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ABSTRACT

The use of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) for study
and treatment of bonediseases or traumatic bone injuries requires efficient protocols to differentiate
hESCs/iPSCs into cellswithosteogenicpotential and theability to isolatedifferentiatedosteoblasts for
analysis. We have used zinc finger nuclease technology to deliver a construct containing the Col2.3
promoter driving GFPemerald to the AAVS1 site (referred to as a “safe harbor” site), in human em-
bryonic stem cells (H9Zn2.3GFP), with the goal of marking the cells that have become differentiated
osteoblasts. In teratomas formed using these cells, we identified green fluorescent protein (GFP)-
positive cells specifically associated with in vivo bone formation.We also differentiated the cells into
amesenchymal stem cell populationwith osteogenic potential and implanted them into amouse cal-
varial defect model. We observed GFP-positive cells associated with alizarin complexone-labeled
newly formed bone surfaces. The cells were alkaline phosphatase-positive, and immunohistochem-
istry with human specific bone sialoprotein (BSP) antibody indicates that the GFP-positive cells are
also associated with the human BSP-containing matrix, demonstrating that the Col2.3GFP construct
marks cells in theosteoblast lineage. Single-cell cloning generateda100%Col2.3GFP-positive cell pop-
ulation, as demonstrated by fluorescence in situ hybridization using a GFP probe. The karyotype was
normal, and pluripotency was demonstrated by Tra1-60 immunostaining, pluripotent low density re-
verse transcription-polymerase chain reaction array andembryoid body formation. These cellswill be
useful to develop optimal osteogenic differentiation protocols and to isolate osteoblasts fromnormal
and diseased iPSCs for analysis. STEM CELLS TRANSLATIONAL MEDICINE 2014;3:1125–1137

INTRODUCTION

Developing reliable osteoprogenitor cells from
human sources will be a critical step in the clinical
application of cell-based skeletal repair. In some
situations, cells derived from pluripotent stem
cells such as human embryonic stem cells (hESCs)
or induced pluripotent stem cells (iPSCs) could
potentially have significant advantages over adult
stem cell-derived bone marrow or other sources,
because hESCs and iPSCs are essentially immortal
and thus can be expanded indefinitely without
loss of their differentiation potential [1]. This
would allow repair of large skeletal defects and
potentially correction of genetic defects in a
patient’s iPSCs [2–4] followed by expansion
from a single corrected cell to sufficient numbers
to correct a systemic defect. Although there
have beenmany reports of successful derivation
of osteoblasts that produce bone in vivo from
hESCs and iPSCs [5–9], providing unequivocal ev-
idence of human osteoblasts producing bone
matrix can be a challenge. Most studies have

demonstrated the presence of human cells
within a formed bonematrix by in situ hybridiza-
tion with probes for primate-specific Alu repeat
sequences, or staining with human specific anti-
bodies. Using either of these approaches alone, it
can be difficult to exclude the possibility that the
human cells were bystanders and that the bone
was produced bymouse osteoblasts that had infil-
trated the implant.

Previously we found that osteoblast-restricted
green fluorescent protein (GFP) reporters can
provide essential histological evidence to dis-
criminate an osteoblast from other cell types
that can decorate the bone surface. Although
ubiquitously expressed reporters do mark cells
on the bone surface, nonosteoblastic cells can
be present on the bone surface that are not asso-
ciated with an underlying mineralization dye
line and often have a histological marker of a
mononuclear osteoclast (tartrate resistant acid
phosphatase [TRAP]-positive). However, the
osteoblast-associated reporter almost always
overlies a mineralization dye line and is not
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positive for TRAP activity [10–12]. To replicate our success in the
mouse system with human cells, a combination of reagents and
methodologies was developed that enables the rapid, definitive
assessment of the extent of human bone formation in a mouse
bone defect repair model. Using the fluorescence-based cryohis-
tologydeveloped formurinehistology, it is possible to identify hu-
manosteoblasts as cells that are adjacent to a newly formedbone
surface, express alkaline phosphatase, stain for human specific
mitochondrial antigen, andare associatedwith abonematrix that
contains human bone sialoprotein. In addition, amethodwas de-
veloped and validated for inserting the Col2.3GFP reporter con-
struct, which we have previously shown to produce a strong
osteoblast-specific signal in mice [12, 13], into a specific location
in the human genome.

We chose to use a construct containing a fragment of the rat
Col1a1 promoter rather than try to identify an equivalent frag-
ment of the humanCOL1A1 promoter, because of our and others’
extensive experience using this promoter with transgenic mice.
We have shown that the 2.3-kilobase (kb) fragment shows high
expression in only a subset of the cell types that express the endo-
genous Col1a1 gene and shows strong expression in osteoblasts
but not fibroblasts. Although the human COL1A1 promoter has
significant homology to the rat gene, the regulatory sequences
may not be organized the sameway, so it may be difficult to iden-
tify a fragment with the same specificity for differentiated osteo-
blasts as the rat Col2.3 fragment. In addition, we have found that
the rat Col2.3GFP reporter is expressed specifically in human
osteoblasts when introduced into human bone marrow mesen-
chymal stem cells (MSCs) using a lentiviral vector [14].

Zinc finger nuclease technology was used to insert the con-
struct into the AAVS1 locus, which has been previously shown
to be a “safe harbor,” defined as a site where inserted sequences
havenonegative effects onhuman cell function, andwhichhas an
open chromatin structure inmost cell types [3, 4, 15]. Our results
indicate that the Col2.3GFP construct inserted at this locus pro-
vides a strong, specific marker for osteoblastic differentiation
of hESCs. This will allow a rapid and objective evaluation of the
effectiveness of preimplantation differentiation protocols for in
vivo human bone formation.

MATERIALS AND METHODS

hESC Culture and Preimplantation Differentiation Using
EGM Medium

Human embryonic stem (hES) (H9) cells were obtained from the
University of Connecticut/Wesleyan Stem Cell Core. Cells were
maintained in irradiatedmouseembryonic fibroblast conditioned
medium supplemented with 4 ng/ml of basic fibroblast growth
factor (conditioned medium [CM]) on Matrigel (BD Biosciences,
San Diego, CA, http://www.bdbiosciences.com)-coated six-well
tissue culture plates. Cells were passaged every 5–7 days using
the cut/paste method to eliminate spontaneous differentiation.

