
ORIGINAL ARTICLE

Association between protein signals and type 2 diabetes incidence

Troels Mygind Jensen • Daniel R. Witte • Damiana Pieragostino •

James N. McGuire • Ellis D. Schjerning • Chiara Nardi • Andrea Urbani •

Mika Kivimäki • Eric J. Brunner • Adam G. Tabàk • Dorte Vistisen
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Abstract Understanding early determinants of type 2

diabetes is essential for refining disease prevention strate-

gies. Proteomic technology may provide a useful approach

to identify novel protein patterns potentially related to

pathophysiological changes that lead up to diabetes. In this

study, we sought to identify protein signals that are asso-

ciated with diabetes incidence in a middle-aged population.

Serum samples from 519 participants in a nested case–

control selection (167 cases and 352 age-, sex- and BMI-

matched normoglycemic control subjects, median follow-

up 14.0 years) within the Whitehall-II cohort were ana-

lyzed by linear matrix-assisted laser desorption/ionization

time-of-flight mass spectrometry (MALDI-TOF-MS). Nine

protein peaks were found to be associated with incident

diabetes. Rate ratios for high peak intensity ranged between

0.4 (95% CI, 0.2–0.8) and 4.0 (95% CI, 1.7–9.2) and were

robust to adjustment for main potential confounders,

including obesity, lipids and C-reactive protein. The pro-

teins associated with these peaks may reflect diabetes

pathogenesis. Our study exemplifies the utility of an

approach that combines proteomic and epidemiological

data.

Keywords MALDI-TOF � Type 2 diabetes � Proteomics �
Biomarker � Whitehall-II study � Random Forests

Introduction

Type 2 diabetes (T2DM) is a complex metabolic disorder,

primarily characterized by abnormal glucose regulation [1].

In addition, several mechanisms not directly related to

glucose regulation such as low-grade inflammation and

adipocyte metabolism have been implicated in the patho-

genesis of the disease [2, 3]. These processes involve

upregulation of pro-inflammatory pathways and altered

expression of cytokines and adipokines [4, 5]. Several

biomarkers have been suggested to predict T2DM in early

and progressive stages [6, 7]; however, it remains unclear

whether currently known biomarkers accurately reflect all

involved pathways and whether the associations between

these markers and diabetes pathogenesis are causal. Indeed,

it is conceivable that other metabolic systems could be

causally involved or secondarily affected by the early

changes leading to diabetes.

Current mass spectrometric methods enable the identi-

fication of not only novel protein patterns but also post-

translationally modified proteins and in turn novel signal
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Department of Epidemiology & Public Health,

University College London, London, UK

A. G. Tabàk
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transduction pathways and their deregulation under path-

ological conditions as it can be expected that levels of

many blood proteins are altered as a consequence of mul-

tiple early molecular pathophysiological changes. How-

ever, it should be noted that initial optimism over the

possibilities of mass spectrometry as a tool for biomarker

discovery has been tempered by the realization that con-

founding factors, including technical imprecisions and

sample processing, represent important challenges to

omics-based biomarker research [8–10].

Despite these limitations, we examine here the utility of

a proteomic approach in an epidemiological setting. Spe-

cifically, we aimed to assess the value of MALDI-TOF-MS

as a method for identifying protein peak signals that might

serve as new markers of future diabetes.

Materials and methods

Study population

Data are from a nested case–control selection within the

Whitehall-II study, an occupational cohort of 10,308 par-

ticipants aged 35–55 years recruited from 20 civil service

departments in London, UK, in 1985–1988 [11, 12]. Phase

3 (1991–94) was the first medical examination where

glycemic status was determined by a 75-g oral glucose

tolerance test (OGTT) and serves as the baseline for the

current study. Further waves of data collection were carried

out at 2.5-year intervals (phases 4–8), with OGTTs per-

formed at phase 5 (1997–1999) and phase 7 (2002–2004).

The case–control selection was performed based on blood

sample availability. Cases (n = 167) are individuals with

incident type 2 diabetes during a median follow-up period

of 14.0 (IQR, 11.3–14.4) years and without type 2 diabetes

at baseline. Controls (n = 352) had normal glucose toler-

ance at baseline and throughout follow-up and were fre-

quency matched for age (5-year bands), sex and body mass

index (BMI, 5 kg/m2 bands).

