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Accuracy of genomic selection models in a large population
of open-pollinated families in white spruce

J Beaulieu1,2, T Doerksen1,2, S Clément1, J MacKay2 and J Bousquet2

Genomic selection (GS) is of interest in breeding because of its potential for predicting the genetic value of individuals and
increasing genetic gains per unit of time. To date, very few studies have reported empirical results of GS potential in the
context of large population sizes and long breeding cycles such as for boreal trees. In this study, we assessed the effectiveness
of marker-aided selection in an undomesticated white spruce (Picea glauca (Moench) Voss) population of large effective size
using a GS approach. A discovery population of 1694 trees representative of 214 open-pollinated families from 43 natural
populations was phenotyped for 12 wood and growth traits and genotyped for 6385 single-nucleotide polymorphisms (SNPs)
mined in 2660 gene sequences. GS models were built to predict estimated breeding values using all the available SNPs or
SNP subsets of the largest absolute effects, and they were validated using various cross-validation schemes. The accuracy of
genomic estimated breeding values (GEBVs) varied from 0.327 to 0.435 when the training and the validation data sets shared
half-sibs that were on average 90% of the accuracies achieved through traditionally estimated breeding values. The trend was
also the same for validation across sites. As expected, the accuracy of GEBVs obtained after cross-validation with individuals of
unknown relatedness was lower with about half of the accuracy achieved when half-sibs were present. We showed that with the
marker densities used in the current study, predictions with low to moderate accuracy could be obtained within a large
undomesticated population of related individuals, potentially resulting in larger gains per unit of time with GS than with the
traditional approach.
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INTRODUCTION

Marker-assisted selection for individuals with superior phenotypes
has been suggested for quite some time, particularly to increase
selection efficiency for low-heritability traits and for improving gains
per time unit for traits requiring long testing periods (Lande and
Thompson, 1990; Strauss et al., 1992). However, despite some
promising results from experimental studies at the genome scale in
forest trees (Resende et al., 2012a, b), further investigation is still
needed to bring marker-assisted selection to the operational level.
This is especially true in forestry, where tree breeding programmes are
frequently dealing with species with long breeding cycles involving
essentially undomesticated populations and where large population
sizes are often considered for the maintenance of high genetic
diversity in reforestation stocks (Mullin et al., 2011; Namroud et al.,
2012).

Various approaches have been taken over the past 15 years to
identify genetic markers that could explain a significant part of the
variation observed in quantitative traits of interest. These approaches
evolved from detecting quantitative trait loci (QTLs) in single
families, to candidate gene approaches in larger populations and,
finally, to genome-wide association studies or genomic selection (GS)
using either first-generation or advanced breeding populations
(Burdon and Wilcox, 2011).

Association studies have been carried out with some success for
major crops (Buckler et al., 2009) and tree geneticists have also
focussed their more recent efforts on association studies in large
populations with low linkage disequilibrium (LD), aiming to over-
come weaknesses in QTL analyses (Burdon and Wilcox, 2011).
Promising results have been reported for various traits in several
species (see, for example, González-Martı́nez et al., 2007; Beaulieu
et al., 2011). However, as for QTL mapping (Pelgas et al., 2011), the
variation in quantitative traits explained by individual markers is
generally low, rarely reaching 5%.

Meuwissen et al. (2001) proposed an alternative approach relying
on genome-wide distributed markers to model the entire complement
of QTL effects across the genome, whether these effects are significant
or not, and to estimate genomic estimated breeding values (GEBVs).
This method, called ‘genomic selection’, overcomes the problem of
the limited proportion of total genetic variation captured by each
significant individual marker such as in association genetics with
properly designed training populations. GS is particularly well
adapted for marker-assisted selection as it makes it possible to predict
the genetic value of an individual using all its known genotypic
information. The utility of GS models has already been shown for the
selection of complex traits in numerous species, such as plants
(Heffner et al., 2010) and animals (Habier et al., 2010).
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The potential usefulness of GS for marker-assisted selection in
forest trees was first shown by deterministic and simulation models
(Grattapaglia and Resende, 2011). These simulations indicated that
high accuracy of GEBVs could be obtained with populations of small
effective size and high LD with a reasonably limited number of
markers, but these represented idealized conditions. Recent results
from empirical studies in small breeding populations confirmed that
quite a high accuracy of GEBVs could be obtained (Resende et al.,
2012a, b; Zapata-Valenzuela et al., 2012). They also showed that this
approach could help speed up breeding cycles and significantly
increase gains per time unit.

However, no attempt has been made to estimate the value of GS for
populations with large effective size, such as for undomesticated tree
populations or for commonly used first-generation breeding popula-
tions of boreal conifer species (Mullin et al., 2011). Conifer breeders
generally assemble large breeding populations of several hundred
individuals in order to maintain a high level of genetic diversity for
long-term adaptive capacity. The objectives of the present study in
that context were to: (1) compare the potential of GS with that of
pedigree-based models, that is, based on phenotypic resemblance
between relatives using pedigree information, to predict the genetic
merit of individual trees for wood and growth traits in a large white
spruce (Picea glauca (Moench) Voss) population; (2) evaluate the
accuracy of GS predictions and the impacts of marker density as well
as the design of the training and the validation data sets on these
accuracies; (3) compare the efficiency of GS models relative to the
pedigree-based ones; and (4) evaluate empirical genetic gains expected
when selecting the top 5% trees based on GEBVs and compare gains
per unit of time with the conventional approach.

MATERIALS AND METHODS
Plant material and tissue sampling
A white spruce provenance–progeny test was established by the Canadian

Forest Service in Québec, Canada, on three sites (Mastigouche Arboretum:

latitude (Lat.) 461380 N, longitude (Long.) 731130 W, elevation (Elev.) 230 m;

Dablon Arboretum: Lat. 481210 N, Long. 721130 W, Elev. 323 m; and LaPatrie

Arboretum: Lat. 451200 N, Long. 711150 W, Elev. 457 m) in May 1979, with

4-year-old seedlings that had been raised in a greenhouse at the Canadian

Forest Service, Laurentian Forestry Centre (Québec City, January to May

1976), and then transplanted into a nursery bed at the Valcartier Forest

Experiment Station (Lat. 461520 N, Long. 711320 W, Elev. 152 m). The test

consisted of 214 open-pollinated families, that is, 5 families from each of 43

provenances (except one) sampled in Québec. Seedlings were planted following

a randomized complete block design with six blocks, five-tree row plots, and a

spacing of 2.4 m between row plots and 1.2 m between trees within plots. At

27 years after planting, three trees from each family covering the range of

diameters at breast height were sampled in the Mastigouche Arboretum test.