We recently demonstrated a strategy for forming large vol-
umes of human bone in a mouse calvarial model [16]. Following
that approach, in vitro differentiation of the hES cells was carried
out using a protocol described in [7]. Briefly, cells were harvested
using Accutase (BD Biosciences) and replated on laminin-coated
(catalog no. L2020, 1 mg/cm2; Sigma-Aldrich, St. Louis, MO,
http://www.sigmaaldrich.com) 100-mm tissue culture dishes
in CM with 10 mM ROCK inhibitor (Y27632; Calbiochem,

San Diego, CA, http://www.emdbiosciences.com). The cultures
were switched to EGM medium (Lonza, Walkersville, MD,
http://www.lonza.com; EBM2 basal medium, supplements
EGM-2MV) when the cell density reached 90% confluence. The
cells were maintained in EGM medium for 20–30 days and pas-
saged into EGM medium when more than 90% of the cells dem-
onstrated epithelial- or fibroblast-likemorphology. Passage 2 or 3
cells were used for implantation into a mouse calvarial defect
model.

Col2.3GFP pZDonor Vector Construction

The oligonucleotide 59-GAT CAA GCT TTC CTT GAT GAT GTC ATA
CTT ATC CTG TCC CTT TTT TTT CCA CAG CTC GCG GAG GGC AGA
GGA AGT CTT CTA ACA TG-39 containing a HindIII site plus a splice
acceptor andT2A sequencewasused in conjunctionwitholigonu-
cleotide 59-CTG AAA GCT TGA GCC CAC CGC ATC CCC AGC ATG-39
(BGHPA Hind III) to amplify a construct containing the T2A, puro-
mycin, and bovine growth hormone poly(A) sequences. Polymer-
ase chain reaction (PCR) was performed using PFX polymerase
(Life Technologies, Rockville, MD, http://www.lifetech.com).
The resulting fragment was cloned into the HindIII site of the tar-
geting construct pZDonor (Sigma). A fragment from pOB-
Col2.3GFPemd [13] containing the rat a1 collagen promoter
linked to GFPemerald and SV 40 poly(A) (2.3 GFPemd PA) was re-
leased with Sal1 and cloned into pZDonor downstream of the bo-
vine growth hormone poly(A) sequence. The resulting construct
was approximately 9 kb in length.

Zinc Finger Nuclease Targeting and Colony Screening

One day prior to Amaxa Nucleofection, H9 cells were harvested
and digested into a single-cell suspension using Accutase and
replated on Matrigel-coated six-well plates. The cells were har-
vested, and 23 106 cells were transferred to a 1.5-ml microcen-
trifuge tube and pelleted by centrifugation. The cell pellet was
resuspended in 100ml ofNucleofection solution (82ml of Solution
Vand18ml of supplement solution; catalogno.VCA-1003; Lonza).
Five microliters per 14mg of Col2.3GFP-pZDonor DNA and 5ml of
zinc finger nuclease (ZFN)mRNA (Sigma-Aldrich; catalog no. CTI1)
weremixedwith the cell suspension. The entiremixturewas elec-
troporatedusingprogramB-016 inAmaxaNucleofector 2 (Lonza).
The cellswere replated andmaintained in CMonMatrigel-coated
six-well tissue culture plates. Puromycin (0.5 mg/ml) con-
taining CM was applied to the cells 3 days after Nucleofection.
Puromycin-resistant colonies were established by 5–7 days
after selection. Colonies with high Col2.3GFP expression were
selected by semi-quantitative PCR screening. AAVS1for (59-GGC
CCTGGCCATTGTCACTT-39) and T2A.2 (59-GTGGGCTTGTACTCGGT
CAT-39) were oligonucleotides used for PCR to test the correct 59
insertion into embryonic stem (ES) cells from genomic DNA
harvested from portions of colonies of cultured ES cells; the rest
of the cells in the colonies were used to maintain the cultures.
AAVS1rev (GGAACGGGGCTCAGTCTG) and GFP.1 39 (GCGCGAT
CACATGGTCCTGCT) were likewise used to test the correct 39 in-
sertion into ES cells.

Karyotyping and Fluorescence In Situ Hybridization

Karyotyping and fluorescence in situ hybridization (FISH) (colo-
nies C341 and C045) were performed to confirm the proper
integration site and that the procedure did not change the karyo-
type (University of Connecticut Chromosome Core). FISH was
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performed with a GFP probe and demonstrated that only
30%–40% of cells were transgene-positive in these two colonies,
indicating that puromycin selection was not sufficient to elimi-
nate all Col2.3GFP-negative cells. After single-cell cloning de-
scribed below, we obtained 100% transgene-positive colonies
with a normal karyotype.

Single-Cell Cloning

Colony C341 cells were digested with Accutase to form a single-
cell suspension anddiluted to adensity of 100 cells permilliliter of
CM. Tenmilliliters of cell suspension (1,000 cells) was seeded into
one 100-mm dish precoated with Matrigel. After overnight at-
tachment, single cellswere identifiedmicroscopically andmarked
with an object marker (Nikon). After 7–10 days, colonies formed
from the observed single cells were cut/pasted to Matrigel-
coated fresh six-well plates andexpanded for further experiments
and storage.

Staining With Tra1-60

C341-6 cells (the cell line generated after single-cell cloning) were
passaged on four–well glass chamber slides (Nalge Nunc) pre-
coatedwithMatrigel and cultured for 5 days in CM. The cellswere
fixed with cold methanol for 15 minutes, rinsed three times with
phosphate-buffered saline (PBS), and blocked with 5% bovine se-
rum albumin (BSA)/PBS for 30 minutes. DyLight 448 mouse anti-
human Tra1-60 antibody (1:100; Stemgent) was applied to the
cells and incubated overnight in a humidified container. After
three rinseswith PBS, the chamberswere removed, and the slides
were mounted with ProLong Gold Antifade Reagent (Invitrogen,
Carlsbad, CA, http://www.invitrogen.com). Images were taken
with an Olympus IX50 fluorescence microscope and a 310
objective.

