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Abstract

1. Human clearance prediction for small- and macro-molecule drugs was evaluated and

compared using various scaling methods and statistical analysis.

2. Human clearance is generally well predicted using single or multiple species simple

allometry for macro- and small-molecule drugs excreted renally.

3. The prediction error is higher for hepatically eliminated small-molecules using single or

multiple species simple allometry scaling, and it appears that the prediction error is

mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human

clearance prediction for hepatically eliminated small-molecules was reduced using

scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).

4. Human clearance of both small- and macro-molecule drugs is well predicted using the

monkey liver blood flow method. Predictions using liver blood flow from other species

did not work as well, especially for the small-molecule drugs.
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Introduction

Allometric scaling is an empirical approach developed based on cross species similarities in

anatomy, physiology, and biochemistry with a power function correlating physiological

parameters with body size (Y = aWb, where Y is the parameter of interest, W is the body

weight, and a and b are the coefficient and exponent of the allometric equation,

respectively). This method has been applied to the projection of human pharmacokinetics for

small-molecule drugs as well as therapeutic proteins and is widely used in the

pharmaceutical industry for early decision making at several stages in drug discovery and

development (e.g., lead compound selection and optimization, first dose in human, etc).
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It is known that allometric projections generally work well for drugs mainly renally

eliminated. However, for some small-molecule drugs with high cross-species variability in

hepatic metabolism, this method may not work well in the extrapolation of hepatic

metabolic CL from laboratory animals to humans. To improve the predictability of

metabolic CL in humans, several modified scaling methods have been suggested and

examined. Because longevity is frequently inversely correlated with hepatic cytochrome

P450 drug oxidation rates, maximum life-span potential (MLP) and brain weight (BRW)

were proposed as correction factors in allometric scaling by Boxenbaum (Boxenbaum,

1982). His work was later supported by other scientists, and their work also demonstrated

that MLP and BRW corrections improved the accuracy of human CL prediction when the

allometry power exponent b was higher than 0.80–0.90 (Feng et al., 2000, Mahmood and

Balian, 1996). Recently, Nagilla and Ward suggested using liver blood flow (LBF) as a

correction factor for the scaling of small-molecule drugs (Nagilla and Ward, 2004). Based

on their analysis of 103 compounds comparing simple allometry with LBF or MLP/BRW

correction, they concluded that scaling with monkey liver blood flow was the best approach

among the methods tested (68% success rate). These modified approaches have improved

the accuracy of prediction to some extent.

While many studies have demonstrated the use of allometric scaling in the prediction of

human CL for small-molecule drugs, only a few articles reported the application of this

method to macro-molecule drugs. Currently, the market of biotherapeutics, including

peptide, protein and oligonucleotide drugs have been growing rapidly. The annual growth

rate of biotherapeutics sales was approximately 20% from 2001 and 2006, which is much

higher compared to a growth rate of only 6–8% for small-molecule drugs (Aggarwal, 2007).

Although the general principles of pharmacokinetics and pharmacodynamics are applicable

to biotherapeutics, their disposition in the body is known to be unique and different from

conventional small-molecules (Tang et al., 2004, Lin, 2009). The binding process of

biotherapeutics with receptors or other targets in the body may be species- specific and

saturable exhibiting non-linear kinetics. In addition, protein drugs derived from human

sources may be recognized as a foreign compound in animal species and thereby induce

immune system mediated reaction, known as immunogenicity. Therefore, differences are

expected in interspecies scaling from animals to humans when comparing small- versus

macro-molecule drugs. Since clearance is an important pharmacokinetic parameter critical

for the design of first-time-in-human study and the selection of dose regimen, it is important

to understand differences and the mechanism associated with the human clearance

prediction between small and macro-molecule drugs.