After 4 years, five additional trees per family were selected with the same

diameters at breast height constraint to complete the discovery population

used in the present study. Needle tissue taken in the upper part of the crown

for DNA extractions and a 12-mm increment core taken at 1.3 m from the

ground were collected on each tree for wood character assessment, kept on ice

and transported to the Canadian Forest Service facilities where they were

stored at �10 1C until further treatment.

Two validation populations were also assembled. The first population was

sampled in the Dablon Arboretum test. It comprised 125 trees from a random

sample of 100 of the 214 open-pollinated families. The second validation

population was sampled in a range-wide provenance–progeny test established

at Mirabel (Lat. 451370 N, Long. 741050 W, Elev. 61 m). It comprised 219 trees

representing 100 of the 214 open-pollinated families present in the previous

tests established in arboreta (Mastigouche, Dablon and LaPatrie). This test was

set up in 1984 also using 4-year-old seedlings raised in the nursery of the

Valcartier Forest Experiment Station. Foliage and wood core samples were

collected 27 years after planting in both tests and the same collection procedure

as for the discovery population was followed. Family-wise, there was 47%

overlap between the two validation populations. DNA extraction for all the

samples collected was conducted as reported in Pavy et al. (2013).

Phenotypic data
Pith to bark profiles of 11 different wood physical characters were obtained for

1694 trees (the discovery population), as in Beaulieu et al. (2011), using the

SilviScan technology at FPInnovations facilities (Vancouver, BC, Canada)

(Table 1). Measurements were taken from the radial surface of 2� 7 mm wood

flitch samples cut with a twin blade pneumatic saw from the thawed 12-mm

wood cores. Wood density was measured at a resolution of 25mm by X-ray

densitometry that corresponds to density at 8% moisture content. Microfibril

angle was measured in 1-mm steps using X-ray diffractometry, and wood

modulus of elasticity was calculated using both the density and microfibril

angle data. Cell wall thickness and cell dimensions were obtained using optical

microscopy and image analysis. Trait averages of each trait for each tree were

weighted by the annual ring area.

SNP genotyping
For this experiment, a total of 7338 valid single-nucleotide polymorphisms

(SNPs) from 2814 genes were successfully genotyped using the Illumina

Infinium HD iSelect bead chip PgAS1 (Illumina, San Diego, CA, USA) as

described in Pavy et al. (2013). The genes were from the white spruce gene

catalogue GCAT (Rigault et al., 2011) and represented a large variety of

functions (Pavy et al., 2013). The SNPs were separated by a minimum distance

of 200 bp within genes, given that generally weak LD is observed within gene

limits in white spruce genes (Pavy et al., 2012a). The final SNP data set was

filtered to retain segregating SNPs that had a GenTrain quality score X0.25, a

fixation coefficient |Fe| o0.50, a minor allele frequency X0.003 given the large

size of the discovery population, corresponding to a minimum number of

heterozygotes of 10, and a call rate at each SNP locus of X50%. A total of 6385

SNPs harboured by 2660 distinct gene loci met these criteria and were used for

the present study. Despite the liberal call rate used, 496% of these SNPs had a

call rate above 95%.

Population structure. A population structure analysis was used to assess

whether there were differences in allele frequencies among unobserved

ancestral populations that could bias prediction accuracy estimates. Given

the results obtained in previous studies conducted in the same area (Jaramillo-

Correa et al., 2001; Namroud et al., 2008, 2010; Beaulieu et al., 2011), we were

expecting a weak or no population differentiation from SNPs. We used all

available SNPs (m¼ 6385) in multidimensional scaling and principal compo-

nent analysis (Price et al., 2006) to estimate population covariates for each

individual. The results of the two analyses were similar, and two covariates

obtained with multidimensional scaling were used in further analyses.

Estimated breeding values
As a control representative of the conventional pedigree-based approach, the

EBVs of each tree for each character were obtained using the polygenic

model in GS3 (Legarra et al., 2013, http://snp.toulouse.inra.fr/Balegarra/).

This mixed linear model is as follows:

y ¼ XbþTuþ e ð1Þ

where b is a vector of fixed effects (including an overall mean and

population structure), u is a vector of random additive genetic polygenic

effects with a distribution BN(0, As2
u), X and T are the incidence matrices

and A is the additive genetic (or numerator) relationship matrix (Lynch and

Walsh, 1998).

GS analyses
Genomic estimated breeding values. The GEBV of every single tree was

estimated for each wood and growth trait using all of the 6385 SNPs available.

The effect of each marker was estimated with the mixed linear model 2 in GS3

(Legarra et al., 2013). This model is:

y ¼ XbþZaþ e ð2Þ
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where b is a vector of fixed effects (including an overall mean and

population structure), a and e are vectors of random marker and random error

effects, respectively, and X and Z are the incidence matrices. The Z matrix was

built from the number of alleles observed at each individual and marker pair

(0, 1 and 2), the coding representing the number of copies of the minor allele.

Missing genotypes (total of 1.21%) at any given marker were replaced by the

mean of the genotype coding rounded up to the nearest genotype coding for

that marker (average of the population for additive effect).

In model 2, only biallelic markers are considered and the value þ½aj is

arbitrarily assigned to the first allele, whereas �½aj is assigned to the

second allele. Hence, the effects of homozygotes for the first allele are þ aj,

whereas those of the alternate homozygotes are �aj, and 0 for the

heterozygotes. It is also assumed that m follows a normal distribution

(BN(0, Is2
a)), and I is an identity matrix. Such a model with a

normal distribution of marker effects is often called ridge regression best

linear unbiased prediction (Meuwissen et al., 2001; VanRaden, 2008).

