupling phase haplotypes (Falconer and Mackay,

1996),

D ¼ pgf pGF � pGf pgF :

The second term in brackets in Equation (6) is the covariance between

susceptibility and infectivity of individuals in the population. When either (i)

D¼ 0 or (ii) FIS¼ �1, that is, full disassortative ordering of alleles over diploid

organisms (Ho¼ 2He¼ 1, which requires p¼ 1/2) or (iii) there is no variance

in either of the two traits (�g ¼ 2gg or �j ¼ 2jf ), then there is no covariance

between the two traits and R0 is given by Equation (5).

Individual breeding value for R0
Equation (5) gives R0, which is an emergent trait of the population, that is, a

trait that arises when the different individuals (susceptible and infectious)

interact (Dawkins, 2006). The objective here, however, is to define individual

breeding values for R0. We use results from the field of IGEs to define breeding

value for R0. An IGE is heritable effect of an individual on the trait value of

another individual (Griffing, 1967, 1976, 1981; Moore et al., 1997; Wolf et al.,

1998; Muir, 2005). Hence, infectivity is an IGE, as an individual’s infectivity

affects the disease status of its contacts. Moore et al. (1997) and Bijma et al.

(2007) show how breeding value and genetic variance can be defined for such

traits. Bijma (2011) shows how the approach can be generalized to any trait,

including traits that are an emerging property of a population, such as R0.

They propose a (total) breeding value that follows from the genetic mean of

the population, rather than from individual trait values.

In classical quantitative genetics, breeding value is the sum of the average

effects of an individual’s alleles on its trait value, where the average effects equal

the partial regression coefficients of individual trait values on individual allele

count (Fisher, 1919; Lynch and Walsh, 1998). For traits affected by IGEs, the

total breeding value is the sum of the average effects of an individual’s alleles

on the mean trait value of the population (Bijma, 2011). For an emergent trait,

however, there is only a single trait value for the entire population, and the

average effects of alleles on that trait follow from the partial derivatives of the

trait value with respect to allele frequency, rather than from partial regression

of individual trait values on allele count. This is analogous to the derivation of

economic values in livestock genetic improvement. Applying this approach to

R0 (Equation (5)) with linkage equilibrium and HWE, average effect of the

g allele equals

@R0

@pg
¼ 2�jðgg � gGÞ

c

a
; ð7aÞ

and the average effect of the f allele on R0 equals

@R0

@pf
¼ 2�gðjf �jFÞ

c

a
: ð7bÞ

Consequently, the individual breeding value for R0 is given by

AR0 ;i ¼ 2 �jðgg � gGÞpg;iþ�gðjf �jFÞpf ;i

h i c

a
; ð7cÞ

where pg,i and pf,i refer to the allele frequencies in individual i, thus taking

values of 0, 1/2 or 1. The equation for AR0;i
for the population that deviates

from HWE and with linkage disequilibrium (LD) is presented in Appendix 2.

In the following, we will refer to AR0;i
as the breeding value for R0 of

individual i. Note that, in contrast to the pairwise transmission rate parameter

bij, an individual’s breeding value for R0 is entirely a function of its own genes.

This is because an individual transmits its own genes to its offspring, which

may differ from the genes affecting its own disease phenotype.

The relationship between the breeding values of the individuals in a

population of n individuals and R0 of that population is

R0 ¼ 4gGjF

c

a
þ
Pn

i¼1 AR0 ;i

n
� 4ðgg � gGÞðjf �jFÞpg pf

c

a
ð8Þ

The first term in Equation (8) is the intercept that determines the magnitude

of R0, but it does not depend on the allele frequencies and is not needed in the

breeding value. The last term is there because of the nonlinear relationship

between R0 (Equation (5)) and susceptibility and infectivity. From

Equation (8), it can be seen that changes in breeding value for R0 will lead

to corresponding changes (in magnitude and direction) in R0 itself. Only when

also the frequencies in whole populations (pg, pf) are changing, the change in

R0 will be more than the change in breeding values due to this last term. In

that case, selection that reduces both susceptibility and infectivity will lead to

a greater reduction in R0 than predicted by the breeding values. Response

to selection in R0 will equal the change in average individual breeding

value for R0,

dR0 ¼ dAR0
: ð9Þ

Hence, a (small) change in average individual breeding value for R0 due to

selection will generate the same change in R0. Thus, just as with an ordinary

breeding value (Fisher, 1919; Lynch and Walsh, 1998), for a small change in

allele frequency, the change in mean breeding value for R0 equals response to

selection in R0.

Heritable variation in R0
Response to selection in any trait, including emergent traits such as R0, can be

expressed as the product of intensity of selection i, accuracy of selection rT and

total genetic standard deviation for that trait sAT
(Bijma, 2011),

R ¼ i rTsAT
ð10Þ

In the above equation, response to selection R is change in mean trait value

from one generation to the next. The selection intensity i is the selection

differential expressed in standard deviation units. Accuracy of selection rT is

the correlation between the total breeding value and the selection criterion in

the candidates for selection, and sAT
is the standard deviation in total breeding

value for the trait in the candidates for selection. Selection intensity and

accuracy of selection are scale-free parameters and do not include any

information about the heritable variance in the trait. Standard deviation in

total breeding value, on the other hand, reflects the potential of the population

to response to selection. Note that heritable variation in the context of

Equation (10) strictly refers to the potential of a population to respond to

selection, and may differ from the classical additive genetic variance in a trait.
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R0, for example, has no classical additive genetic variance, as there exist no

individual phenotypes for R0. Thus, in the following, heritable variation in

R0 will refer to the potential for genetic change in R0, and not to the additive

genetic component of phenotypic variation in R0 among individuals. This

conceptual difference is discussed in detail in Bijma (2011).