We used a complete case approach, excluding partici-

pants with missing information on any of the following

covariates at baseline: age, sex, height, weight, smoking

habits (never, ex, current), systolic blood pressure, total

cholesterol, high density lipoprotein (HDL) cholesterol,

triglycerides and high-sensitive C-reactive protein (CRP).

Also, participants with prevalent or incident coronary heart

disease, self-reported long-standing inflammatory illness or

recent inflammatory symptoms, anti-inflammatory medi-

cation and non-white ethnicity were excluded. Baseline

characteristics of the study population are summarized in

Table 1. The study was approved by the University College

London Medical School Committee on the Ethics of Human

Research and conducted according to the Declaration of

Helsinki. Written informed consent was obtained at base-

line and renewed at each contact.

Measurements

Diabetes incidence was defined according to WHO criteria

[13] and ascertained throughout follow-up based on a 75-g

OGTT in combination with self-reports of diabetes or the

use of glucose-lowering medication.

At baseline (phase 3), height, weight and blood pressure

were measured according to a standard protocol. Venous

blood samples were collected after an overnight fast in the

morning or in the afternoon after no more than a light fat-

free breakfast eaten before 08.00 h. After the initial venous

blood samples were taken, the participants underwent a

standard 2-h 75-g OGTT. Plasma glucose was analyzed

both in the fasting and 2-h samples. In addition, total

cholesterol, HDL and LDL cholesterol, triglycerides and

CRP were determined in the fasting samples. Information

on family history of diabetes (first-degree relative) and

smoking habits (never, ex and current) was collected using

a self-administered questionnaire. Missing values on fam-

ily history of diabetes were set to ‘none’. Data collection

Table 1 Baseline characteristics of study population

Controls

(n = 195)

Cases (n = 85)

Male (%) 73.3 (66.5;79.4) 72.9 (62.2;82.0)

Age (years) 50.7 (6.3) 51.2 (5.8)

BMI (kg/m2) 26.0 (3.5) 26.7 (3.8)

Height (cm) 172.9 (9.1) 172.2 (8.6)

Diastolic blood pressure

(mmHg)

79.5 (9.3) 83.3 (9.9)

Systolic blood pressure

(mmHg)

119.4 (11.8) 126.5 (14.8)

Total cholesterol (mmol/l) 6.6 (1.2) 6.6 (1.2)

HDL cholesterol (mmol/l) 1.5 (0.4) 1.3 (0.3)

LDL cholesterol (mmol/l) 4.5 (1.1) 4.5 (1.1)

Triglycerides (mmol/l) 1.4 (0.9) 1.7 (0.9)

CRP (mg/l) 0.8 (0.5;1.7) 1.0 (0.6;2.2)

Smoking habits

Never-smoker (%) 50.3 (43.0;57.5) 44.7 (33.9;55.9)

Ex-smoker (%) 35.9 (29.2;43.1) 41.2 (30.6;52.4)

Current smoker (%) 13.8 (9.3;19.5) 14.1 (7.5;23.4)

Fasting plasma glucose

(mmol/l)

5.1 (0.4) 5.4 (0.5)

2-hour plasma glucose

(mmol/l)

5.0 (1.1) 6.6 (1.9)

Anti-hypertensive treatment

(%)

6.2 (3.2;10.5) 12.9 (6.6;22.0)

Lipid-lowering treatment (%) 0.5 (0.0;2.8) 2.4 (0.3;8.2)

Data are means (SD), medians (interquartile range) or proportions

(95% CI)
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and methods in the Whitehall-II study have been described

in greater detail elsewhere [14, 15].

Serum sample extraction was performed using Dyna-

beads RPC 18 magnetic beads (Invitrogen, Carlsbad, CA,

USA) as it was described previously [16]. Twelve pmol of

horse myoglobin (used as internal standard, m/z =

16.952.55 Da) was added to each sample extract prior to

MALDI-TOF-MS analysis. Two microliters of sample

extract (containing internal standard) was spotted onto a

MTP Ground Steel 384 target (Bruker Daltonics) with a

droplet (0.5 ll) of a saturated solution of sinapinic acid

dissolved in a 1:1 solution of acetonitrile/0.1% trifluoro-

acetic acid. Data acquisition was performed by linear

MALDI-TOF-MS in positive ion mode on an Ultraflex III

(Bruker Daltonics, Bremen, Germany) in the 1–20 kDa

range.