Table 1 Variance components of wood and growth characters estimated in genomic selection analyses with three different models using all

6385 single-nucleotide polymorphisms (SNPs) and the full data set of 1694 trees

Traita Modelb s2
a
c V 0A s2

u s2
e hi

2

Cell population (number per mm2) Polygenic — — 6423.27 19929.96 0.24

Markers 2.89 5631.45 — 20568.07 0.22

Combined 2.63 5117.93 2107.22 190 60.96 0.27

Fibre coarseness (mg m�1)

Polygenic — — 417.67 860.10 0.33

Markers 0.17 330.40 — 940.78 0.26

Combined 0.15 290.85 162.35 825.04 0.35

Crystallite width (nm)

Polygenic — — 1.68E�3 1.28E�3 0.57

Markers 3.26E�7 6.34E�4 — 2.26E�3 0.22

Combined 1.65E�7 3.21E�4 1.11E�3 1.49E�3 0.49

Wood density (kg m�3)

Polygenic — — 461.52 713.88 0.39

Markers 0.15 283.49 — 888.90 0.24

Combined 0.11 203.88 252.43 721.23 0.39

Microfibril angle (degrees)

Polygenic — — 6.60 10.76 0.38

Markers 2.2E�3 4.22 — 13.10 0.24

Combined 1.7E�3 3.25 3.01 11.08 0.37

Wood stiffness (GPa)

Polygenic — — 1.08 2.40 0.31

Markers 4.07E�4 0.79 — 2.67 0.23

Combined 3.49E�4 0.68 0.35 2.45 0.31

Ring width (mm)

Polygenic — — 1.54E�2 0.39 0.04

Markers 1.73E�5 3.36E�2 — 0.37 0.08

Combined 1.44E�5 2.81E�2 1.18E�2 0.36 0.10

Specific fibre surface (m2 kg�1)

Polygenic — — 413.99 451.77 0.48

Markers 0.14 272.81 — 589.97 0.32

Combined 0.11 217.89 178.36 467.19 0.46

Cell radial diameter (mm)

Polygenic — — 1.60 2.07 0.44

Markers 5.27E�4 1.03 — 2.58 0.29

Combined 4.69E�4 0.91 0.49 2.22 0.39

Cell tangential diameter (mm)

Polygenic — — 0.76 2.13 0.26

Markers 3.10E�4 0.60 — 2.29 0.21

Combined 2.65E�4 0.52 0.34 2.04 0.30

Cell wall thickness (mm)

Polygenic — — 1.31E�2 2.08E�2 0.39

Markers 4.72E�6 9.19E�3 — 2.46E�2 0.27

Combined 3.86E�6 7.53E�3 6.11E�3 2.03E�2 0.40

22-Year height (cm)

Polygenic — — 3015.16 8818.00 0.25

Markers 0.91 1873.04 — 9903.84 0.16

Combined 0.83 1621.10 1483.05 8711.36 0.26

aExcept for 22-year height, all other traits were assessed from wood cores collected when trees were either 31 or 35 years old.
bPolygenic indicates pedigree information; markers indicates SNP information only; and combined indicates pedigree and SNP information.

cHere, s2
a is additive genetic variance explained by marker loci; V 0A¼ is total additive genetic variance estimated as V

0

A ¼ s2
a

Pk

i¼1

2pk qk ; s2
u is polygenic additive genetic variance; s2

e is residual
variance; hi

2 is individual heritability.
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The total additive genetic variance estimated with the markers was

estimated as:

V
0

A ¼ s2
a

Xk

i¼1

2pkqk ð3Þ

where pk and qk are respectively the frequencies of alleles 1 and 2 of the

locus k in the population, and the predicted individual GEBVs were

calculated as:

ĝi ¼
Xn

j

Z 0ij âj ð4Þ

where âj is the estimated effect of the jth SNP locus, and Z 0ij is an indicator

covariate (�1, 0 or 1) for the ith tree and the jth SNP locus.

Breeding values estimated from combining marker and polygenic effect estimates.

Marker and additive polygenic (pedigree-based) effects were jointly estimated

using model 3 in GS3 (Legarra et al., 2013), and the following model:

y ¼ XbþTuþZaþ e ð5Þ

With the GS3 software, best linear unbiased estimation and best linear

unbiased prediction of fixed and random variables, respectively, are obtained

using the Gauss–Seidel algorithm with residual update (Legarra and Misztal,

2008) that was extended to estimate variance components by Markov chain

Monte Carlo (Gibbs sampling). The Gibbs sampler was run for 100 000

iterations with a burn-in of 20 000 iterations, and priors drawn from an

inverted w2 distribution with two degrees of freedom. Convergence of the

posterior distribution (800 samples retained) was checked visually using

trace plots.

Cross-validation (CV). To validate the models built to predict breeding values

based on the complete set of 6385 SNPs, and to determine the limits of their

applicability, we first carried out three CV schemes. For the first one (CV1),

one individual per half-sib family was randomly assigned to each of 10

iteration sets, for a total of 214 individuals in each training set. With this

validation scheme, half-sib relationships occurred between training and

validation sets. The second CV scheme (CV2) was for between-family CV,

where entire families were assigned to folds of the training and validation sets.

In each of the 10 CV iterations, 27 randomly selected families, corresponding

to 12.5% of the 214 available families, composed the validation data set, all the

remaining trees made up the training data set. Although all known maternal

(seed parent) relatedness was eliminated between training and validation sets

in CV2, the unknown paternal (pollen parent) contribution to relatedness

within provenance is unaccounted for, and could be traced by markers if

present (Doerksen et al., 2014). Note also that spruces have a monoecious

mating system allowing individuals to act as both seed and pollen parents. A

third CV scheme (CV3) was designed to control for any possible contribution

of the pollen parent to relatedness within provenance between CV sets. The

scheme was conducted by assigning entire families of geographically distinct

provenances to four validation sets, thus eliminating as much as possible any

possibility of paternal (and maternal) coancestry between sets. Consequently, if

accuracy estimates obtained were different from zero, results from CV3 could

likely help determine if historical LD with some traits is still present in extant

white spruce populations.

Models were then developed to estimate the marker effects using each of the

training sets per CV scheme, and genomic breeding values of individuals

making up the corresponding validation set were predicted using these models.