Teratoma Test

C341-6 hESCs were cultured in 6-well plates to 85% density, and
then colonies were detached using Dispase (Invitrogen; 1 mg/ml
in DMEM/F12) for 30 minutes. Cell clumps were pelleted, rinsed
twicewithDulbecco’smodified Eagle’smedium (DMEM)-F12 and
broken into smaller pieces in 100ml of DMEM-F12 basal medium
by trituration with a P200 pipette. The cell suspension was
injected into the left thigh of NOD/Scid/IL2rg null (NSG) mice
(Jackson Laboratory, Bar Harbor, ME, http://www.jax.org).
Tumors were harvested and analyzed by histology after 3–4
months. For teratoma bone analysis, a dye to label newly depos-
itedmineral, alizarin complexone (AC) (Sigma-Aldrich; catalog no.
3882) was injected i.p. at 30 mg/kg, in 2% NaHCO3 (pH 7.4) 1 day
before sample harvesting.

Calvarial Defect Implantation Model

NSG mice were anesthetized with ketamine/xylazine, and two
3.5-mm diameter calvarial bone discs on both sides of the suture
were extracted without damaging the dura mater. Scaffold discs
(3.5mm3 0.5mm)were cut fromahydroxyapatite/collagenma-
trix (HEALOS, DePuy Spine, Inc., Raynham, MA, http://www.
depuy.com), loaded with cell samples (13 106), and placed onto
the defect area. Implanted mice were maintained for 6 weeks.
One day before sample harvesting, AC was injected as described
above.

Bone Marrow Mesenchymal Stem Cell Culture

Bonemarrowwas obtained, with informed consent and approval
from the UCHC IRB, from the humerus of a patient undergoing
shoulder surgery. Bone marrow was centrifuged at 280g for 10
minutes to remove most of the red blood cells, and the superna-
tant was plated in a-minimum essential medium (phenol-free;
Life Technologies) with 10% FBS at 2–4 3 106 cells per 100-mm
plate and cultured in an incubator maintained at 5% O2 and 5%
CO2. Bone marrow mesenchymal stem cell colonies became vis-
ible after 7 days, at which time themediumwas changed, and the
floating cells were removed. On days 11 and 14 of culture, the
cells were transduced with a lentiviral vector, FUGW cherry,
which expresses RFPcherry from the ubiquitin C promoter and
is aderivativeof FUGW[17, 18].Onday19, theMSCcolonieswere
large and had become confluent in the center, and the cultures
were passaged using Accutase at a density of 0.5 3 106 cells
per 100-mm dish.

Histology Sample Preparation
and Immunohistochemistry

Teratoma or calvarial samples were harvested and fixed in 10%
neutral buffered formalin (Sigma-Aldrich) at 4°C for 2–3 days
and then imaged by digital x-ray (LX 60; Faxitron, Tucson, AZ,
http://www.faxitron.com). Samples were soaked overnight in
30%sucrose/PBS solution then embedded inCryomatrix (Thermo
Fisher Scientific, Kalamazoo, MI, http://www.thermo.com/
pathology). A nonautofluorescent adhesive film (Section Labo-
ratoryCo.,Hiroshima, Japan,http://section-lab.jp)wasused tocap-
ture the cut section (5mm). The filmwas adhered, section side up,
to a glass slide using a 0.2% chitosan (C3646; Sigma-Aldrich) solu-
tion in 0.25% acetic acid and allowed to dry for 48 hours at 4°C.
The glass slidewas soaked for 10minutes in PBS, and a cover slide
was put on with 50% glycerin in PBS prior to microscopy for
the endogenous fluorescent signals (GFP and bone mineral).
GFPemerald was detected using an enhanced GFP (eGFP) filter
set (51019; Chroma), and theACmineralization linewas captured
using a tetramethylrhodamine isothiocyanate (TRITC) filter
(49005ET; Chroma). After a section was imaged for endogenous
signals, the cover slide was removed by brief soaking in PBS and
then processed for additional stains.

For immunohistochemistry, frozen sections were rinsed with
PBS and blocked with 5% normal goat serum and 1% BSA in
PBS for 1 hour at room temperature (RT). The sections were in-
cubated overnight at 4°C with a 1:100 dilution of mouse anti-
humanmitochondria (catalog no.MAB1273; Millipore) or mouse
anti-human bone sialoprotein (BSP) (catalog no. MAB1061; Milli-
pore) in 1% normal goat serum and 1% BSA in PBS. After rinsing
with PBS, the slides were incubated with 1:100 dilution fluores-
cein isothiocyanate (FITC)- or TRITC-conjugated goat anti-
mouse IgG at RT for 1 hour. Then the slides were washed and
mounted with 50% glycerin in PBS with 1:1,000 diluted Hoechst
33342 (catalog no. H-3570; Molecular Probes). The sections
were imaged using a Zeiss Imager Z1 microscope (Carl Zeiss,
Thornwood, NY, http://www.zeiss.com) using AxioVision
Rel.4.7 (Carl Zeiss). The fluorescent signals were captured by
a gray scale Zeiss Axiocam and pseudocolored to provide a vi-
sual contrast between the filters. FITC was captured with
a YFP filter (49003; Chroma). The specificity of the BSP antibody
for human and not mouse protein was confirmed in two ways.
In one study, we stained a section of mouse calvaria that
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had been implanted with human bone marrow mesenchymal
stem cells that had been transduced with a lentivirus vector
FURW, which expresses RFPcherry ubiquitously (supplemental
online Fig. 2). In a second study, we compared staining of human
bone in a teratoma with embryonic mouse bone placed on the
same slide and processed together (supplemental online Fig. 3).
Both sections were stained with anti-BSP antibody as described
above.

To stain for alkaline phosphatase (AP) activity, the cover slide
was removed, and the section was incubated in the AP reaction
buffer (100 mM Tris [pH 9.5], 50 mM MgCl2, 100 mM NaCl) for
10minutes followedby reactionbuffer containing 200mg/ml Fast
Red TR (catalog no. F8764-5G; Sigma-Aldrich) and 100 mg/ml
naphthol AS-MX phosphate (catalog no. N-4875; Sigma-Aldrich)
for 5 minutes. Hematoxylin only or hematoxylin and eosin
(H&E) staining was performed on the same slides once the fluo-
rescent staining and imaging was completed. To visualize carti-
lage in a teratoma section, a fresh frozen section was washed
twice in water for 2 minutes, stained in Weigert’s iron hema-
toxylin (0.5% hematoxylin, 47.5% ethanol, 0.58% FeCl3) for 5
minutes, rinsed in water, stained in fast green (0.02% fast green
FCF in H2O, rinsed in 1% acetic acid for 5 seconds, and stained in
0.1%safraninO for 5minutes beforemounting. Imagingwasdone
using an RGB chromogenic filter set (Zeiss) and reconstructed to
provide a visual color image.