Data processing

Prior to statistical analysis, mass spectra were calibrated

using internal standards and subsequently processed using

the open source software LIMPIC [17]. In this algorithm,

calibrated signals were normalized using the intensity of

internal calibrants. Since the mass spectrum may be affec-

ted by a low signal-to-noise ratio, its quality was enhanced

by smoothing and baseline subtraction. Next, the detection

of protein peaks in the single spectra was performed by

finding all the local maxima and eliminating those with

intensity lower than a non-uniform threshold, proportional

to the noise level (signal-to-noise ratio threshold set to 3).

Peak clustering was performed in order to identify in each

spectrum the protein peaks corresponding to the same m/z

(mass-to-charge ratio) class. The clustering procedure

assumes that peaks within a given distance limit can be

associated with the same class. Peaks are classified as

protein or noise peaks on the basis of their consistency

across the spectra. Qualification criteria for spectra com-

pliance were a total ion count per spectrum of 1.5 9 104

and ion counts of transthyretin and myoglobin of at least

200. Only peaks with a frequency of 5% or more in the

study sample were considered in the present study.

Statistical analysis

Given the relative high number of protein peaks to the

number of participants in our study, we performed an ini-

tial screening of the peaks employing Random Forests (RF)

analysis with incident diabetes as outcome [18]. In brief,

the RF algorithm constructs an ensemble of classification

trees (10.000 trees in this study) from several bootstrap

samples of the original data and votes over trees in order to

increase prediction [19]. Bootstrapping is sampling with

replacement, and in each bootstrap, about one-third of the

study participants are left out of the construction of a

particular tree. This so-called out-of-bag sample is used as

test data for calculating the error rate of the derived clas-

sification tree. For each protein peak included in the

analysis, the RF algorithm computes an estimate of the

increase in error rate of the classification tree had that peak

not been used, a procedure named permutation test. The

permutation test was used to rank the protein peaks, and the

20 highest ranking peaks were selected for further analysis.

For each of the 20 peaks, we created a binary variable

indicating whether or not peak intensity was elevated. The

threshold for elevated peak intensity was selected to

maximize the difference in observed diabetes incidence

between the two resulting subsets of participants and was

determined by a single classification tree with one split.

Subsequently, univariate rate ratios for incident diabetes

for the subset of participants with elevated peak intensity

were assessed in Poisson regression analysis with individ-

ual follow-up time as offset. A level of significance of

5% was adjusted for multiple testing (n = 20) using the

method by Benjamini et al. [20]. For each significant peak,

we assessed the attenuating effect on the associations of

including different levels of confounders in a staged

approach, Model 1: univariate associations; Model 2:

adjusting for age and sex; Model 3: further adjusting for

family history of diabetes, BMI, smoking habits and sys-

tolic blood pressure; Model 4: further adjusting for total

and HDL cholesterol, triglycerides and CRP.

Results

MALDI-TOF spectra from 304 (59%) of the 519 study

participants met the qualification criteria for spectra com-

pliance. Failure in meeting the qualification criteria for

spectra compliance was due to technical reasons not related

to case/control status of the participants. There were no

differences in characteristics between participants with and

without eligible spectra (Appendix Table 4). Our study

population was comprised of the 280 individuals (92%) (85

cases and 195 controls) with complete data on the covari-

ates. Study participants were middle aged and mainly male

(73%) (Table 1).

A total of 364 different peaks were detected, but only 72

had a frequency of 5% or more in the study population and

were considered in the present analysis. For the 20 highest

ranking peaks from the RF analysis, nine were significantly

associated with incident diabetes. Rate ratios for partici-

pants with peak intensity above the split threshold ranged

between 0.4 (95% CI, 0.2–0.8) and 4.0 (95% CI, 1.7–9.2).

The estimated rate ratios were robust toward confounder

adjustment (Table 2). In three of the peaks (m/z, 3,774,

3,816 and 9,352) did adjustment for 2-h plasma glucose
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have a substantial attenuating effect on the rate ratios with

incident diabetes.

Figure 1 provides an illustrative example of averaged

spectra at the 4,154 Da peak for individuals with and

without incident diabetes.