From the above, it follows that heritable variation in R0 equals the variance

in breeding value for R0 among individuals in the population. We drop the

prefix ‘total’ from breeding value and heritable variation, as R0 has no classical

breeding value. Taking the variance of Equation (7c), assuming linkage

equilibrium, shows that heritable variation in R0 equals

var AR0
ð Þ ¼ 2 pgð1� pgÞ�j2 gg � gG

� �2

þ pf ð1� pf Þ�g2 jf �jF

� �2
� �

c

a

� �2

ð11Þ

where varðAR0
Þ is the variance among individuals in breeding value for R0.

Hence, Equation (11) shows how heritable variation in R0 depends on the

susceptibility and infectivity effects of alleles and on the allele frequencies in the

population.

The expression in Equation (11) may be recognized as the sum of the

additive genetic variances at two independent loci. Additive genetic variance

at a single locus is traditionally written as 2p(1�p)a2, where a denotes

the average effect of an allele substitution (Falconer and Mackay, 1996). In

Equation (11), the average effect at the susceptibility locus equals �jðgg � gGÞ c
a,

and average effect at the infectivity locus equals �gðjf �jFÞ c
a (see also

Equations (7a–c)).

Utilization of heritable variation in R0
Efficient reduction of R0 by means of selective breeding requires selection

schemes that optimally utilize the heritable variation in R0. Because an

individual’s infectivity represents an IGE, that is, a heritable effect of the

individual on the disease status of other individuals within the same

epidemiological unit, optimal breeding schemes for traits affected by IGEs

may provide a clue for the design of optimal schemes for reducing R0. For

traits affected by IGEs, group selection and relatedness among interacting

individuals (‘kin selection’) increase response to selection (Griffing, 1967, 1976;

Bijma and Wade, 2008). Moreover, Bijma (2011) shows that relatedness among

interacting individuals in general tends to increase response to selection for

traits that have an IGE. We, therefore, considered a group-structured

population, where group mates can be genetically related. The objective of

this section is not to precisely quantify or predict response to selection, but to

identify and illustrate important factors affecting it.

To investigate mechanisms affecting response in R0, a simulation study was

performed on a population with discrete generations. The genetic model was

the same as described above. The population was subdivided into 100 groups

of 100 individuals each. In each group, an epidemic was started by a single

randomly infected individual. After the end of an epidemic, selection was

based on individual disease status (0/1), where only those that escaped the

infection were selected from each group to be parent of the next generation.

For the next generation, selected parents were mated randomly and

offspring genotypes were randomly sampled based on the parental genotypes.

The size and the number of groups were kept constant throughout the

generations.

Each group in the population was set up in such a way that group mates

showed a certain degree of genetic similarity, which we refer to as ‘relatedness’,

r, here. The term ‘relatedness’ has different meanings in different scientific

disciplines. In animal breeding, for example, relatedness is implicitly under-

stood as ‘pedigree relatedness’. In sociobiology, such as in studies on the

evolution of altruism, on the other hand, relatedness is interpreted as a more

general measure of genetic similarity, irrespective of the cause of that similarity,

for example, as a genetic regression coefficient (Hamilton, 1970; see also Frank,

1998). Here we define relatedness as the correlation between the allele count of

group mates, irrespective of the cause of that correlation. This definition agrees

with the use of relatedness in animal breeding applications, such as selection

index theory and genomic relationship matrices, where the current population

is treated as the base population (Falconer and Mackay, 1996).

Relatedness at the susceptibility locus, rg, and at the infectivity locus, rj, were

allowed to differ. To achieve a certain relatedness among group mates, a

fraction f of fully related individuals was added to each group, supplemented

by a fraction 1�f of randomly selected individuals. We did not consider

negative values for relatedness, because the lower bound for relatedness is

practically zero when group size equals 100 individuals (rmin¼ �1/99).

Appendix 3 shows that the required fraction equals the square root of

relatedness. Thus, a fraction
ffiffiffiffi
rg
p

of individuals that were fully related to each

other at the susceptibility locus, and a fraction
ffiffiffiffiffi
rj
p

of individuals that were

fully related to each other at the infectivity locus were added to each group.

As each individual carries both loci, these additions cannot be done

independently; details of the strategy to jointly make those additions are given

in Appendix 4.

The simulation was further extended to allow for a certain degree of LD

between both loci. However, for a given LD in the population, there exists an

upper and lower bound for rg given rj and vice versa. For example, when both

loci are in strong positive LD and relatedness is zero at the susceptibility locus,

then it is not possible to have very high relatedness at the infectivity locus.

Appendix 5 provides expressions for those bounds.

Four different scenarios were simulated (Table 2). First, a scenario with

heritable variation at both the susceptibility and the infectivity locus and

groups created randomly with respect to relatedness r among group mates. No

LD and a recombination rate y of 0.5 between both loci were further assumed.

Second, varying degrees of relatedness were used, which were the same at both

loci. Third, to investigate a potential effect of relatedness on response in

susceptibility, heritable variation was simulated at the susceptibility locus only,

for varying degrees of relatedness among group mates. Finally, to investigate

the potential effect of relatedness on response in R0 in the case where there is

strong negative LD between both loci and no recombination, a scenario with a

relatedness of either 0 or 0.1 at both loci was simulated.