RESULTS

Targeting the Col2.3GFP Reporter Into the AAVS1 Locus
of hES Cells

Our objective was to produce hESC lines that contain a transgene
for the mature osteoblast marker Col2.3GFP to facilitate identifi-
cation of differentiated osteoblasts in vivo. Zinc finger nuclease
technologywas used to promote insertion of the construct by ho-
mologous recombination into a specific location in the human ge-
nome [3, 4, 15]. There are several advantages of this method.
Constructs can be inserted into a defined location with no known
function and a generally open chromatin configuration (a “safe
harbor”). The inserts carry no lentiviral or prokaryotic plasmid
sequences, which can mediate transcriptional repression
[19–21], andare single copy, avoidingpotential repressionofmul-
tiple tandem repeated inserts. The AAVS1 locus has been previ-
ously shown to be a safe harbor site, and a zinc finger nuclease
that targets this location is commercially available. In the con-
struct, puromycin resistance is driven by the endogenous
PPP1R12C gene promoter, which made the construct smaller
and avoided placing a constitutive promoter close to the Col2.3
promoter, minimizing promoter interference (Fig. 1A). The con-
struct also contained an SV 40 intron and polyadenylation
signal and GFPemerald, which has a similar excitation/emission
spectrum to eGFP but is brighter [22]. The construct was electro-
porated into H9 hES cells, puromycin-resistant colonies were
isolated, and DNA was extracted. PCR analysis to confirm
proper targeting at the 39 and 59 ends was done using primer
pairswith one primer in the AAVS1 locus outside of the homology
arm and one in nonmammalian sequences within the targeting
vector (Fig. 1A, 1B). We picked two PCR-positive colonies
with good hESC morphology (clones 045 and 341) for further
analysis.

Transgene-Positive hESCs Maintain Pluripotency After
Single-Cell Cloning

Both selected clones expressed pluripotencymarkers by lowden-
sity array screening (Invitrogen; data not shown) and by immu-
nostaining with Tra1-60 antibody (representative results for
clone C341, that was selected for further study are shown in
Fig. 1C). Karyotyping and FISH using a GFPemd probe showed
a normal female chromosome complement and correct integra-
tion of the construct in 19q13.3–13.4 (Fig. 1D). FISH analysis of
multiple nuclei showed that in the initial cell population that
we isolated, approximately 30%–40%contain the transgene (data
not shown); however, these cells were adequate to confirm the
osteoblastic specificity of expression of GFP in the cells that con-
tain the transgene. We isolated clones from line C341 that are
100% transgene-positive, and further studies were done on clone
C341-6. Teratoma analysis showed that cells from all three germ
layers were produced (Fig. 1E) by this clone. The experiments
shown in Figures 4–6were done using the originalmixed cell pop-
ulation C341, whereas the experiments shown in Figures 3 and 7
were done with clone C341-6.

Histological Evaluation of Human Cells in the Murine
Bone Repair Environment

While the Col2.3GFP targeting studies were underway, histolog-
ical methods were developed to conclusively distinguish human
donor osteoblasts from recipient mouse osteoblasts in an im-
plant. This has proved to be important because our unpublished
observationshave indicated thatwhenhumancells are implanted
within a mouse bone repair defect, much of the newly formed
bone can be derived from the surrounding mouse bone. Human
cellsmay line the bone surface, but they are not functional osteo-
blasts because they are not associated with underlying mineral-
ization dye label on the surface of newly formed bone, nor do
they become embedded within the murine bone matrix.

Teratomas produced from hES cells by intramuscular injec-
tion were used to demonstrate whether antibodies can dis-
tinguish human bone lineage cells from mouse bone cells.
Nondecalcified frozen sections and a tape transfer methodology
was used that allows sectioning of mineralized tissue, visualiza-
tion of all deposited mineral by dark-field optics, and detection
by labelingof newly formedmineralized tissuewithvarious inject-
able dyes that bind tonewlydeposited osteoid. Thismethodology
also preserves enzyme activity and antigen accessibility. The use
of fluorescent enzyme substrates and antibodies and of a micro-
scope with a computer-controlled stage facilitates imaging with
one or more methodologies, removal of the section and further
processing, and visualizing the same region of the section. The
sample shown was a fragment of mineralizing teratoma tissue
that resembled an embryonic long bone with mineralizing
hypertrophic chondrocytes and a bony collar, as shown in the
H&E-stained image (Fig. 2A1). Note that the section used for
H&E staining was adjacent to the section used in the rest of
Figure 2, so there are some slight differences in the pattern of
the mineralized tissue.

Thedark-field imaging of the teratoma revealed amineralized
structure resembling embryonic bone. H&E staining showed cells
with the appearance of resting, proliferating, and hypertrophic
cartilage (Fig. 2A1). This was confirmed by safranin O staining
of another section of the same teratoma (supplemental online
Fig. 1). The H&E staining also showed regions of matrix with
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Figure 1. Pluripotency of human embryonic stem cells (hESCs) is maintained after zinc finger nuclease targeting and single-cell cloning. (A):
Strategy for targeting Col2.3GFPemd to the PPP1R12C gene at theAAVS1 locus. The vertical arrow shows the cut site of the zinc finger nuclease,

(Figure legend continues on next page.)
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the appearance of cortical bone adjacent to someof the cells with
the appearance of hypertrophic mineralized cartilage (Fig. 2A1)
and also incipient trabecular bone forming around regions in
which the mineralized cartilage matrix has been degraded (Fig.
2A2). Alkaline phosphatase staining showed activity in cells flank-
ing the newly formed bone and also in some of the cells filling the
spaces produced by degradation of the mineralized cartilage ma-
trix (Fig. 2A3, yellow). Alizarin complexone, whichwas injected 24
hours before sacrifice, also diffusely stained the bone matrix and
bone surface in a pattern that was distinct from the sharp miner-
alized lines characteristic for adult mouse bone. This pattern re-
sembled immature woven bone, whereas the mouse bone was
more mature and lamellar. The mineralized cartilage matrix
was stained more faintly and diffusely, which is visible in a higher
magnification image (Fig. 2B3, 2B4 marked with asterisks).