Discussion

This study explored an approach in which data from mass

spectrometric profiling by MALDI-TOF were combined

with epidemiological data. We identified several peak

thresholds in protein peak signal intensities that were

robustly associated with incident diabetes.

Previously, a number of studies have employed mass

spectrometry as a tool for biomarker discovery [21–24]. A

recent FDA approval of a diagnostic tool issued from

SELDI proteomic investigations illustrates the application

of mass spectrometric methods for these purposes [25].

However, the cross-sectional nature and the small sample

size of most of these biomarker studies have precluded

information on the association between biomarkers and

future development of disease as well as the ability to

adjust for potential confounders. Therefore, a major

strength of the present study is the use of a well-charac-

terized prospective cohort where participants have been

followed longitudinally for decades. A recent study by

Wang et al. [26] did collect mass spectrometric data in the

framework of an epidemiological study, but focused on

individual amino acids as predictors of future development

of diabetes.

Potential limitations of this study involve the exclusion

of a large number of mass spectra, which failed to meet the

qualification criteria. Although we are convinced that the

reasons for this exclusion were entirely due to technical

issues as the proportion lost was virtually identical among

cases and controls and as the groups did not differ in

baseline characteristics (Appendix Table 4), we cannot

entirely exclude bias related to these exclusions. Sub-

sequent studies should focus on reducing the number of

excluded spectra. Also, general concerns raised in relation

to mass spectrometric efforts represent additional impor-

tant limitations to this study. Criticism has often focused on

the poor reproducibility of mass spectrometric studies

owing to factors impacting pre-analytical and analytical

bias [27–30]. Although strict operating procedures were

implemented for sample collection, it cannot be ruled out

that bias has been introduced as a result of sample handling

or storage. Samples were stored for different lengths of

time, which may impact the observed changes in mass

peaks.

Table 2 Rate ratios for incident diabetes for participants with elevated peak intensity

Peak presence

m/z Controls

(%)

Cases

(%)

Elevated peak

intensity (%)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

3,816 3 11 3 4.1 (1.8;9.5) 4.1 (1.8;9.6) 4.9 (2.1;11.7) 4.4 (1.9;10.6) 4.5 (1.9;10.8) 1.9 (0.7;4.9)

4,154 29 31 4 3.0 (1.5;5.9) 3.0 (1.5;5.9) 3.4 (1.7;6.8) 3.8 (1.9;7.8) 2.8 (1.3;5.8) 3.0 (1.5;6.3)

9,352 34 36 6 2.9 (1.5;5.4) 3.0 (1.6;5.8) 3.0 (1.5;5.8) 3.0 (1.4;6.1) 2.8 (1.3;5.8) 2.4 (1.1;4.9)

8,913 100 99 5 2.5 (1.2;5.3) 2.6 (1.3;5.5) 2.6 (1.2;5.4) 2.4 (1.1;5.3) 2.3 (1.0;5.1) 2.1 (1.0;4.7)

3,956 6 13 6 2.5 (1.3;4.8) 2.6 (1.3;5.2) 3.0 (1.5;6.2) 2.7 (1.3;5.6) 2.8 (1.4;5.8) 2.1 (1.0;4.5)

3,774 4 11 5 2.4 (1.1;4.9) 2.4 (1.2;5.2) 3.2 (1.5;7.0) 3.1 (1.4;6.7) 2.9 (1.3;6.3) 1.8 (0.8;4.2)

6,880 10 20 10 2.2 (1.3;3.8) 2.2 (1.3;3.8) 2.0 (1.1;3.5) 1.8 (1.0;3.2) 1.7 (0.9;3.0) 1.7 (0.9;3.0)

4,711 44 61 45 1.9 (1.2;2.9) 1.9 (1.2;2.9) 1.8 (1.1;2.7) 1.8 (1.2;2.8) 1.8 (1.2;2.8) 1.6 (1.0;2.5)

8,763 97 91 94 0.4 (0.2;0.8) 0.4 (0.2;0.8) 0.4 (0.2;0.7) 0.4 (0.2;0.8) 0.4 (0.2;0.9) 0.4 (0.2;0.9)

Model 1: unadjusted

Model 2: adjusted for age and sex

Model 3: further adjusted for family history of diabetes, BMI, smoking habits and systolic blood pressure

Model 4: further adjusted for total and HDL cholesterol, triglycerides and CRP

Model 5: Model 4 and further adjusted for fasting plasma glucose

Model 6: Model 4 and further adjusted for 2-h plasma glucose

Fig. 1 Comparison of average spectra at the 4,154 Da peak for

individuals with incident diabetes (red) and without (blue) (color

figure online)
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Furthermore, the use of peak intensities from MALDI

profiling in our statistical analyses may be problematic.