Positive results from human clearance prediction of macro-molecule drugs using allometric

scaling have already been reported by several groups (Mordenti et al., 1991, Mahmood,

2004, Mahmood, 2009b, Ling et al., 2009, Wang and Prueksaritanont, 2010). Mordenti et al

demonstrated reasonable accuracy in predicting human clearance and volume of distribution

using interspecies scaling for five protein drugs with molecular weights ranging from 6 to 98

kDa (Mordenti et al., 1991). Mahmood expanded the data set to 15 therapeutic proteins and

reported a low prediction error of human clearance (Mahmood, 2004, Mahmood, 2009b). He

also suggested the use of at least three animal species for interspecies scaling. However,

acceptable prediction of human clearance using single animal species for macro-molecule
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drugs has also been reported later by Ling and Wang (Ling et al., 2009, Wang and

Prueksaritanont, 2010). Ling et al suggested using a fixed exponent of ‘0.85’ or ‘0.90’ for

human CL prediction of monoclonal antibody drugs, and ‘0.80’ was suggested by Wang and

Prueksaritanont not only for monoclonal antibodies, but also for other protein drugs.

In this study, literature data for small- and macro-molecule drugs were collected and

analyzed by various allometry methods using single or multiple species scaling, and the

accuracy of human clearance prediction was compared. For macro-molecule drugs, almost

all the peptide and protein drugs previously reported in the literature with molecular weights

ranging from 1 to 340 kDa were included in our data set, along with several oligonucleotide

drugs. As a result, this study provides very useful information of the potential application of

allometric scaling in human clearance prediction for both small- and macro-molecule drugs.

Methods

Data collection

Clearance data of 675 small-molecule drugs and 80 macro-molecule drugs following

intravenous administration were obtained from the literature. The criteria that divide the

drugs into small versus macro-molecule is 1000 Da. Drugs having molecular weights greater

than 1000 Da are regarded as macro-molecule and the others as small-molecule. Based on

these criteria, all biotherapeutics including protein, peptide and oligonucleotide drugs were

classified as macro-molecule drugs. The clearance of 81 of the small-molecule drugs in

animals and humans were collected and used for the analysis of interspecies scaling and

compared with 53 of macro-molecule drugs in human clearance prediction (Tables 1 and 2).

Allometric scaling using single species

Human clearance was predicted using single species with the allometry exponent fixed at

0.60, 0.65, 0.70, 0.75, 0.80, 0.85, or 0.90. The following equation was used to calculate

human clearance:

(1)

where BW is the body weight and b is the allometry exponent. Based on the availability of

literature data, 36, 78, 78, and 63 small-, and 25, 40, 19, and 43 macro-molecule drugs were

used in single species scaling for mouse, rat, dog, and monkey, respectively.

Single species scaling using liver blood flow

Human clearance was estimated using liver blood flow (LBF) with the following equation as

proposed by Ward and Smith (Ward and Smith, 2004):

(2)

LBF values used for mouse, rat, dog, monkey and human were 90.0, 55.2, 30.9, 43.6 and

20.7 mL/min/kg, respectively (Davies and Morris, 1993). To be used in this equation, each
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LBF value was multiplied by the corresponding body weight. For example, for a mouse

weighting 0.02 kg, the LBFmouse became 1.8 mL/min.

Allometric scaling using multiple species

Several methods (i.e. simple allometry, exponent rule-corrected allometry, multiexponential

allometry and exponent rule-corrected multiexponential allometry) were evaluated. At least

three animal species were used for the scaling and the prediction of human clearance for

each compound. Based on the availability of literature data, 81 small- and 36 macro-

molecule drugs were used in multiple species scaling. Small-molecule drugs were divided

by 3 groups based on elimination mechanism: (1) “hepatic”– if the drugs are mainly

eliminated via metabolism or biliary excretion (n = 50), (2) “renal”– if most of drug

molecules are eliminated renally as unchanged (n = 19), (3) “mixed” - if both renal and

hepatic routes contribute to the elimination (n = 12).

Simple allometry (SA)—Human clearance was predicted with the following allometric

equation as previously described (Boxenbaum and DiLea, 1995):

(3)

where a is the coefficient and b is the allometry exponent.