Two antibodies that were reported to be human-specific by
the manufacturers were evaluated for their ability to demon-
strate the presence of functional human osteoblasts within bone
grown in a mouse host. An antibody to a human mitochondrial
antigen, monoclonal antibody clone 113-1 (BD Biosciences), is
commonly used to identify human cells in mouse implants, but
it was not clear that it produces a detectable signal within all skel-
etal cell types. Staining the teratomawith this antibody produced
a strong signal in chondrocytes, osteoblasts, and osteocytes (Figs.
2B1, 2B2, 4). AP staining of the same section showed cells that
were positive for both humanmitochondrial antigen and AP that
were lining newly formed bone as shown by alizarin complexone
staining.

To evaluate a second antibody for its specificity for human
BSP, we implanted human adult bone marrow MSCs that had
been transduced with a lentivirus vector containing an ubiquitin
RFPcherrymarker into amouse calvarial defect and stained a cor-
onal section through the defect and the suture (supplemental Fig.
2B, 2C). There is abundant green staining of bone matrix within
the defect, which contained extensive human bone, as indicated
by the RFPcherry fluorescent cells embedded in bone matrix and
lining newly formed bone matrix, demonstrated by green calcein
labeling (supplemental online Fig. 2A), but only faint background
fluorescence in the adjacent mouse bone (supplemental online
Fig. 2B).We also compared a highmagnification image of staining
of a mineralized portion of a human teratoma with a section of
mouse embryonic bone (supplemental online Fig. 3). The human

sample (supplemental online Fig. 3A1, 3A2) showed greenmatrix
staining that colocalized with the mineralized matrix, shown
as white by the dark-field optics in supplemental online
Figure 3A1, whereas the mouse bone did not show staining
above background.

We stained the human teratoma with this antibody and ob-
served strong staining of bonematrix andweaker staining ofmin-
eralized chondrocyte matrix (green fluorescence in Fig. 2C and at
higher magnification in Fig. 2D1–2D3). BSP is expressed in bone
and hypertrophic chondrocytes. The colocalization of BSP (Fig.
2D2) and the correspondingmineralwithin theboneand cartilage
matrix as revealed by dark-field optics (Fig. 2D3) is demonstrated
in Figure 2D1.We believe that these histological findings provide
convincing evidence for functional human osteoblasts and hyper-
trophic chondrocytes. Because the epitopes identified in the hu-
man cells were not present in the corresponding mouse tissues,
these histological criteria will be useful in distinguishing human
from mouse osteoblast and chondrocytes in human to mouse
transplantation studies.

Evaluating Col2.3GFP as an Osteoblast Reporter
in Teratomas

LineC341-6of theH9hESCs containing theCol2.3GFP construct in
100% of the cells was tested in the teratoma system. GFP signal
was only detected in a small area of AP-positive cells associated
with AC-labeled bone matrix that appeared to be forming an ini-
tial condensation ofmembranous bone (Fig. 3); the rest of the ter-
atoma, that had not produced bone, was negative for GFP,
indicating that the Col2.3 promoter was not expressed in nonos-
teoblastic cells.

Osteoblast Differentiation of Col2.3GFP hESCs In Vivo

Col2.3GFPhESCswere tested for in vivoosteoblast differentiation
in a critical-sized mouse calvarial defect using a preimplantation
differentiation protocol designed to enrich for a mesenchymal
cell population with osteogenic potential. The methodology
was originally described by Boyd et al. [7], and a detailed evalu-
ation of the ability of cells produced by this method to form hu-
man bone in vivo has been described [16]. The differentiation
procedure involves culturing hESCs on laminin-coated plates in