The relationship between mass peak intensity and protein

abundance is not fully understood, partly due to the varying

ionization properties of different molecules [31]. Compli-

cating matters further, the ionization process may cause

molecules to fragment into several smaller molecules,

resulting in a complex mass peak pattern that may be not

readily interpreted [32]. Also, although mass spectrometry

has been widely used as a biomarker discovery tool, few

candidate biomarkers have been qualified or verified and

even fewer validated [33].

However, the relatively high number of samples inclu-

ded in the present study should contribute to reducing the

impact of these potential biases. Furthermore, peak inten-

sities were normalized to an internal standard added in

equal amounts to each sample, aiming to limit the effect of

interferences with other analytes on the processed signal

intensities [29].

We used a two-step approach for statistical analysis

using the RF method for the initial screening of peaks. RF

is a nonparametric approach; thus, we could model the

relationship between variables without the need to specify

a particular model. In particular, it does not require the

specification of a particular linear or nonlinear relationship

between predictor and response variables. Also, it provides

a variable ranking method for selecting the most predictive

peaks for incident diabetes that takes into account peak

interaction. RF has shown excellent performance in accu-

racy among current classification algorithms [34–36] and

has been used in several microarray and proteomics studies

[37, 38].

The number of significant peaks found in our study was

greater than the number of peaks that could be expected to

result from chance. Furthermore, most rate ratios for inci-

dent diabetes were very robust toward confounder adjust-

ment, providing further support for our findings although

validation is an essential first step prior to application of

this approach to larger cohorts.

Finally, the identities and functions of the molecules

corresponding to the specific peaks detected here remain to

be established. However, using the Expert Protein Analysis

System (ExPASy) TagIdent tool [39], we are suggesting

plausible candidates based on the m/z values (Table 3).

The search was performed with a ±0.7% tolerance in

m/z value, allowing for experimental error or possible

protein modifications, and an isoelectric point (pI) interval

from 3 to 10.

Calcitonin gene-related peptide 1 (CGRP-1) is within

the specified mass range of the peak detected here at

3,816 Da. In skeletal muscle in vitro and in rat models,

CGRP-1 has been shown to affect glucose regulation

through inhibition of insulin-stimulated glycogen synthesis

[40, 41]. Similarly, pancreatic prohormone (PP) is in the

specified range of the peak at 4,154 Da. The physiological

role for pancreatic hormone is not well described, although

it may act as a regulator of pancreatic functions. Indeed, PP

deficiency following pancreatic resection may lead to

hyperglycemia due to impaired hepatic insulin action [42].

The peak detected at 9,352 Da may represent monocyte

chemotactic protein 4 (MCP-4). In a recent study of

patients with symptomatic carotid atherosclerosis, MCP-4

was suggested to have pro-atherogenic effects as an

inflammatory mediator of platelet and monocyte activation

[43]; these effects may accompany incident diabetes in our

study sample.

The peak at 8,913 Da may be apolipoprotein C-II

(apoC-II). Béliard et al. [44] found increased total ApoC-II

concentrations in type 2 diabetic patients compared to

healthy control subjects. The peak detected at 3,774 Da

may be an alternative representation of CGRP-1 (also

suggested for the peak detected at 3,816 Da) or glucagon-

like peptide 2 (GLP-2). GLP-2 may indirectly increase

glucose levels through stimulation of glucagon secretion

[45, 46].

Leukotactin-1 may represent the peak at 6,880 Da. Lkn-1

is involved in inflammatory diseases and essential in the

development of atherosclerosis as a potent chemoattractant

for leukocytes and by enhancing adhesion molecules on

endothelial cells and leukocytes [47, 48]. As for MCP-4, it is

not unlikely that diabetes in our sample occurs in concert

with early pro-atherogenic events.

Finally, the peak at 8,763 Da may represent apolipopro-

tein C-III (apoC-III). Increased levels of apoC-III have been

found in type 2 diabetic patients [44], and one study reported

high apoC-III levels to be a major diabetogenic factor [49].