Simulation results
In the first scenario, which had unrelated group mates, a response to selection

was observed only at the susceptibility locus, where the G allele became fixed

after an average of 100 generations. At the infectivity locus, in contrast, only a

random fluctuation of allele frequency was observed (Figure 1). Thus, with

groups composed at random with respect to relatedness, no response was

observed at the infectivity locus. As a result, in the final generation, the

response in R0 was limited.

In the second scenario, which had related group mates, response to selection

was observed at both loci, and the population became fixed for the G-allele at

susceptibility locus and for F-the allele at the infectivity locus (Figures 2 and 3).

In this case, selection resulted in a greater reduction of R0 than in the first

scenario (Figure 4 vs Figure 1). As relatedness among group mates increased,

response was much faster in all three traits. As it was also faster on the

susceptibility locus, this suggested that also the susceptibility locus showed

an IGE.

Table 2 Scenarios and parameter values

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4

Allele effect at infectivity locus

jf 0.6 0.6 1 2.4

jF 1 1 1 0.6

Variation at

Susceptibility locus Yes Yes Yes Yes

Infectivity locus Yes Yes No Yes

Relatedness r 0 0–1 0–1 0 or 0.1

Linkage disequilibrium D 0 0 0 �0.20

Recombination rate y 0.5 0.5 0.5 0

Note: Throughout the four scenarios, contact rate, c¼2, recovery rate, a¼0.5, and allele
effect at susceptibility locus, gg¼1 and gG¼0.6, was used. Initial allele frequencies at both
loci were set at 0.5. The r2 statistic corresponding to D¼ �0.20 equals 0.64.
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To verify this IGE in susceptibility in the third scenario, we chose to have

variation in the susceptibility only. Also in this case, the response at the

susceptibility locus increased substantially when relatedness among group

mates increased (Figure 5). For selection on individual phenotype, it is known

that relatedness increases response in the IGEs, but not in the direct genetic

effects (Griffing, 1976; Bijma and Wade, 2008). Thus, this result suggests that

(1) susceptibility not only has a direct genetic effect on the disease status of the

individual itself but also has an IGE on the disease status of its groups mates,

and that (2) this indirect genetic variance is utilized by kin selection (see

Discussion), even in the absence of genetic variance in infectivity.

In the fourth scenario, which had strong negative LD and no recombination,

the direction of response in R0 depended on the relatedness among group

mates. Without relatedness, selection fixed the G allele irrespective of the linked

allele at the infectivity locus. As a consequence, selection increased the

frequency of f allele, yielding an increase rather than a decrease of R0. When

relatedness rg¼ rj¼ 0.1 was used, however, selection caused fixation of the GF

haplotype, resulting in a decrease in R0 (Figure 6). This result shows that kin

selection can prevent a maladaptive response to selection.

DISCUSSION

The aim of this study was to define the breeding value and heritable
variation for R0. This was done for a diploid host population with
genetic variation for susceptibility and infectivity. Breeding values of
individuals were derived by finding the R0, linearizing this value in the
allele frequencies and substituting the individual’s allele frequencies.
The heritable variation that measures the potential for response in R0

can then be found by taking the variance of the breeding values in the
population. We applied this approach to a simple SIR model with
genetic variation in susceptibility and infectivity, and assuming
separable mixing.

The second focus of this paper was to investigate the mechanisms
that affect response in R0. As genetic relatedness between interacting
individuals is expected to increase response in the general case (Bijma,
2011), we hypothesized that this result would extend to R0 and

considered a group-structured population with related group
members. Our results show that, with unrelated group members
and no LD between both loci, selection based on individual disease
status yields response in susceptibility only. In the absence of
relatedness, response in infectivity depends entirely on the correlation
with susceptibility, which was zero in the absence of LD.

Relatedness among group members increased response in R0 in two
ways. First, with related group members, selection for individual

Figure 1 Allele frequency (F) at infectivity locus, allele frequency (G) at susceptibility locus and R0 when there is no relatedness among group mates

(Scenario 1, Table 2). Results are from one representative replicate.

Figure 2 Allele frequency (F) at infectivity locus as relatedness among

group mates increases from 0 to 1 (Scenario 2, Table 2). Results are from

one representative replicate.
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disease status captures the heritable variation in infectivity. This
occurs because an individual that carries the favourable allele for
infectivity has group mates with a below-average infectivity, which
increases its probability of escaping the epidemic, and thus being
selected. Second, relatedness among group mates increases response in
susceptibility. This occurs because an individual that carries the
favourable allele for susceptibility on an average has fewer infected
group mates, which increases its probability of escaping the epidemic
and being selected. These results show that not only infectivity but
also susceptibility exhibits an IGE; at the same level of infectivity,
individuals with lower susceptibility have a reduced chance of
infecting others simply because they have a lower chance of being

infected themselves. The net result of both mechanisms is a strong
increase in response to selection in R0 when relatedness increases. To
quantify the impact of relatedness on the accuracy of selection for R0,
we calculated the correlation between the selection criteria (healthy/
infected) and the breeding value for R0. Using the parameter values
presented in Scenario 2, Table 2, accuracy of selection increased from
0.05 to 0.24 when relatedness increased from 0 to 1. Thus, our study
further supports the claim of Bijma (2011) that relatedness is an

Figure 3 Allele frequency (G) at susceptibility locus as relatedness among

group mates increases from 0 to 1 (Scenario 2, Table 2). Results are from

one representative replicate.