(Figure legend continued from previous page.)
where the transgene is inserted. The top diagram shows the targeting vector. The 59 arm is the 59 homology arm; T2A is the ribosome skip
sequence from Thosea asigna, which separates the peptide sequence of the first exon of the PPP1R12C gene from PURO, the puromycin re-
sistance gene. The box on the left labeled pA indicates bovine growth hormone polyadenylation signal, whereas the box on the right labeled pA
indicates the SV40viruspolyadenylation signal. The targeted locus diagramshows that thepuromycin resistance gene is driven by thePPP1R12C
gene promoter, and the dashed line indicates splicing from the PPP1R12C gene first exon to the splice acceptor in the inserted construct. (B):
AAVS1 forward and T2A reverse primer pairs showing the correct integration of the 59 end of the construct; green fluorescent protein (GFP)
forward and AAVS1 reverse primer pairs showing correct integration of the 39 end of the construct. (C): A typical hESC colony from the C341-6
clone with a well-defined edge was imaged with phase contrast optics (left), and the C341-6 clone was stained with Alexa 445-labeled Tra1-60
antibody (right). Scalebar =100mm. (D):The single correct targeting sitewasdemonstratedby fluorescence in situhybridizationonC341-6 clone
with Alexa Fluor 555-labeled GFPemd probe (left; red band indicated by white arrowhead). The green signal is fluorescein-labeled Aquarius
Enumeration Probe that hybridizes to the centromeres of chromosomes 1, 5, and 19. Light 49,6-diamidino-2-phenylindole stain (gray) allowed
visualization of chromosomebanding pattern to confirm integration of transgene at 19q13.3–13.4. The C341-6 clonewith normal karyotyping is
demonstrated by Giemsa chromosome banding (right). (E): Tissues from three germ layers were found in a teratoma derived from C341-6 cells:
melanocytes (ectoderm, left, black arrow), cartilage (mesoderm, right, white star), and intestine-like (endoderm, right, white arrowhead). Scale
bar = 100mm. Abbreviations: 045, colony C045; 341, colony C341; Af, AAVS1 forward primer pair; Ar, AAVS1 reverse primer pair; Col2.3 pro, 2.3-
kilobase rat Col1a1 promoter fragment; Ex 1, exon 1 of the PPP1R12C gene; Ex 2, exon 2 of the PPP1R12C gene; G, GFP forward primer pair;
GFPemd, GFPemerald; H9, H9Zn2.3GFP cells; pA, polyadenylation signal; SA, artificial splice acceptor; SV int, SV40 virus late intron; T2, T2A
reverse primer pair; ZN, zinc.
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Figure 2. Establishing immunohistochemistry methods to demonstrate alkaline phosphatase (AP) activity and identify human cells in human
embryonic stem cell teratoma bone. (A1): lowmagnification scanningwas performed on the hematoxylin/eosin-stained section adjacent to the
section for A2 and 3. Nuclei stain is dark blue, cytosol and extracellular matrix stain is pink, and high density mineralized bone matrix stain is
purple. (A2):Dark-field scan imaged high density bonematrix (white). Thewhite box shows an adjacent section in the region analyzed in C. (A3):
AP activity demonstrated by ELF97-labeled AP substrate (yellow) adjacent to the red alizarin complexone (AC)-labeled newly formed bone sur-
faces. Scale bar = 500 mm. (B): High magnification image of the boxed region in (A3). (B1): Section was stained with mouse anti-human mito-
chondrial antibody (catalog no. MAB1273, 1:100; Millipore) and then fluorescein isothiocyanate (FITC) donkey anti-mouse secondary antibody
(Jackson, 1:500, green). Red showsAC labeling. (B2):Merged imagesof B1with49,6-diamidino-2-phenylindole (DAPI) nuclei. (B3):ELF97-labeled
AP activity (yellow) was associated with AC labeling (red). (B4): Images (B1) and (B3)were merged. Scale bar = 100 mm. (C): Anti-human bone
sialoprotein (BSP) antibody demonstrated human cell deposition of BSP into teratoma bone. A section adjacent to the one boxed in (A2) was
used for BSP antibody staining and visualizedwith FITC donkey anti-mouse secondary antibody (green, star). The arrowhead points to a weaker
signal in gut-like or glandular tissue structure. The boxed region is shownat highmagnification in (D). Scale bar = 200mm. (D1) shows themerged
image of (D2) (immunostaining) and (D3) (dark field), demonstrating that BSP antibody staining (green) was specific to the cells (DAPI-stained
cell nuclei, blue) surrounded bymineralizedmatrix (dark-field, white). Cells (DAPI-stained cell nuclei, blue)withoutmineralizedmatrixwere BSP
negative (#). Scale bar = 100 mm.
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an endothelial growthmedia (EGM-2), with 5% FBS and FGF, EGF,
VEGF, and IGF-1. The cells are cultured under these conditions for
20–30 days, during which time they take on an epithelial appear-
ance. They are then passaged in the same media, at which time
they become mesenchymal in appearance. After passaging two
or three times in the same medium, the cells are infiltrated into
a disc of hydroxyapatite/collagenmatrix (HEALOS) and implanted
into 3.5-mm circular defects in the parietal bones of 3–4-month-

old immunodeficient NSG mice. The results showed numerous
strongly GFP-positive cells (Fig. 4A3–4A5) that stained positive
for AP (Fig. 4A6; 4B2, red; 4B3, yellow) and were associated with
AC stained newly formed bone (Fig. 5A2, 5A3, 5A6, 5B1, 5B3). In
Figure 5B2, AP is false-colored red, whereas in Figure 5B3, it is
false-colored yellow to allow display of GFP, AC, and AP in the
same image.Asmentionedabove, thehumanosteoblastAP stain-
ing was less intense than the mouse AP. The AP-positive human

Figure 3. Col2.3GFPemd expression is restricted to alkaline phosphatase (AP)-positive cells near the bone surface or imbedded in matrix in
teratoma bone formed by C341-6 cells. The presence of bone was shown by hematoxylin and eosin staining of the section after fluorescent
imaging is completed (not shown). (A1): Bright green GFPemd-positive cells. No green fluorescent protein (GFP)-positive cells were detected
in other parts of the teratoma. Scale bar = 200mm. (A2): Alizarin complexone (AC) was injected 1 day prior to sample harvesting. Newly formed
bone tissue is marked by AC labeling (red), and GFP-positive osteoblasts (green) were located adjacent to the AC labeling. Blue shows 49,6-
diamidino-2-phenylindole (DAPI) staining of cell nuclei. The boxed region is shown in B. (A3): The section shown in (A) and (B)was stained for AP
activity, shown in yellow. DAPI staining again shows nuclei. (A4):Overlay of the images shown in (A2) and (A3). (B1):GFP and DAPI of the boxed
portion of (A2). (B2): AC labeling was added to (B1). (B3): DAPI and AP (yellow)-positive cells were located adjacent to the AC labeling. (B4):
Merged image of (B2) and (B3) shows that Col2.3GFP-positive cells are located in the band of AP-positive cells near the AC-labeled newly min-
eralized surface. AP is locatedprimarily in the cellmembrane andmatrix vesicles that are released fromthe cells,whereas theGFP is cytoplasmic,
so colocalization of the two signals is not precise. Because AP is expressed in preosteoblasts as well as mature osteoblasts, many of the AP-
positive cells are not yet GFP-positive. The arrows indicate examples of GFP-positive cells that are also AP-positive. Scale bar = 20 mm. Abbre-
viation: B (in [A1] and [A3]), bone matrix.
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osteoblasts, some ofwhichwere also GFP-positive, were found in
regions that were a greater distance from the newly mineralized
surface than is seen in mouse bone. The GFP-positive cells were
found within the region of AP-positive cells, between the AP-
positive cells and the mineralized bone surface, lining the miner-
alized bone surface, or embedded in the bone matrix. Only a
fractionof the cells in thebone-forming area areGFP-positive, be-
cause most of the cells do not contain the transgene. In the
regions with many GFP-positive human cells buried in bone ma-
trix, the AC staining line is thicker, is more irregular, and fades
gradually as it gets deeper into the matrix, whereas in regions
of bone with no GFP-positive cells, which were produced by
mouse osteoblasts, the AC stain is sharper, with little staining
in the deeper areas of the matrix. The AP staining is also much
brighter and closer to the AC-stained surface.