The accuracy of prediction was estimated using the correlation r(g, ĝ) between

the breeding value of an individual (g) as obtained with the conventional

approach (that is, (û) from polygenic model 1), and its estimated value using

markers ðĝÞ. The predictive ability was estimated as the correlation between the

observed and the estimated phenotype rðy; ŷð ÞÞ. Both GEBV accuracy and

predictive ability were reported as the average of the correlation coefficients of

the CV scheme used. An accuracy estimate was also estimated for the pedigree

method using a 10-fold CV scheme. Relative efficiency of GS models was

then estimated as the ratio of the accuracy of GS models to that of pedigree-

based ones.

Validation across sites. The three previous CV schemes were conducted on a

single (Mastigouche) site, and hence there is an additional need to assess the

impact of possible genotype-by-interaction (G� E) on prediction accuracy.

Because of financial constraints, a full across-site validation using all the SNPs

available as well as all the traits assessed in populations assembled on different

testing sites was not possible. We thus limited the validation to two phenotypic

traits, that is, wood density and microfibril angle. Moreover, only B350 SNPs

per trait that were found to be most significantly associated (Po0.05) with

these two traits in the discovery population (Mastigouche Arboretum), after an

association study carried out using a mixed linear model implemented in

Tassel (http://www.maizegenetics.net/tassel), were retained to genotype the two

validation populations established at the Dablon Arboretum and Mirabel site.

Thus, the training data sets consisted of all individuals from the Mastigouche

Arboretum, whereas the individuals sampled at the Dablon Arboretum and

Mirabel site were used as testing data sets. Genotyping was conducted at the

Genome Quebec Innovation Centre (McGill University, Montreal, QC,

Canada) using the highly multiplexed Illumina GoldenGate assay following

procedures described in Beaulieu et al. (2011).

RESULTS

Population structure
A weak population structure with no geographical pattern was
detected with both principal component analysis and multi-
dimensional scaling analysis, with 1.3% of variance explained by the
first two principal component analysis eigenvectors. Weak population
structure in white spruce from Québec has been reported in several
studies using neutral genetic markers (Jaramillo-Correa et al., 2001;
Namroud et al., 2008, 2010) and was expected based on our previous
analysis of a subset of the present discovery population (Beaulieu
et al., 2011). As a cautionary measure, we used the multidimensional
scaling coefficients as population covariates for the GS analyses to
control for any potential bias in prediction accuracy that could be
brought about by such a population structure.

Variance component estimates with the full data set
Estimates of variance components with the full data set and the 6385
markers for the three models, that is, polygenic additive genetic effects
(Equation 1), marker effects (Equation 2) and combined marker and
polygenic effects (Equation 5), are presented for each wood and
growth trait in Table 1. When comparing the first two models, a slight
increase was observed in the estimates of error variance (s2

e) for the
marker-effect model. In addition, the estimates of additive genetic
variance explained by marker loci (V0A) were lower than those
estimated using pedigree information (s2

u). However, the marker-
effect model could nevertheless capture at least 60% of the additive
genetic variance (V0A/s2

u) for most of the traits. Models combining
both marker and pedigree information generally lead to the highest
estimates of individual heritability. This is likely because of the fact
that pedigree information makes it possible to capture unmarked loci
that are also involved in the genetic control of the traits.

Goodness of fit of the models built with the full data set
The goodness of fit of the various models was first estimated using the
full data set (Table 2). For all the traits, except for average ring width,
the correlation between observed and estimated phenotypes was the
highest with the polygenic model, followed by the combined marker-
pedigree model and the marker-only model. The correlation between
the individual breeding values estimated with the polygenic model
and those estimated with the other two models ranged from 0.788 to
0.985 (Table 2). The lowest value was obtained for ring width.
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Predictive ability of the models
The predictive ability of the models based on markers was always
slightly better than those based on pedigree information alone when
the validations were made using the CV1 scheme (within-family CV;
Table 3, upper part). Combining information from both the pedigree
and the markers in the GS models did not markedly increase the
predictive ability (Table 3). When CV was conducted by controlling for
known relatedness (half-sibs) between training and testing/validation
sets (CV2 scheme), the predictive ability of the models was substan-
tially lower for most of the traits (Table 3, lower part). As expected,
models based on pedigree information had lower predictive abilities
ranging from �0.074 for fibre coarseness to 0.257 for wood density.

Accuracy of EBVs and GEBVs
The accuracy of predicted breeding values obtained with the different
prediction models varied greatly depending on the CV scheme
(Table 4). When model validations were conducted using the CV1

scheme, accuracies varied from 0.457 (crystallite width) to 0.517
(cell wall thickness) in models relying on pedigree information alone.
They were slightly lower (0.327–0.435) when estimated with the 6385
SNPs. Nevertheless, the relative efficiency of GS models reached 76%
of that of pedigree-based ones on average, varying from 68 to 89%,
depending on the trait. When validations were carried out using the
CV2 scheme, the accuracy of breeding values fell to B0 when
predicted from pedigree information only and decreased by B50%
when predicted with all SNPs (Table 4, CV2 scheme). We tested
whether population structure might have an effect on the accuracy
estimates obtained by running analyses without population structure
covariates and we found only a marginal effect. When the choice of
families to constitute the training and the validation data sets was
constrained by the origin of the families (belonging to different
provenances; CV3), the accuracy estimates decreased but were still
different from 0 for 7 out of the 12 traits studied (Table 4), and went
up to 0.132±0.039 for fibre coarseness.

Genetic gains
Expected genetic gains from 5% selection intensity were estimated
empirically under both within- (CV1) and between-family (CV2)
validation schemes (Tables 5 and 6). For the CV1 scheme, 30–60% of
the maximum genetic gains could be captured by superior trees
identified by markers only (Table 5, see ratio GEBVCV1/EBV).
However, compared with gains predicted using pedigree information
(EBVCV1, EBV obtained after CV), the relative efficiency of the
markers varied between 65% (ring width) and 111% (height) (ratio
GEBVCV1/EBVCV1). Moreover, with the assumption that a breeding
cycle could be completed in 10 years with GS instead of 30 years using
the conventional approach, gain per time unit in favour of markers
would be two- to threefold (Table 5). When using markers to predict
breeding values of trees from families that were different from those
used in the training data set (CV2), the predicted gains dropped
considerably but were still positive. But in contrast to CV1, no genetic
gain was expected when selection was based on pedigree information
alone for this validation scheme (Table 6).