Figure 4 R0 when relatedness among group members increases from 0 to 1

(Scenario 2, Table 2). Results are from one representative replicate.

Figure 5 Allele frequency (G) at susceptibility locus as relatedness

increases from 0 to 1 in the population with heritable variation at
susceptibility locus only (Scenario 3, Table 2). Results are from one

representative replicate.

Figure 6 The effect of relatedness on response in mean R0 in a population

with strong negative LD (D¼ �0.20, -r2¼0.64) and no recombination

between susceptibility and infectivity locus. For jf¼2.4 and jF¼0.6.

Initial R0 was 4.7 (Scenarios 4a and b, Table 2). Results are from one

representative replicate.
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important factor in utilization of heritable variation in traits affected
by IGEs.

Our results suggest that relatedness among interacting individuals
can be used in livestock breeding programs aiming to reduce disease
incidence. In current breeding strategies in livestock, data on
individual disease status is connected to the pedigree of individuals
to estimate breeding values. When interacting individuals are
unrelated, those breeding values capture only the direct genetic effect,
that is, the direct genetic part of susceptibility. Breeding values can
be improved by also considering IGEs, for example, by fitting
direct–indirect genetic effects models to data on disease status
(Lipschutz-Powell et al., 2012). However, estimating direct and
indirect breeding values for disease status is methodologically
challenging because the linear mixed models traditionally used in
quantitative genetics do not fit the nonlinear dynamics of infectious
diseases (Lipschutz-Powell et al., 2012). The use of related group
members may offer a low-tech solution, for capturing more of the
heritable variation in R0 without the need to explicitly model IGEs.

In this work, we have assumed that the selection objective is to
reduce R0. While this is probably the obvious choice for epidemiol-
ogists, it may be unexpected for breeders who are not very familiar
with R0. For breeders, reducing disease incidence might be the more
common objective. For example, in the context of our two-locus
model, breeders might specify an objective Hi¼ vgpg,iþ vjpf,i, where
vg and vj are the so-called economic values for susceptibility and
infectivity, respectively, which would be the partial derivatives of
disease incidence with respect to the population allele frequencies pg

and pf. However, both objectives are very similar, both for epidemic
and endemic diseases. For epidemic diseases, the ultimately affected
fraction of the population, known as the final size 1�s(N), is
determined by R0, as is shown by the final size equation: ln s(N)¼
R0(s(N)�1) (Kermack and McKendrick, 1991). For endemic diseases,
the equilibrium-affected fraction is given by: 1�s(N)¼ 1�1/R0.
Hence, the relationship between disease incidence and allele frequency
occurs entirely via R0, both for epidemic and endemic diseases. Thus,
when the objective is to decrease incidence, the economic values for
any disease trait, say x, that is, the partial derivatives of incidence with
respect to that trait, can be written as

vx ¼
@i

@x
¼ @i

@R0

@R0

dx
:

In this expression, the @i/@R0 is a constant that is the same for all
individuals in the population, and is independent of the disease trait
considered (e.g. susceptibility or infectivity). Thus, the ranking of
individuals will be the same, irrespective of whether they are ranked
on breeding value for incidence or on breeding value for R0.

Beware that breeding for incidence is not the same as breeding for
susceptibility. When comparing breeding for susceptibility to breeding
for R0 or incidence, the latter is to be preferred because it also covers
the heritable variation originating from infectivity (e.g. Figure 4 vs
Figure 1).

With respect to the evolution of parasite virulence, also the key role
of kin selection has been recognized (Levin and Pimentel, 1981;
Frank, 1996; Galvani, 2003). Much less attention has been given to the
potential for kin selection acting on the host population. Using Monte
Carlo simulation, Fix (1984) showed that the presence of kin groups
in a small-scale human population considerably accelerated the
increase in frequency of a resistance allele. Schliekelman (2007) seems
to be the first who used rigorous mathematical modelling to
investigate the impact of kin selection on the frequency of mutant
alleles conferring resistance to the host. Moreover, despite the

evidence of heterogeneity in infectivity (Woolhouse et al., 1997;
Lloyd-Smith et al., 2005; Doeschl-Wilson et al., 2011), little attention
has been given to the effect of kin selection on the frequency of alleles
affecting infectivity in the host population. Our simulations show
that, at least in theory, kin selection can greatly accelerate the
evolution of R0, because it utilizes the indirect genetic variance in
both susceptibility and infectivity in the host population. For any
actual case, the potential impact of kin selection will of course depend
critically on the magnitude of this indirect genetic variance.
Particularly, the component due to genetic variation in infectivity
is unknown at present, but first steps towards estimating this
component have recently been made (Lipschutz-Powell et al., 2012).
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APPENDIX 1