Staining of a section from a different implant produced from
the same differentiated cell population used in Figure 4 with hu-
man mitochondria specific antibody, using a red secondary anti-
body, showed many double-labeled red and green cells (Fig. 5C,
5D, arrows and arrowheads), confirming the human origin of the
GFP-positive cells. In Figure 5A3, there aremany GFP- and human
mitochondrial antigen-negative mouse cells in the lower part of
the implant. Staining with the human-specific BSP antibody
showed that Col2.3GFP-positive cells are associated with human
BSP-positive bone matrix (Fig. 6C1, 6C2, arrows).

After subcloning to obtain a 100% transgene-positive popula-
tion, cells were again differentiated and tested in the calvarial
defect model. As was seen previously, there are numerous
GFP-positive cells associated with weak AP activity over an AC-
positive newly formed bone surface, with many GFP-positive in
the process of being imbedded, or completely imbedded, in the
bone matrix (Fig. 7). As expected, the percentage of GFP-positive
cells in the human bone forming area seems to be considerably
higher. Also consistent with what was seen before, the implant
has mostly mouse bone on the side nearest the dura mater,
whereas the human bone is mostly on the outer surface. The con-
nection between the human and mouse bone is seamless, and al-
though there are distinct regions ofmouse and human bone, there
is also somemixtureof humanandmousebonecells. In someareas
that appear to be exclusively human bone, there are some 49,6-
diamidino-2-phenylindole (DAPI)-labeled nuclei that seem to be
GFP-negative (Fig. 7B1, 7B2); however, higher magnification imag-
ing without DAPI imaging shows weak GFP (data not shown), con-
sistent with the general observation that GFP intensity is variable.

DISCUSSION

The use of hESCs and iPSCs for study and treatment of genetic
bone diseases and traumatic bone injuries requires efficient
protocols to differentiate hESCs/iPSCs into cells with in vivo

Figure 4. Col2.3 GFPemd in partially transgene-positive human embryonic stem cell function as an osteoblast reporter was confirmed by im-
munohistochemistry in mouse calvarial defect model. (A): Images collected from low magnification scan (35, scale bar = 200 mm). Images
(A1–A5) were scanned before decalcification and immunohistochemistry. DF optics reveal white or light gray areas in the image, indicating
high-density bonematrix structures. Red staining by AC labels newly formed bone surfaces. Green fluorescence from GFP indicates Col2.3 pro-
moter activity. Col2.3GFP (green) is expressed in the cells near and within the bonematrix. (A6) and (A7)were taken on the same section after
decalcification, which removes AC labeling. Hematoxylin stainingwas performedafter AP stainingwas imaged. Nuclei stained dark blue. Cytosol
and extracellular matrices are stained pink/purple. (B): Images are from the boxed region in (A5). (B1): High magnification scanning with dark-
field optics (gray in this image) demonstrated the bonematrix and the association of AC labeling (red) and Col2.3 promoter activity (green) near
or within the bonematrix. (B2): After decalcification and AP staining, AC labeling and Col2.3GFP were diminished, and AP activity was detected
by FAST-Red-labeled alkaline phosphatase substrate (red). Nuclei were stained by 49,6-diamidino-2-phenylindole (blue). (B3): FAST-Red AP
staining was converted to yellow before images in (B1) and (B2)were merged. (B4): High magnification image of hematoxylin-stained section.
Scale bar = 50mm.Abbreviations: AC, alizarin complexone; AC+GFP, Col2.3 GFP-expressing cells are associatedwith the AC labeling; AP, alkaline
phosphatase (alkaline phosphatase activity detected by Fast Red TR/Naphthol AS-MX Phosphate [red]); DF, dark-field; DF+AC+GFP, dark-field
red AC labeling outlining the bone surface (white or gray); GFP, green fluorescent protein; H, hematoxylin.
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osteogenic potential and the ability to isolate differentiated
osteoblasts for analysis. It is, however, not clearwhether thebone
formed in most in vivo osteoblast differentiation models is
formed by the transplanted hES or induced pluripotent stem
(iPS) cells. Numerous studies have reported protocols that are
purported to produce cells that differentiate into osteoblasts in
vivo (for example, [5, 6, 8, 9]). However,many studies either failed
to distinguish between human andmouse cells in bone formed by
an implant or, if they did identify human cells within a region
where implant bone was formed, did not demonstrate that the
human cells were functional osteoblasts. This is important be-
cause previous studies have shown that cells can be located on
or near a bone surface and have an osteoblast-like morphology
that are not in the osteoblast lineage and do not become
osteocytes (for example, osteomacs [23]). Identification of hu-
man osteocytes based on the presence of human cells (as indi-
cated by Alu repeat hybridization-positive or human-specific
antibody-positive cells embedded in bonematrix) is not sufficient
in the absence of evidence of human osteoblasts located on the
bone surface and producing a bone matrix, which would be the
anticipated source of the osteocytic cells. Decalcified paraffin sec-
tion methodologies do not allow acquisition of the ancillary

information that can demonstrate active osteogenesis from a
bone surface cell, such as staining to reveal active bone matrix
deposition. The chromogenic paraffinmethods also limit the abil-
ity to colocalize multiple signals such as Alu in situ hybridization,
immunohistochemistry, and enzymatic stains within the same
section, whichwill be required to fully distinguish host and donor
contributions to a model of bone repair.

In this paper, we used immunohistochemical methods for
identification of human osteoblasts in mouse calvarial defects.
Thesemethods are applied to undecalcified frozen sections, elim-
inating the time required for decalcification, and they preserve
fluorescent labeling of newly formed bone, enzymatic activity,
and epitope exposure. They allow definitive identification of hu-
man osteoblasts in implant experiments using unmarked human
cells. However, they require multiple time-consuming steps, and
they also do not allow convenient isolation of pure osteoblasts.
These methods also can be difficult to definitively interpret if
small amounts of potential human bone are observed.