Exponent rule-corrected allometry (ROE)—As mentioned previously, Boxenbaum

(1982) proposed using maximum life-span potential (MLP) and brain weight (BRW) as

correction factors in allometric scaling since longevity is frequently inversely correlated

with hepatic cytochrome P450 drug oxidation rates. The application of MLP and BRW were

also assessed and supported by other scientists including Feng (Feng et al., 2000), and

Mahmood and Balian (Mahmood and Balian, 1996). In this study, the exponent rule-

corrected method previously suggested by Mahmood and Balian was adopted: If b < 0.71 in

simple allometry, no correction factor was applied; if 0.71 ≤ b < 1, MLP was used as a

correction factor; if 1 ≤ b, BRW was used as an correction factor. Human clearance was

predicted using the following equations:

(4)

(5)

BRW values were 1.65, 0.57, 0.78, 1.56, and 2% of body weight, and the MLP values 2.7,

4.7, 22.0, 20.0, and 93.4 for mouse, rat, dog, monkey, and human, respectively (Brown et

al., 1997, Sacher, 2008).

Multiexponential allometry (MA)—Multiexponential allometry method was used to

predict human clearance as suggested by Goteti et al using the following equation (Goteti et

al., 2008):
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(6)

where a and b are the coefficient and the allometry exponent determined from the simple

allometry analysis.

Exponent rule-corrected multiexponential allometry (SA+MA)—Human clearance

was predicted using simple allometry method if the exponent b is < 0.71 with no correction

factor applied. If the exponent b is ≥ 0.71, the multiexponential allometry equation listed

above was used for human clearance prediction.

Relationship between CL and molecular size

Literature data of 675 small- and 80 macro-molecule drugs were collected and the

correlation between total clearance and molecular weight (MW) was assessed.

Statistical analysis

Average-fold error (AFE) for human CL prediction was calculated based on equation 7

(Bolton, 1997) and used to compare the various prediction methods,

(7)

By using this equation, under-estimations can have the same magnitude of error as over-

estimations. For example, a 2-fold over-prediction and under-prediction would have the

same value of 2 for AFE.

Student’s t-test was used to determine the statistical differences in AFE values between two

groups and p < 0.05 was considered statistically significant. For multiple-group comparison

in AFE values, analysis of variance (ANOVA) was performed followed by Tukey or

Student’s t-test.

Results

Scaling using single species

The results from single species scaling with a fixed allometry exponent are summarized in

Figures 1–3. For macro-molecule drugs, human clearance is generally well predicted with

average-fold error < 2 using a fixed allometry exponent of 0.75–0.80. Increase or decrease

of the exponent “b” only results in a small fluctuation of the AFE (Figure 1b). It appears that

human clearance of macro- molecules is best predicted using monkey as a single species

with the AFE value of 1.45, which is statistically lower (p < 0.05) than the AFEs of 1.89,

1.94, 1.72 using mouse, rat or dog for single species scaling with optimal allometry

exponent fixed at 0.80 (Figure 3). For the small-molecule drugs, human clearance is best

predicted using a fixed allometry exponent of 0.65–0.70. The AFEs for small-molecule

drugs increased significantly when the exponent “b” value was higher than 0.80 (Figure 1a).

The AFEs are 2.67, 2.31, 2.50, and 2.00, respectively, using mouse, rat, dog, or monkey as a
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single species with an optimal allometry exponent fixed at 0.65. Those AFE values are not

statistically different across the species, although human clearance appears better predicted

using monkey data. As shown in Figure 1c, when the small-molecule drugs are divided by 3

groups based on elimination mechanism: “hepatic”, “renal” and “mixed”, similar trend is

observed with human clearance best predicted using a fixed allometry exponent of 0.65–

0.70 and the AFEs increased significantly when the exponent “b” value was higher than

0.80. The correlation between the prediction accuracy [ratio of predicted/observed (Pred/

Obs)] and the actual value of human clearance for small-molecule drugs using single species

allometric scaling with fixed exponent of 0.65 is presented in Figure 2 and the plots suggest

the prediction error is mainly associated with drugs with low extraction ratio.