This appendix shows the construction of the NGM (Diekmann et al.,
2010) and R0 for a diploid population where there is no LD between
the locus affecting susceptibility and the locus affecting infectivity. In
such population, we have nine types of individuals for the combina-
tion of their genotype for susceptibility (gg, gG, GG) and infectivity
(ff, fF, FF). Thus, the NGM has nine rows and nine columns. The
column of the matrix represents the contributions to the next
generation by infectious individuals of the genotype written above
the column (‘cause’). The rows indicate the genotypes of the
susceptible individuals that become infected (‘consequence’). In the
following, we present the NGM on three rows: the first row gives
columns 1–3, the second columns 4 –6 and the final row columns
7–9. The NGM uses the transmission rate parameters between
genotypes, which are given by

b1 ¼ gggjff c b2 ¼ gggjfFc b3 ¼ gggjFFc
b4 ¼ ggGjff c b5 ¼ ggGjfFc b6 ¼ ggGjFFc
b7 ¼ gGGjff c b8 ¼ gGGjfFc b9 ¼ gGGjFFc:

ggff ggfF ggFF
ggff p2

g p2
f b1 p2

g p2
f b2 p2

g p2
f b3

ggfF p2
g 2pf 1� pf

� �
b1 p2

g 2pf 1� pf

� �
b2 p2

g 2pf 1� pf

� �
b3

ggFF p2
g 1� pf

� �2b1 p2
g 1� pf

� �2b2 p2
g 1� pf

� �2
b3

gGff 2pg 1� pg

� �
p2

f b4 2pg 1� pg

� �
p2

f b5 2pg 1� pg

� �
p2

f b6

gGfF 2pg 1� pg

� �
2pf 1� pf

� �
b4 2pg 1� pg

� �
2pf 1� pf

� �
b5 2pg 1� pg

� �
2pf 1� pf

� �
b6

gGFF 2pg 1� pg

� �
1� pf

� �2b4 2pg 1� pg

� �
1� pf

� �2b5 2pg 1� pg

� �
1� pf

� �2b6

GGff 1� pg

� �2
p2

f b7 1� pg

� �2
p2

f b8 1� pg

� �2
p2

f b9

GGfF 1� pg

� �2
2pf 1� pf

� �
b7 1� pg

� �2
2pf 1� pf

� �
b8 1� pg

� �2
2pf 1� pf

� �
b9

GGFF 1� pg

� �2
1� pf

� �2b7 1� pg

� �2
1� pf

� �2b8 1� pg

� �2
1� pf

� �2b9

gGff gGfF gGFF
ggff p2

g p2
f b1 p2

g p2
f b2 p2

g p2
f b3

ggfF p2
g 2pf 1� pf

� �
b1 p2

g 2pf 1� pf

� �
b2 p2

g 2pf 1� pf

� �
b3

ggFF p2
g 1� pf

� �2b1 p2
g 1� pf

� �2b2 p2
g 1� pf

� �2b3

gGff 2pg 1� pg

� �
p2

f b4 2pg 1� pg

� �
p2

f b5 2pg 1� pg

� �
p2

f b6

gGfF 2pg 1� pg

� �
2pf 1� pf

� �
b4 2pg 1� pg

� �
2pf 1� pf

� �
b5 2pg 1� pg

� �
2pf 1� pf

� �
b6

gGFF 2pg 1� pg

� �
1� pf

� �2b4 2pg 1� pg

� �
1� pf

� �2b5 2pg 1� pg

� �
1� pf

� �2
b6

GGff 1� pg

� �2
p2

f b7 1� pg

� �2
p2

f b8 1� pg

� �2
p2

f b9

GGfF 1� pg

� �2
2pf 1� pf

� �
b7 1� pg

� �2
2pf 1� pf

� �
b8 1� pg

� �2
2pf 1� pf

� �
b9

GGFF 1� pg

� �2
1� pf

� �2b7 1� pg

� �2
1� pf

� �2b8 1� pg

� �2
1� pf

� �2b9

GGff GGfF GGFF
ggff p2

g p2
f b1 p2

g p2
f b2 p2

g p2
f b3

ggfF p2
g 2pf 1� pf

� �
b1 p2

g 2pf 1� pf

� �
b2 p2

g 2pf 1� pf

� �
b3

ggFF p2
g 1� pf

� �2b1 p2
g 1� pf

� �2b2 p2
g 1� pf

� �2b3

gGff 2pg 1� pg

� �
p2

f b4 2pg 1� pg

� �
p2

f b5 2pg 1� pg

� �
p2

f b6

gGfF 2pg 1� pg

� �
2pf 1� pf

� �
b4 2pg 1� pg

� �
2pf 1� pf

� �
b5 2pg 1� pg

� �
2pf 1� pf

� �
b6

gGFF 2pg 1� pg

� �
1� pf

� �2b4 2pg 1� pg

� �
1� pf

� �2b5 2pg 1� pg

� �
1� pf

� �2b6

GGff 1� pg

� �2
p2

f b7 1� pg

� �2
p2

f b8 1� pg

� �2
p2

f b9

GGfF 1� pg

� �2
2pf 1� pf

� �
b7 ð1� pgÞ22pf 1� pf

� �
b8 1� pg

� �2
2pf 1� pf

� �
b9

GGFF 1� pg

� �2
1� pf

� �2b7 1� pg

� �2
1� pf

� �2b8 ð1� pgÞ2 1� pf

� �2
b9

R0 is the dominant eigenvalue of the NGM. As we have the
so-called separable mixing, where elements of the NGM are products
of the rows and columns, the NGM has a single eigenvalue only,

which therefore equals the trace of the NGM. Thus, R0 is the sum of
the diagonal elements of the NGM (given in bold above),