For the peaks detected at 3,956 and 4,711 Da, no

plausible identities have been suggested using the Expasy

TagIdent tool. However, using MALDI-TOF on serum

samples, one study found identified a peak at 3,956 Da as

internal fragment of inter-a-trypsin inhibitor heavy chain 4

(ITIH4), a marker for ovarian cancer [50].

Table 3 Suggested protein

identities based on mass values

of detected peaks

CGRP-1 calcitonin gene-related

peptide 1; PP pancreatic poly-

peptide; MCP-4 monocyte che-

motactic protein; ApoC-II

apolipoprotein C-II; GLP-2

glucagon-like peptide 2; Lkn-1

leukotactin-1

Detected peak

(m/z)

Suggested

protein

3,816 CGRP-1

4,154 PP

9,352 MCP-4

8,913 apoC-II

3,956 (N/A)

3,774 GLP-2

6,880 Lkn-1

4,711 (N/A)

8,763 apoC-III
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In addition to the already established mechanisms, the

suggested proteins may play previously unknown roles in

glucose metabolism. Besides the proteins suggested here,

there were a number of uncharacterized proteins within the

specified range. These proteins may also represent candidate

identities for the peaks detected in this study. Also, as pre-

viously mentioned, it should be pointed out that the peaks

detected here may in fact not be intact proteins, but rather

fragments of larger proteins. Upcoming analyses will entail

LC/MS of eluates in order to confirm identities of the peaks.

Our data suggest that the combination of a relatively

simple mass spectrometric method with epidemiological

data may provide a good starting point for assessing further

the value of proteomic profile information in predicting

future diabetes. The normalized peak intensities provide a

semi-quantitative measure of serum protein concentration;

therefore, these efforts may help determine the possible

biological relevance of a given peak intensity in relation to

the split thresholds.

Using a mass spectrometry-based protein profiling

platform, we detected several protein peaks significantly

associated with incident diabetes in a population free of

diabetes at baseline. The present study can be viewed as a

proof-of-concept warranting further studies, where an

increase in sample size may allow further detection of

proteins possibly involved in the early pathophysiology of

type 2 diabetes.
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Appendix

See Table 4

Table 4 Baseline

characteristics of participants

with and without MALDI-TOF

spectra

Data are means (SD), medians

(interquartile range) or

proportions (95% CI). * After

controlling for multiple testing,

there were no significant

differences in characteristics

between the two groups

Without (n = 230) With (n = 329) p value for

difference*

Males (%) 74.3 (68.2;79.9) 70.8 (65.6;75.7) 0.358

Age (years) 50.5 (6.3) 51.0 (6.1) 0.420

BMI (kg/m2) 26.9 (4.6) 26.4 (3.8) 0.111

Height (cm) 173.6 (8.8) 172.6 (9.2) 0.268

Diastolic blood pressure (mmHg) 82.2 (9.8) 80.7 (9.7) 0.079

Systolic blood pressure (mmHg) 123.8 (13.7) 121.7 (13.5) 0.077

Total cholesterol (mmol/l) 6.7 (1.1) 6.6 (1.2) 0.437

HDL cholesterol (mmol/l) 1.4 (0.4) 1.4 (0.4) 0.745

LDL cholesterol (mmol/l) 4.5 (1.0) 4.5 (1.1) 0.820

Triglycerides (mmol/l) 1.8 (1.4) 1.6 (1.0) 0.008

CRP (mg/l) 0.9 (0.5;1.6) 0.9 (0.5;2) 0.400

Smoking habits (%)

Never-smoker (%) 54.8 (48.1;61.3) 45.3 (39.8;50.8) 0.027

Ex-smoker (%) 33.9 (27.8;40.4) 34.0 (28.9;39.4) 0.975

Current smoker (%) 6.1 (3.4;10.0) 13.4 (9.9;17.5) 0.004

Fasting plasma glucose (mmol/l) 5.2 (0.5) 5.2 (0.5) 0.991

2-h plasma glucose (mmol/l) 5.8 (1.7) 5.4 (1.6) 0.020

Anti-hypertensive treatment (%) 7.4 (4.4;11.6) 8.5 (5.7;12.1) 0.631

Lipid-lowering treatment (%) 0.0 (0.0;1.6) 0.9 (0.2;2.6) 0.074
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