Prediction of human clearance using single species liver blood flow is also examined in this

study for macro- and hepatically eliminated small-molecule drugs, and the results suggest

that human clearance is well predicted with AFE ≤ 2.0 for all drugs using monkey liver

blood flow (Table 3). However, the liver blood flow method did not work as well using

other species especially for the small-molecule drugs with high AFE values of 4.04, 3.47,

and 2.83 in mouse, rat, and dog, respectively.

Scaling using multiple species

The multiple species scaling methods, SA, ROE, MA and exponent rule-corrected MA (SA

+MA), are evaluated in this study. Although several studies have reported the scaling of 2

animal species for the prediction of human clearance, we used three or more species in our

analysis and the results are summarized in Table 4a and 4b. The results indicated that the SA

method delivered a high accuracy in human clearance prediction for macro-molecule drugs

with an AFE of 1.67, and no additional correction using MLP or BRW seems needed. This

may be explained by their elimination mechanism. The therapeutic proteins are mainly

eliminated by non-specific proteolysis that is very different compared to the complicated

oxidative metabolic pathways for small-molecule drugs. Therefore, the use of ROE, MA,

and SA+MA did not improve the prediction of human clearance for macromolecule drugs

and resulted in a higher AFE of 2.06, 1.87, and 1.95, respectively. As mentioned previously,

the small-molecule drugs were grouped by mechanism of elimination to assess if the

elimination mechanism may affect the prediction accuracy of human clearance. As listed in

Table 4a, for drugs in the “renal” group, the human clearance is generally well predicted

using simple allometry with AFE of 1.84 and it appears that no MLP or BRW correction is

needed for those drugs. The AFEs from ROE, MA, and SA+MA methods are 1.95, 1.73,

1.66, respectively and not statistically different from the AFE of the SA method. The AFE

of human clearance prediction is 3.14 using the SA method for drugs in the “hepatic” group,

which is statistically significantly higher than the values in other groups (p < 0.05). Results

from additional analysis presented in Table 4b indicated that the prediction error for

hepatically eliminated small-molecules is mainly associated with drugs with low hepatic

extraction ratio (Eh) with AFE of 4.51. The AFE is 2.46 and 1.35 for drugs with medium

and high Eh, respectively, and the AFE in the high Eh group is significantly lower (p < 0.05)

than the corresponding values in the other two groups, which is consistent with the outcome

from single species scaling (Figure 2) and the literature information as the elimination

process of drugs with high Eh is mainly controlled by liver blood flow, a physiological
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parameter extrapolated very well from animals to humans (Feng et al 1998a and 1998b).

Correction with MLP or BRW did help to reduce the prediction error for hepatically

eliminated drugs with low and medium Eh. The AFE is 2.25 for small-molecule drugs in the

mixed group and the correction with MLP or BRW also reduced the error of prediction

(Table 4a).

Relationship between CL and molecular size

The relationship between human clearance and molecular weight is presented in Figure 4.

The small-molecule drugs were divided into 3 groups with MW < 300 Da in group 1 (n =

233), 300 ≤ MW < 400 Da in group 2 (n = 221); and 400 ≤ MW < 500 Da in group 3 (n =

221). Based on one-way ANOVA analysis, the clearance values in the 3 groups are not

statistically different (p > 0.05). The macro-molecule drugs were also divided into 2 groups

with MW < 69 kDa in group 1 (n = 49) and MW ≥ 69 kDa in group 2 (n = 29). The

clearance values in group 2 are significantly lower and statistically different compared to

those in group 1 based on t-test (p < 0.01).