R0 ¼ p2
g p2

f b1þ p2
g 2pf 1� pf

� �
b2þ p2

g 1� pf

� �2b3

n
þ 2pg 1� pg

� �
p2

f b4þ 2pg 1� pg

� �
2pf 1� pf

� �
b5

þ 2pg 1� pg

� �
1� pf

� �2b6þ 1� pg

� �2
p2

f b7

þ 1� pg

� �2
2pf 1� pf

� �
b8þ 1� pg

� �2
1� pf

� �2b9g
c

a

¼ p2
gggg þ 2pg 1� pg

� �
ggGþ 1� pg

� �2gGG

� �n
p2

f jff þ 2pf 1� pf

� �
jfF þ 1� pf

� �2jFF

� �o c

a

¼ p2
g 2gg þ 2pg 1� pg

� �
gg þ 2pg 1� pg

� �
gGþ 1� pg

� �2
2gG

� �n
p2

f 2jf þ 2pf 1� pf

� �
jf þ 2pf 1� pf

� �
jF þ 1� pf

� �2
2jF

� o c

a

¼ pg pg 2gg þ 2 1� pg

� �
gg

� �
þ 1� pg

� �
pg 2gGþ 1� pg

� �
2gG

�h in
pf pf 2
�

jf þ 1� pf

� �
2jf þ 1� pf

� �
pf 2jF þ 1� pf

� �
2jF

�h io c

a

¼ 2pggg þ 2 1� pg

� �
gG

h i
2pf jF þ 2 1� pf

� �
jF

	 
n o c

a

R0 ¼ �g�j
c

a
ðA1Þ

in which �g ¼ 2pggg þ 2 1� pg

� �
gG and �j ¼ 2pf jf þ 2 1� pf

� �
jF .

APPENDIX 2

The NGM was also constructed for a population that deviates from
LD and HWE. Because of LD, the genotype gGfF has to be partitioned
into the two possible haplotypes for this genotype, gfGF and gFGf.
Hence, when accounting for LD, the NGM includes 10 distinct
genotypes, rather than the 9 considered in Appendix 1 (Table A2-1).

Table A2-1. Possible haplotypes and genotypes

Haplotypes gf gF Gf GF

gf gfgf gfgF gfGf gfGF

gF gFgF gFGf gFGF

Gf GfGf GfGF

GF GFGF

To avoid over presentation of results, we only give the trace of the
NGM, which equals R0 because of the separable mixing assumption,

R0 ¼ pgfgf bgfgf þ pgfgFbgfgF þ pgfGf bgfGf

n
þ pgfGFbgfGF þ pgFgFbgFgF þ pgFGf bgFGf

þ pgFGFbgFGF þ pGfGf bGfGf þ pGfGFbGfGF

þ pGFGFbGFGFg1=a

ðA2-1Þ
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Here bvwxy represents the transmission rate parameter within a
genotype, that is, from genotype vwxy to genotype vwxy,

bvwxy ¼ gvxjwyc:

For example, bgFGF¼ ggGjFFc.
The haplotype frequencies are

fgf ¼ pg pf þD

fgF ¼ pg 1� pf

� �
�D

fGf ¼ 1� pg

� �
pf �D

fGF ¼ ð1� pgÞð1� pf ÞþD

where D is the usual measure of LD (see main text).
The genotype frequencies are

pgfgf ¼ fgf ðfgf þð1� fgf ÞFISÞ

pgfgF ¼ 2fgf fgFð1� FISÞ

pgfGf ¼ 2fgf fGf ð1� FISÞ

pgfGF ¼ 2fgf fGFð1� FISÞ

pgFgF ¼ fgF fgF þ 1� fgF

� �
FIS

� �
pgFGf ¼ 2fgFfGf ð1� FISÞ

pgFGF ¼ 2fgFfGFð1� FISÞ

pGfGf ¼ fGf ðfGf þð1� fGf ÞFISÞ

pGfGF ¼ 2fGf fGFð1� FISÞ

pGFGF ¼ fGF fGF þ 1� fGFð ÞFISð Þ
After few steps of algebraic manipulation, Equation (A2-1) will

reduce to

R0 ¼ �g�jþD
ð1þ FISÞ

2

ð2gg ��gÞð2jf � �jÞ
ð1� pgÞð1� pf Þ

� �
c

a
; A2-2

Individual breeding values for R0 were obtained by linearizing R0 in
the allele frequencies, using partial first derivatives, and subsequently
substituting individual allele frequencies (i.e. 0, 1/2 or 1)

AR0 ;i ¼
@R0

@pg
pg;i� �pg

� �
þ @R0

@pf
pf ;i� �pf

� �
: ðA2-3Þ

AR0;i ¼2 �j gg � gG

� �
�D
ð1þ FISÞ

2

gg

ð1� pf Þ 1� pg

� �2

( ) 
pg;i

þ�g jf �jF

� �
�D
ð1þ FISÞ

2

jf

1� pg

� �
1� pf

� �2

( )
pf ;i

!

ðA2-4Þ

APPENDIX 3

As mentioned in the main text, relatedness at the susceptibility locus,
rg, and at the infectivity locus, rj, were allowed to be different. With a
single biallelic locus, pairwise relatedness between individuals takes
only three discrete values. However, our interest is in a continuum of
the average relatedness among the individuals that together make up a
group. To achieve a certain average relatedness among group mates, a
fraction f of fully related individuals was added to each group,
supplemented by a fraction 1�f of randomly selected individuals. In
this appendix, we show that the required fraction equals the square

root of relatedness at each locus, that is a fraction fg ¼
ffiffiffiffi
rg
p

of random
individuals will be replaced by individuals that were fully related to
each other at the susceptibility locus, and for the infectivity locus this
is a fraction fj ¼

ffiffiffiffiffi
rj
p

. We defined relatedness as the correlation
between the genotypes of two group mates, say x and y,

r ¼ corrðx; yÞ ¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞ varðyÞ

p ðA3-1Þ

As the same theory applies to both loci, we will show the derivation
for the susceptibility locus only.