GEBV estimates for trees sampled at the Dablon Arboretum and
Mirabel site were obtained using the GS models built with all 1694
trees belonging to the 214 families sampled at the Mastigouche
Arboretum and genotyped using the subsets of significant SNPs
(Po0.05). The accuracy of their wood density and microfibril angle
GEBVs was estimated as the ratio of the correlation between the
phenotype and the GEBVs divided by the square root of trait

Table 2 Goodness of fit of the models based on pedigree information,

on marker-locus information or on combined marker-locus and

pedigree information and correlations of breeding values estimated

with the pedigree-based and the two other models using all 6385

SNPs

Trait
a

Goodness of fitb Correlation of EBVs

Pedigree c Markers Combined Markers Combined

Cell population 0.852 0.749 0.833 0.850 0.985

Fibre coarseness 0.942 0.817 0.907 0.866 0.977

Crystallite width 0.977 0.763 0.959 0.838 0.892

Wood density 0.918 0.760 0.903 0.871 0.950

Microfibril angle 0.951 0.810 0.921 0.872 0.962

Wood stiffness 0.921 0.783 0.870 0.870 0.982

Ring width 0.371 0.515 0.566 0.788 0.978

Specific fibre surface 0.961 0.834 0.936 0.891 0.967

Cell radial diameter 0.942 0.799 0.891 0.872 0.978

Cell tangential diameter 0.906 0.775 0.882 0.851 0.972

Cell wall thickness 0.939 0.810 0.922 0.878 0.965

22-Year height 0.914 0.745 0.879 0.832 0.958

Abbreviations: EBV, estimated breeding value; SNP, single-nucleotide polymorphism.
aFor units, see Table 1.
bCorrelation between the observed and the estimated phenotypic values.
cPedigree indicates pedigree information only; markers indicates SNP information only; and
combined indicates pedigree and SNP information.

Table 3 Predictive ability of wood and growth traits of the different

models for genomic selection using all 6385 SNPs

Traita Pedigreeb Markers Combined

Within families (CV1)c

Cell population 0.205 (0.015) 0.265 (0.019) 0.265 (0.019)

Fibre coarseness 0.174 (0.014) 0.235 (0.011) 0.237 (0.011)

Crystallite width 0.271 (0.013) 0.206 (0.013) 0.250 (0.012)

Wood density 0.330 (0.017) 0.325 (0.018) 0.339 (0.017)

Microfibril angle 0.222 (0.012) 0.221 (0.023) 0.236 (0.021)

Wood stiffness 0.177 (0.011) 0.209 (0.016) 0.210 (0.016)

Ring width 0.183 (0.015) 0.208 (0.014) 0.200 (0.015)

Specific fibre surface 0.256 (0.015) 0.293 (0.019) 0.296 (0.018)

Cell radial diameter 0.296 (0.015) 0.351 (0.016) 0.352 (0.018)

Cell tangential diameter 0.157 (0.019) 0.184 (0.028) 0.191 (0.027)

Cell wall thickness 0.262 (0.014) 0.293 (0.015) 0.303 (0.014)

22-Year height 0.122 (0.010) 0.166 (0.012) 0.166 (0.012)

Between families (CV2)d

Cell population 0.184 (0.049) 0.250 (0.032) 0.246 (0.033)

Fibre coarseness �0.074 (0.027) 0.152 (0.011) 0.147 (0.013)

Crystallite width 0.105 (0.013) 0.151 (0.023) 0.142 (0.023)

Wood density 0.257 (0.052) 0.268 (0.047) 0.270 (0.049)

Microfibril angle �0.007 (0.015) 0.117 (0.024) 0.109 (0.024)

Wood stiffness 0.113 (0.026) 0.169 (0.026) 0.168 (0.026)

Ring width 0.239 (0.041) 0.245 (0.039) 0.245 (0.039)

Specific fibre surface 0.137 (0.034) 0.197 (0.030) 0.194 (0.025)

Cell radial diameter 0.211 (0.044) 0.311 (0.025) 0.311 (0.030)

Cell tangential diameter 0.075 (0.038) 0.158 (0.020) 0.152 (0.019)

Cell wall thickness 0.143 (0.038) 0.176 (0.025) 0.177 (0.027)

22-Year height 0.073 (0.028) 0.142 (0.019) 0.138 (0.020)

Abbreviations: CV, cross-validation; SNP, single-nucleotide polymorphism.
aFor units, see Table 1.
bPedigree indicates pedigree information only; markers indicates SNP information only; and
combined indicates pedigree and SNP information.
cBoth training and testing data sets share individuals of the same families.
dTraining and testing data sets are made up of individuals of different families.
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heritability (Dekkers, 2007). At the Dablon Arboretum, the accuracy
estimates obtained for wood density and microfibril angle were
0.25 and 0.14, respectively, whereas they were 0.29 and 0.27 at the
Mirabel site.

DISCUSSION

Predictive ability and accuracy of GS models
To our knowledge, this is the first experimental study presenting
estimates of predictive ability and accuracy of GS models for wood
and growth traits in spruces for a population of large effective size
representative of first-generation breeding populations, as often used
in boreal conifer improvement programmes (Mullin et al., 2011). The
number of parents that contributed to generating the 1694 white
spruce trees of our study was estimated to be 620, using the status
effective number (Ns) defined as Ns¼ 0.5/f (Lindgren and Mullin,
1998) where the group’s coancestry coefficient (f) is half of the
relatedness coefficient derived from numerator the relationship
matrix among all 1694 offspring.

Relatedness between training and testing data sets was either
known (within-family CV) or unknown (between-family CV).
Estimates of predictive ability were reduced by B20% when the
coefficient of relatedness between CV2 sets was presumably much
smaller than 0.25 (Table 3, CV2). Accuracy estimates were slightly
higher than predictive ability for most of the traits with within-family
CV and they could capture, depending on the trait, between 68 and
89% of the accuracy obtained with pedigree information. For the
between-family validation (CV2), the prediction accuracy of the
marker-based models was much better than that of the pedigree-
based models (Table 4).