We wished to establish hESC lines containing a Col2.3-driven
reporter construct, because we have extensive experience that
this construct is robustly and specifically expressed in mature
osteoblasts in transgenic mice [12, 13]. Initially retro- or lentiviral

Figure 5. Col2.3GFPemd-positive cells stainwith humanmitochondrial specific antibody. Cells from the samepopulation of differentiated cells
as was used in Figure 4 were implanted in the calvarial defect model. (A): Lowmagnification imaging. (A1–A3): Dark-field imaging ([A1], white)
demonstrated the bonematrix, outlined by theAC labeling ([A1] and [A2], red). Col2.3GFPemd transgene-positive cellswere identified by green
fluorescence expression (A1–A3). (A3): The same section imaged in (A1) and (A2)was decalcified to remove mineral from the bonematrix and
eliminated the AC labeling. Immunohistochemistry was performed with hMit antibody and visualized with Cy3-donkey anti-mouse IgG ([A3],
red). Cell nuclei were detected by 49,6-diamidino-2-phenylindole (DAPI) staining ([A3], blue). (B): Higher magnification image of yellow boxed
region in A1. Arrow and arrowhead in (B) point toGFPemd cells that are shown to be hMit-positive in (C) and (D), which are highermagnification
image of the yellowboxed region in (B). (C, D): (C) shows only the red signal of hMit antibody staining,whereas (D) is an overlay of greenGFP, red
hMit antibody staining, and blue DAPI. Scale bar in (B) and (D) = 50 mm.
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vectors were chosen to deliver the promoter-reporter construct,
but we found that this and several other cell type-specific pro-
moter constructs did not show appropriate marker gene induc-
tion during hESC differentiation (X. Xin, M. Stover, S. Zhan
et al., unpublished results). In this study, ZFN technologywasused

to direct homologous recombination at the AAVS1 site, which is
where the adeno-associated virus (AAV) integrates. This site has
been referred to as a “safe harbor” because integration of AAV
into this site has never been shown to be harmful. In addition,
the integration site is in the first intron of a gene, PPP1R12C,

Figure 6. Col2.3 GFPemd cells are embedded in human bone sialoprotein (BSP) staining matrix. An adjacent section to those used in Figures 4
and 5was scannedwith dark-field optics to show the bonematrix ([A3], white). Human BSP immunostaining ([A1] and [A2], red) was applied to
the section after decalcification. Col2.3GFPemd-positive cells were identified by green fluorescence ([A1] and [A2], green). Cell nuclei were
shown by 49,6-diamidino-2-phenylindole ([A1], blue). Scale bar = 200 mm. (B): Higher magnification of the boxed region in (A1) was imaged.
The white star marks human BSP negative mouse bone.White arrowheadsmark the hydroxyapatites within the remaining scaffold. Scale bar =
50mm. (C): Higher magnification of boxed region in (B)was imaged with (C2) or without (C1) green fluorescence. The white arrows in (C1) and
(C2) point to Col2.3GFPemd-positive cells (C2) embedded in human BSP staining (C1). Scale bar = 20 mm.

Figure 7. Col2.3GFPemd-positive cells weremore enriched in defects implanted with C341-6-derivedmesenchymal cells. (A): Col2.3GFPemd-
positive human osteoblasts (green) were detected in calvarial defect implanted with C341-6 derived mesenchymal cells. Samples were pro-
cessed as described in Figure 4. White: dark-field. Red: AC labeling. Blue: 49,6-diamidino-2-phenylindole nuclei staining. Yellow: AP staining.
Arrows in (A) and (B): AP staining of human osteoblasts. Arrowhead in (A) and (B): AP staining of mouse osteoblasts. Boxed region in (A) is
shown in (B). Color assignments for (B1) and (B2) are the same as for Figure 4B1 and 4B3, respectively. Scale bars = 200 mm (A) and 50mm (B).
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which is widely expressed atmoderate levels, so the locus retains
an open chromatin structure, allowing consistent expression of
integrated transgenes. A construct design was chosen in which
expression of an antibiotic resistance gene,which is needed to se-
lect for integrationof theconstruct inundifferentiatedhEScells, is
driven by the promoter of the PPP1R12C gene and is terminated
by a polyadenylation site. The Col2.3-regulated promoter-
reporter cassette is located further downstream of the polyade-
nylation site. This strategy provides amoderatelybut constitutively
expressed host promoter driving the antibiotic resistance gene at
somedistancefromtheregulatedpromoter,avoidingplacingacon-
stitutive and a regulated promoter in close proximity. The polyade-
nylation signal helps to attenuate upstream transcription through
the regulated promoter, thereby decreasing the possibility of pro-
moter occlusion.

The construct containing Col2.3 promoter-driven GFPemer-
ald was inserted into the AAVS1 site of human embryonic stem
cells to mark the cells that differentiate into osteoblasts in vivo.
In a teratoma formed using these cells, we identified GFP-
positive cells specifically associated with bone. We also differen-
tiated the cells into a mesenchymal stem cell population with
osteogenic potential and implanted the cells into a mouse calva-
rial defect. We observed GFP-positive cells associated with AC-
labeled newly formed bone surfaces. This bone showed a similar
distinctive pattern of AC labeling and bone structure as was seen
with human bone in teratomas, which was different frommouse
bone. The GFP-positive cells were also AP-positive, and immuno-
histochemistry with human specific BSP antibody has indicated
that the GFP-positive cells are also associated with human BSP-
containing matrix. Therefore, we believed that our Col2.3GFP is
marking osteogenic cells capable of producing a bone matrix.
The drug selection method initially generated a mixed cell popu-
lation with approximately 30% Col2.3GFP-targeted cells that upon
cloningachieveda100%Col2.3GFP-positivecell population,as con-
firmedby FISHusing a GFP probe. The drug selection and recloning
steps did not induce karyotypic alterations, and thepluripotency of
theseclonal lineswasmaintained.Weexpect that thesecellswillbe
useful to develop optimal in vivo and in vitro osteogenic differen-
tiation protocols and provide a cross-laboratory standard for com-
paring the effectiveness of various preimplantation differentiation
protocols for in vivo differentiation.

CONCLUSION

In more recent studies, we produced a version of the reporter
construct that contains red fluorescent protein instead of
GFP and found that the Col2.3 promoter fragment drives
osteoblast-restricted expression of the reporter in iPS cells (data
not shown). This indicates the reproducibility andwide applicabil-
ity of the technology and suggests that it can be used for studying
the impact of ahumanmutationon theosteogenic lineage in vivo.
Using the GFP signal and single-cell laser capture technology, it
should be feasible to examine the molecular profile of osteoblas-
tic cells in vivo uncontaminated by mouse or nonosteogenic hu-
man cells. Furthermore, it provides a strategy for assessing in real
time the extent of osteogenesis in vivo in living animals using ei-
ther a luciferase or thymidine kinase reporter.
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