Because the addition strategy should not change allele frequency in
the population nor affect the HWE, the population needs to have
three types of groups. The first type has gg individuals added to the
group. The second type has gG individuals added and the third type
has GG individuals added. The number of groups of the first
type equals no. groups� p2, the number of groups of the second type
equals no. groups� 2p(1�p), and the number of groups of the third
type equals no. groups� (1�p)2, where p is the frequency of the g
allele. The frequency of g in the three types of groups is then

p1 ¼ ðf þð1� f ÞpÞ ðA3-2Þ

p2 ¼ ð0:5f þ 1� fð ÞpÞ ðA3-3Þ

p3 ¼ ðð1� f ÞpÞ ðA3-4Þ

To derive the correlation, we first derive the covariance between
genotypic values of group members,

covðx; yÞ ¼ EðxyÞ� EðyÞEðxÞ

EðxyÞ ¼ p2Eðxy j 1Þþ 2pð1� pÞEðxy j 2Þþ 1� pð Þ2Eðxy j 3Þ

where, for example, E(xy|1) denotes the expectation of the product of
the genotypic values of two group members in a group of type 1. To
simplify the derivation, without loss of generality, g was given an
effect of 1 and G an effect of 0. As we are interested in additive genetic
relationship, resulting genotypic values are 2 for gg, 1 for gG and 0 for
GG. Thus, x and y denote genotypic values, taking values of either 0,
1 or 2. The possible genotypes of two individuals and the correspond-
ing values for E(xy|group type) are presented in the table below. Since
the genotypic value for GG equals zero, any pair of individuals
involving at least one GG individual has E(xy)¼ 0, and is therefore
left out of the table.

Table A3-1. Possible genotypes and the expectation of the

product of the genotypic values of two group members in a group

of type 1, 2 and 3

Possible

genotypes E(xy|1) E(xy|2) E(xy|3)

gg/gg [2(p1)2][2(p1)2] [2(p2)2][2(p2)2] [2(p3)2][2(p3)2]

gg/gG [2(p1)2]

[1(2p1(1�p1))]

[2(p2)2]

[1(2p2(1�pg/2))]

[2(p3)2]

[1(2p3(1�p3))]

gG/gg [1(2p1(1�p1))]

[2(p1)2]

[1(2p2(1�p2))]

[2(p2)2]

[1(2p3(1�p3))]

[2(p3)2]

gG/gG [1(2p1(1�p1))]

[1(2p1(1p1))]

[1(2p2(1�p2))]

[1(2p2(1�p2))]

[1(2p3(1�p3))]

[1(2p3(1�p3))]

If we insert Equations (A4-2) for p1 and Equation (A4-3) and
(A4-4) for p2 and p3, respectively, and sum up all the elements in each
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of the three column for E(xy), we find

p2Eðxy=1Þ ¼ 4f 2p2þ 8fp3� 8f 2p3þ 4p4� 8fp4þ 4f 2p4

2pð1� pÞEðxy=2Þ ¼ 2f 2pþ 8fp2� 10f 2p2þ 8p3� 24fp3

þ 16f 2p3� 8p4þ 16fp4� 8f 2p4

1� pð Þ2Eðxy=3Þ ¼ 4p2� 8fp2þ 4f 2p2� 8p3þ 16fp3

� 8f 2p3þ 4p4� 8fp4þ 4f 2p4

And as

EðxyÞ ¼ p2Eðxy=1Þþ 2pð1� pÞEðxy=2Þþ 1� pð Þ2Eðxy=3Þ;
Then,

E xyð Þ ¼4f 2p2þ 8fp3� 8f 2p3þ 4p4� 8fp4þ 4f 2p4þ 2f 2pþ 8fp2

� 10f 2p2þ 8p3� 24fp3þ 16f 2p3� 8p4þ 16fp4� 8f 2p4

þ 4p2� 8fp2þ 4f 2p2� 8p3þ 16fp3� 8f 2p3þ 4p4

� 8fp4þ 4f 2p4

EðxyÞ ¼ 2f 2pþ 4p2� 2f 2p2

Next, we need to calculate E(x) and E(y):

EðxÞ ¼ EðyÞ ¼ ½ð2p2Þþ 1ð2pð1� pÞÞ�
Then,

EðxÞ � EðyÞ ¼ 4p2

Then, covariance will be

covðx; yÞ ¼ 2f 2p� 2f 2p2

Next, the variances are given by

VarðxÞ ¼ VarðyÞ ¼ 2pð1� pÞ
Then, Equations (A3-1) becomes

corrðx; yÞ ¼ 2f 2p� 2f 2p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� pÞ

pq

corrðx; yÞ ¼ 2f 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2� 8p3þ 4p4

p � 2f 2p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2� 8p3þ 4p4

p
Simplifying this expression yields

corrðx; yÞ ¼ r ¼ f 2 ðA3-5Þ
Thus, to achieve a certain relatedness, a fraction f ¼ ffiffi

r
p

of fully
related individuals should be added to each group.