The low to moderate estimates of accuracy (Table 4) obtained with
the markers for between-family validation (CV2) may have been
because of the presence of LD between markers and QTLs persisting
across families in the population. However, because the paternal
contribution to within-provenance relatedness was not accounted for,
markers may have been capturing this cryptic/unknown relatedness.
Indeed, markers can capture additive genetic relationships between
individuals (Fernando, 1998) that affect the estimates of accuracy
of GEBVs even in the absence of LD between markers and QTLs

(Habier et al., 2007, 2013). This observation supports the need to
carefully design CV schemes in order to better identify the origin of
the accuracies obtained, and CV should account for family structure
in the data to allow for long-lasting genomics-based breeding plans
(Habier et al., 2010). When the objective is to develop GS models to
be used to select recombined individuals from the same population,
separating prediction accuracy due to long-range LD and relatedness
is less problematic. However, if one would like to apply GS models to
select individuals from other populations, a much larger marker
density might be required to do so (Meuwissen, 2009).

The white spruce genome is B2100 cM (Pavy et al., 2012b);
therefore, the full SNP data set analyzed in the present study
represented 2660 gene loci with an average rate of 2.4 SNPs per
locus that would result in average genome coverage of B1.27 marker
locus per cM. Although it is true that LD appears to be low in white
spruce genes in essentially unrelated trees from natural populations,
many exceptions were found where LD was sizeable (Namroud et al.,
2010; Pavy et al., 2012a). Therefore, the true coverage would lie
between the number of SNPs sampled and the number of gene loci
sampled. For most traits in the present study, not all SNPs were likely
to be close to a QTL and the assumption that all SNP effects were
non-null is likely unrealistic, considering that the genotyping chip was
built for several classes of traits and a large gene representation, but
nevertheless is only a fraction of the complete white spruce gene space
(Rigault et al., 2011). In theory, differential shrinkage methods
proposed to estimate GEBVs should ensure that false-positive or
uninformative effects are regressed towards zero. But in practice, the
false-positive or uninformative effects are not strictly equal to zero,
and pre-selecting SNPs could be crucial for improving the quality of
genomic predictions (Croiseau et al., 2011). This might also be
important for reducing the cost of GS implementation in breeding
programmes. However, lower marker densities could negatively affect
the capture of LD that would be detrimental to prediction accuracy
over the long term.

Grattapaglia and Resende (2011) provided theoretical expectations
for up to a maximum effective population size of 100. For training
populations of 1000 individuals, effective population sizes of 100
parents, a number of 100 QTLs controlling characters with an

Table 4 Accuracy of prediction of the genetic value for wood and growth traits using models based on pedigrees or genotypes using

all 6385 SNPs

Trait
a

Within-family (CV1)b Between-family (CV2)c Between-family (CV3)d

Pedigree Markers Pedigree Markers Markers

Cell population 0.514 (0.010) 0.393 (0.015) 0.035 (0.031) 0.198 (0.022) 0.091 (0.027)

Fibre coarseness 0.494 (0.010) 0.388 (0.012) �0.015 (0.038) 0.175 (0.011) 0.132 (0.039)

Crystallite width 0.457 (0.010) 0.327 (0.015) 0.063 (0.027) 0.173 (0.026) �0.046 (0.024)

Wood density 0.513 (0.010) 0.370 (0.012) 0.012 (0.032) 0.132 (0.024) 0.072 (0.033)

Microfibril angle 0.505 (0.010) 0.378 (0.019) 0.022 (0.026) 0.164 (0.029) �0.026 (0.092)

Wood stiffness 0.505 (0.012) 0.383 (0.018) 0.003 (0.039) 0.184 (0.031) 0.026 (0.070)

Ring width 0.490 (0.015) 0.333 (0.012) �0.045 (0.041) 0.127 (0.038) �0.023 (0.047)

Specific fibre surface 0.466 (0.014) 0.388 (0.023) 0.000 (0.036) 0.158 (0.018) 0.124 (0.011)

Cell radial diameter 0.490 (0.017) 0.435 (0.018) 0.038 (0.024) 0.277 (0.022) 0.129 (0.048)

Cell tangential diameter 0.500 (0.013) 0.352 (0.020) �0.067 (0.034) 0.150 (0.037) 0.113 (0.037)

Cell wall thickness 0.517 (0.011) 0.411 (0.013) �0.010 (0.040) 0.129 (0.019) 0.127 (0.014)

22-Year height 0.498 (0.010) 0.360 (0.013) �0.034 (0.023) 0.178 (0.029) 0.090 (0.047)

Abbreviations: CV, cross-validation; SNP, single-nucleotide polymorphism.
aFor units, see Table 1.
bBoth training and testing data sets share individuals of the same families.
cTraining and testing data sets are made up of individuals of different families.
dFamilies making up the validation data sets are from populations that are not represented in the training data sets.
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heritability varying from 0.2 to 0.4 and a marker density of 1 to 2
SNPs per cM, they reported that prediction accuracy of GS models
should vary approximately between 0.3 and 0.4 (see Figures 1 and 2 in
Grattapaglia and Resende, 2011). Thus, it appears that our results are
quite in line with theoretical expectations when both training and
validation data sets came from the same populations. As demon-
strated by Grattapaglia and Resende (2011), the number of QTLs
controlling the characters might have some impact at low marker
densities, but it is difficult to determine at the present time the most
probable number of QTLs involved in growth and wood traits in
spruces, though their numbers are likely to be large (Pelgas et al.,
2011). Similarly, the larger the effective population sizes, the lower the
expected accuracy of predictions, especially when the marker density
per cM is low. More empirical data are needed to have a better idea of
the prediction accuracy that GS models can achieve with forest trees
in various population setups.

The predictive ability of models developed for remotely related
individuals (CV2) was only slightly lower than that of those built for
closely related individuals (CV1). This is likely an indication that
some LD might be present but also that relatedness was picked up by
the markers. Hayes et al. (2009), using multibreed dairy cattle
populations, reported that prediction equations in one breed do
not predict accurate GEBVs when applied to other breeds. Meuwissen
(2009), using computer simulation of small populations, showed
that a substantially higher marker density and number of training
records would be needed to obtain accurate predictions of breeding
values of unrelated individuals. However, the notion of unrelatedness
is tricky because some pairs of individuals are more closely related
than others even if they are believed to be unrelated (Powell et al.,
2010). When the possibility of paternal (and maternal) coancestry
between CV sets was eliminated, and confirmed by an average
estimated kinship coefficient of zero between the training and
validation sets used (CV3), the prediction accuracy was reduced,
but it was still clearly different from zero for several of the traits.
This result supports to some extent the presence of historical LD with
trait loci.