APPENDIX 4

This appendix contains an example demonstrating the strategy to
make additions in each group, so as to achieve a certain relatedness
for susceptibility and infectivity among group mates. We considered
100 groups, each with 100 individuals. Let us assume that LD
(D)¼ 0.15, and that the allele frequency at susceptibility locus is 0.5
and allele frequency at infectivity locus equals 0.6. Thus, Pg¼ 0.5 and
Pf¼ 0.6. The rg¼ 0.75 and rj¼ 0.6. It is assumed that the population
is in Hardy–Weinberg equilibrium. The haplotype frequencies will be

fgf ¼ pgpf þD

fgF ¼ ð1� pgÞpf �D

fGf ¼ pgð1� pf Þ�D

fGF ¼ ð1� pgÞð1� pf ÞþD

Table A4-1. Haplotype and genotype type frequencies assuming

HWE

Haplotypes fgf fgF fGf fGF

fgf fgf
2 2fgffgF 2fgffGf 2fgffGF

fgF fgF
2 2fgFfGf 2fgFfGF

fGf fGf
2 2fGffGF

fGF fGF
2

As r¼ f2, then the fraction fg of individuals that are fully related
at their susceptibility locus will be

ffiffiffiffi
rg
p ¼

ffiffiffiffiffiffiffiffiffi
0:75
p

¼ 0:87. And the
fraction fj of individuals that are fully related at their infectivity locus
will be

ffiffiffiffiffi
rj
p ¼

ffiffiffiffiffiffi
0:6
p

¼ 0:77.
Because the required fraction is lowest for the infectivity locus, we

start with the infectivity locus. Thus, in each of the 100 groups we
added

ffiffiffiffiffi
rj
p �100 ¼ 77 individuals that are fully related at their

susceptibility and infectivity locus. The first 100� fgf
2 groups will

contain 77 individuals with gfgf genotype, 100� 2fgf fgF groups will
contain 77 individuals with gfgF genotype, 100� 2fgf fGf groups
will contain 77 individuals with gfGf genotype, 100� 2fgf fGF groups
will contain 77 individuals with gfGF genotype, 100�fgF2

groups contain 77 individuals with gFgF genotype, 100� 2fgF fGf

groups will contain 77 individuals with gFGf genotype, 100� 2fgF fGF

groups contain 77 individuals gFGF genotype, 100�fGf 2 groups will
contain 77 individuals with GfGf genotype, 100� 2fGf fGF groups will
contain 77 individuals with GfGF genotype and finally, 100�fGF2

groups will contain 77 individuals with GFGF.
With respect to the infectivity locus, there are pf

2� 100¼ 36
groups that contain a fraction of individuals that are of ff,
2pf(1�pf)� 100¼ 48 groups that contain a fraction of individuals
that are of fF genotype and (1�pf)

2� 100¼ 16 groups that contain a
fraction of individuals that are of FF genotype at their infectivity
locus. Thus, the desired additions for the infectivity locus are
achieved.

With respect to the susceptibility locus, we have pg
2� 100¼ 25

groups that contain 77 individuals that are of gg, 2pg(1�pg)� 100
¼ 50 groups that contain 77 individuals that are of gG genotype and
(1�pg)

2� 100¼ 25 groups that contain 77 individuals that are of FF
genotype at their infectivity locus. For the susceptibility locus,
however, the required number of individuals to be added equals
n� ffiffiffiffi

rg
p ¼ 100�0:87. As we have already added 77 individuals that are

fully related at their susceptibility locus, what is left to add to the
group is 87�77¼ 10 individuals Thus, the next addition will be 10
individuals that are fully related at their susceptibility locus, but taken
at random with respect to their infectivity locus (so that relatedness as
the infectivity locus is not affected). Therefore, for those groups that
already have a fraction of individuals with gg genotype, we will add 10
more individuals that are off gg genotype. Analogously, to groups that
already have a fraction of individuals with a certain genotype, 10
more individuals with that genotype are added. As the groups size is
assumed to be 100, the rest of the group, which are 100�87¼ 13
individuals, will be assigned randomly.

APPENDIX 5

In this appendix we presented the lower (min) and upper (max)
bound for rg given rj and vice versa for a given LD, D. These
bounds follow from the fraction of available individuals for the
second addition step (see Appendix 4), which depends on the
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allele frequencies, D, and relatedness at the locus in the first
addition step.

When D40,

max rg j rj; D40
� �

¼ min 1�
D 1� ffiffiffiffiffi

rj
p� �

min pg 1� pf

� �
; 1� pg

� �
pf

	 
 ; 1

2
4

3
5

0
@

1
A

2

ðA5-1Þ

min rj j rg; D40
� �

¼ max 1þ
min pg 1� pf

� �
; 1� pg

� �
pf

	 
 ffiffiffiffi
rg
p � 1
� �

D
; 0

" # !2

ðA5-2Þ

When Do0,

max rg j rj; Do0
� �

¼ min 1þ
D 1� ffiffiffiffiffi

rj
p� �

min pg pf ; 1� pg

� �
1� pf

� �	 
 ; 1

2
4

3
5

0
@

1
A

2

ðA5-3Þ

min rj j rg; Do0
� �

¼ max 1�
min pg pf ; 1� pg

� �
1� pf

� �	 
 ffiffiffiffi
rg
p � 1
� �

D
; 0

2
4

3
5

0
@

1
A

2

ðA5-4Þ
When D¼Max (D)¼±0.25,

max rg j rj; D ¼ � 0:25
� �

¼ rj ðA5-5Þ
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