Such an historical LD pattern may have arisen if all populations
considered in the present study were from the same glacial lineage.
The main phylogeographic patterns for North American trees
detected with DNA markers were recently reviewed (Jaramillo-
Correa et al., 2009). The study identified converging patterns, such
as the location of glacial refugia and postglacial recolonization routes,
and the inference of common causes of vicariance. The glacial and
postglacial history of white spruce was inferred based on chloroplast
DNA and nuclear microsatellite polymorphisms (de Lafontaine et al.,
2010). Trees of an east Appalachian refugium population would have
migrated into New England and northwards into the province of
Québec and the Maritimes (de Lafontaine et al., 2010) o10 000 years
ago, suggesting that all populations considered in the present study
are from the same glacial lineage, as supported by our analyses of
population structure and previous ones (Jaramillo-Correa et al., 2001;
Namroud et al., 2008, 2010). In addition, a molecular footprint of
recent expansion following the last glacial maximum was found in the
genes of white spruce and other boreal spruces (Namroud et al.,
2010). Given these phylogeographical and demographic inferences,
and the limited number of generations that occurred since the
beginning of recolonization, the presence of shared ancestry and
historical LD are likely in the populations sampled (Doerksen et al.,
2014).

So far, empirical accuracy estimates in forest trees have been
reported only for small breeding populations of Pinus taeda and
Eucalyptus (Resende et al., 2012a, b; Zapata-Valenzuela et al., 2012).
As expected from deterministic and simulation models (Grattapaglia
and Resende, 2011; Iwata et al., 2011), the accuracy of GS models for
wood and growth traits in these species was slightly higher than that
reported in the present study.

When GS models were built with B350 markers found to be
associated with wood density and microfibril angle in the discovery
population (Mastigouche Arboretum) and validated (VS scheme)
using half-sibs sampled on two different sites (Dablon Arboretum and
Mirabel), the GEBV accuracy estimates obtained were reasonably high
compared with those obtained using the CV1 scheme (up to 70% of

Table 5 Empirical genetic gains from a 5% selection intensity made within families using EBVs (model based on pedigree information) and

GEBV (model based on all 6385 SNPs) and gain per time unit under the assumption that with GS, a breeding cycle can be completed within a

period of 10 years whereas it can be completed in 30 years with the conventional approach

Trait
a

Empirical genetic gainb

EBV (full data set) GEBVCV1
c Ratio GEBVCV1/EBV (%) EBVCV1

d Ratio GEBVCV1/EBVCV1 (%) Difference in gain per time unit (%) e

Cell population 99.79 44.72 44.8 46.99 95.2 286

Fibre coarseness 26.86 10.79 40.2 13.89 77.7 233

Crystallite width 0.06 0.02 36.3 0.03 75.3 226

Wood density 32.89 9.63 29.3 14.02 68.7 206

Microfibril angle �2.73 �1.02 37.3 �1.05 96.9 291

Wood stiffness 1.31 0.60 45.7 0.71 84.5 253

Ring width 0.06 0.02 38.5 0.03 65.2 196

Specific fibre surface 32.70 19.60 59.9 18.50 105.9 318

Cell radial diameter 1.81 0.71 39.3 0.77 92.5 277

Cell tangential diameter 1.02 0.39 38.8 0.49 80.7 242

Cell wall thickness 0.18 0.05 30.0 0.07 75.4 226

22-Year height 60.60 27.94 46.1 25.19 110.9 333

Abbreviations: CV, cross-validation; EBV, estimated breeding value; GEBV, genomic estimated breeding value; GS, genomic selection; SNP, single-nucleotide polymorphism.
aFor units, see Table 1.
bAverage of the 10 best trees out of the 214 making up each of the 10 validation data sets.
cBoth training and testing data sets share individuals of the same families.
dGain estimated after CV using pedigree information.
e(GEBVCV1/TE)/( EBVCV1/TC); TC¼30 and TE¼10, where TC is the breeding cycle in years with conventional breeding and TE is the number of years needed to complete a breeding cycle with GS.
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accuracy values) in the Mastigouche Arboretum. This is likely because
of the fact that G� E interactions in white spruce are generally low
for growth and wood traits (Li et al., 1997; Lenz et al., 2011). Thus,
when both the training and the validation data sets are related,
moderate accuracy estimates could likely be expected in white spruce
even when trees for training and for validation are located on different
sites. The fact that the GS models were built using a larger genetic
base (214 families) than that of the testing sets on these two other
sites might also have contributed to better trace relatedness and
consequently, to increasing the accuracy of predictions.

Implementing GS models in white spruce breeding programmes. Our
results suggest that between 65 and 110% of the gain predicted with
pedigree information alone (Table 5) could be obtained with GS
models when selecting the top 5% of individuals closely related to
those used in the training data set. However, when the degree of
relatedness between training and testing data sets was lower, the gains
predicted were lower, as expected (Table 6).

The major advantage of GS over conventional phenotypic pedigree-
based selection is the possibility to shorten breeding cycles and
increase gains per time unit in long-lived species. One generation of
genetic improvement for white spruce, from the selection of parent
trees to the production of genetically improved seed, can last two to
three decades. It generally takes 10–15 years, sometimes even more,
for a white spruce tree to reach sexual maturity and produce seeds
(Nienstaedt and Zasada, 1990), although this period can be made
shorter with the use of flower induction techniques (Beaulieu et al.,
1998). Testing is also time consuming, especially for characters such as
wood traits; 15–25 years of growth may be needed before trees
become large enough for the reliable assessment of wood and fibre
properties. GS could eliminate the need for tree testing at least for one
or two generations, after which retraining the models would be
needed to maintain or increase GEBV accuracy (Iwata et al., 2011;
Resende et al., 2012a). New markers could also be added to future
models to maintain a high level of GEBV accuracy (Goddard, 2009).

Several approaches can be envisioned for implementing GS in
white spruce, but a forward selection scenario using somatic
embryogenesis to produce seedlings in selected somatic embryogen-
esis lines would likely be the most fruitful. Somatic embryogenesis is
an intensive vegetative propagation technology that is well developed
for white spruce (Wahid et al., 2012; Weng et al., 2012), and somatic
embryogenesis varieties are already used in reforestation programmes in
eastern Canada. Our results show that in the present unfavourable
context of large population size, over twofold gains could be obtained
per year using GS if the breeding cycle was reduced to 10 years compared
with 30 years with conventional pedigree-based methods (Table 5).
However, if GS is implemented following a clonal strategy, additional
studies would be required to also model nonlinear genetic effects in
order to predict more accurately the total genetic merit of clones.

For its practical implementation, the use of GS in white spruce
breeding programmes or any other species also depends on the results
of a cost–benefit analysis. Testing a very large number of markers on a
large number of trees may not be cost effective, although genotyping
costs are decreasing very rapidly and may represent a marginal cost
when considering the value of genetic gains obtained from genetically
improved plantations. But Habier et al. (2009) noted that using
smaller SNP sets may require distinct arrays of SNPs for each trait. In
the present study and in previous ones (Beaulieu et al., 2011), we
found that the list of most significant SNPs varied considerably from
one character to the next, even when considering only wood traits.
For instance, the average overlap between SNP subsets for wood

density and microfibril angle was only 11%. Thus, in the case where
improvement for multiple traits is sought, a large number of SNPs
would still need to be genotyped. Moreover, a larger number of
markers would likely make it possible to develop GS models for
unforeseen traits without additional genotyping.

On the other hand, Weigel et al. (2009) showed that a relatively
small number of SNPs with large effects on lifetime net merit in
Holstein bulls could capture a significant fraction of the gain that
was achieved with a large number of SNPs. Resende et al. (2012) also
obtained good accuracy estimates with a limited number of SNPs. We
tested a posteriori, for both wood density and microfibril angle,
whether retaining only the 10% SNPs with the largest effects could
make it possible to capture a large fraction of the accuracy obtained
with all 6385 SNPs. We identified for each of 10 training data sets the
700 SNPs with the largest absolute effects. New GS models were built
for each training data set using only these groups of 700 SNPs and
were validated in corresponding validation data sets. Estimates of
GEBV accuracies were obtained as previously done for the other CVs.
The estimate of accuracy obtained for wood density GEBV was 0.335
(±0.013) for the within-family validation (CV1) compared with
0.370 (±0.012) with all SNPs; it was 0.155 (±0.027) for the between-
family cross-validation (CV2) compared with 0.132 (±0.024) with all
SNPs. Similarly for microfibril angle, GEBV accuracies were, for the
CV1 scheme, 0.313 (±0.018) versus 0.378 (±0.019) with all SNPs,
and for CV2, 0.104 (±0.019) versus 0.164 (±0.029) with all 6385
SNPs. Thus, it appears that this strategy could make it possible to
capture a large fraction of the maximum accuracy achievable with a
much larger number of markers or loci. However, it could be at the
expense of developing GS models that would hold for a larger number
of generations.

CONCLUSION

For the time being, considering that for most tree species
(1) the number of markers currently available is relatively limited,

Table 6 Empirical genetic gains from a 5% selection intensity made

between families using EBVs (model based on pedigree information)

and GEBV (model based on all 6385 SNPs)

Trait
a

Empirical genetic gainb

EBV

(full data set)

GEBVCV2
c Ratio GEBVCV2/EBV

(%)

EBVCV2
d

Cell population 91.82 22.27 24.25 �0.42

Fibre coarseness 24.89 4.20 16.89 �0.71

Crystallite width 0.06 0.01 15.93 0.003

Wood density 30.52 3.32 10.86 �2.74

Microfibril angle �2.70 �0.88 32.77 0.09

Wood stiffness 1.18 0.27 20.52 �0.06

Ring width 0.06 0.01 9.48 �0.01

Specific fibre surface 32.14 3.94 12.27 1.48

Cell radial diameter 1.89 0.59 31.36 0.17

Cell tangential diameter 0.96 0.19 19.62 �0.02

Cell wall thickness 0.16 0.02 12.32 �0.01

22-Year height 59.32 17.26 29.09 1.72

Abbreviations: CV, cross-validation; EBV, estimated breeding value; GEBV, genomic estimated
breeding value; GS, genomic selection; SNP, single-nucleotide polymorphism.
aFor units, see Table 1.
bAverage of the 10 best trees out of B220 making up each of the 10 validation data sets and
representing families that were not involved in the training data set (CV2).
cTraining and testing data sets are made up of individuals of different families.
dGain estimated after CV using pedigree information.
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(2) genotyping large numbers of markers is still expensive, (3) only a
few genetic tests are generally in place, (4) relatedness among
individuals is picked up by the markers and (5) LD decays rapidly,
especially in conifers, we recommend the development of GS models
within the same population (CV1 scheme) only and that should make
it possible to obtain a quite high efficiency of marker models relative
to conventional pedigree-based models even with lower marker
coverage, and obtain potentially higher gains per time unit.
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SNP data files, D Plourde and É Dussault for wood core sampling, the

EvalueTree team of FPInnovations in Vancouver for wood core processing and

P-L Poulin for phenotypic data handling. We are also grateful to P Lenz for his

constructive comments on a preliminary version of this manuscript and to

I Lamarre for her editing work. This work was funded through grants from
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Resende MFR Jr, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM et al.
(2012b). Accuracy of genomic selection methods in a standard data set of loblolly pine
(Pinus taeda L.). Genetics 190: 1503–1510.

Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, MacKay J (2011). A white spruce
gene catalog for conifer genome analyses. Plant Physiol 157: 14–28.

Strauss SH, Lande R, Namkoong G (1992). Limitations of molecular-marker-aided
selection in forest tree breeding. Can J For Res 22: 1050–1061.

VanRaden PM (2008). Efficient methods to compute genomic predictions. J Dairy Sci 91:
4414–4423.

Accuracy of GS models in a large population
J Beaulieu et al

351

Heredity

http://dx.doi.org/doi:10.5061/dryad.6rd6f
http://dx.doi.org/doi:10.5061/dryad.6rd6f
http://snp.toulouse.inra.fr/~alegarra/
http://snp.toulouse.inra.fr/~alegarra/


Wahid N, Rainville A, Lamhamedi MS, Margolis HA, Beaulieu J, Deblois J (2012). Genetic
parameters and performance stability of white spruce somatic seedlings in clonal tests.
For Ecol Manag 270: 45–53.
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