Discussion

Scaling using single species

Single species scaling with a fixed allometry exponent or using LBF was evaluated in the

current study. Although there are different opinions regarding the use of single species

scaling (Mahmood, 2009a, Mahmood, 2005), the method does have advantages in the

respect of cost-effectiveness. Finding an optimal value for the allometry exponent in single

species scaling is always a challenge. Although previous studies have suggested there could

be a universal exponent value across animal species, the reported results are still

controversial (Hu and Chiu, 2009, Hu and Hayton, 2001). In our study, optimal allometry

exponent values of ‘0.65–0.70’ with AFE of 2.40–2.49 were identified that generally

worked best for human clearance predictions for small-molecules, while for the macro-

molecules, optimal exponent value of ‘0.75–0.80’ with AFE of 1.75–1.77 were selected.

These values are close to the historically recommended standard exponent value of ‘0.75’ in

interspecies scaling derived from the observation that basal metabolic rates across species

could be scaled by body weight with an exponent of ‘0.75’ (Kleiber, 1947, Feldman and

McMahon, 1983). For the macro-molecules, the prediction error from single species scaling

is generally within 2-fold for majority of the drugs in our analysis (Figure 3), which is

consistent with other results in the literature (Ling et al., 2009, Wang and Prueksaritanont,

2010). Most macro-molecule drugs are peptides or proteins that are eliminated from the

body via non-specific proteolysis, a process very different from the complicated oxidative

metabolic pathways for small-molecule drugs. It is known that ubiquitously expressed

proteolytic enzymes responsible for the elimination of macro-molecules are universal across

animal species, which could help to explain the successful extrapolation from animals to

humans for macro-molecule drugs. As mentioned previously, several antisense

oligonucleotide drugs (e.g., ISIS compounds) were included in the macro-molecule

category. Oligonucleotide drugs are mainly eliminated from the body by metabolic

pathways via nucleases (Levin, 1999, Levin et al., 2001). Nucleases are also ubiquitously

expressed throughout the body and could be scaled across animal species. Interestingly, it
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has been shown that the plasma clearance values of ISIS compounds are quite similar in rat,

rabbit, dog and monkey ranging from 1 to 3 mL/min/kg (Geary et al., 2001). Several outliers

(infliximab, IFNβ and EGFr3) with relatively high prediction errors (6- or 7-fold) were,

however, observed in our analysis of macro-molecules (Figure 3), which may be the result

of species-specific differences in binding activity and non-linear pharmacokinetics. While

human IFNs bind to receptors in monkey, they lack binding activity in rodents (Kagan et al.,

2010). This may help to explain why the prediction error of IFNβ was high when mouse or

rat was used in single species scaling. Non-linear pharmacokinetics can be a potential

explanation for the high prediction error of EGFr3 in dog, since a relatively low dose was

used for the pharmacokinetic study of EGFr3 in dogs compared to other preclinical studies

as previous study has shown (Wang and Prueksaritanont, 2010). For small-molecule drugs,

the plots in Figure 1 and 2 suggest that human clearance is better predicted using monkey

data although the cross-species comparison of AFEs does not indicate statistical differences.

The LBF method appears useful in human clearance prediction for both small and macro-

molecule drugs when monkey data are available. If data from other animal species were

used, the prediction accuracy may be acceptable for most of the macro-molecule drugs

(within 2-fold), but the error appears high for small-molecule drugs.

Scaling using multiple species

Interspecies scaling using 3 or more animal species was also evaluated in this study. The

results suggest that the SA method delivered a high accuracy prediction of human clearance

for macro-molecule drugs (AFE = 1.67, Table 4a), which is consistent with the phenomena

that the clearance mechanism of macro-molecule drugs is evolutionally well conserved

compared to the species-specific metabolism of small-molecule drugs. Only EGFr3 is a

notable outlier in the SA method and it may be associated with nonlinear pharmacokinetics

as previously discussed.

In general, the SA method also worked well with AFEs < 2.0 for small-molecule drugs

excreted renally (Table 4a). The AFE from the SA method is higher for drugs mainly

eliminated hepatically, and a correction with MLP or BRW (using the ROE, MA, or SA

+MA methods) helped to reduce the prediction error for those drugs (Table 4a and 4b). The

correction with MLP was proposed in 1982 by Boxenbaum based on the observation that

longevity was frequently inversely correlated with hepatic cytochrome P450 drug oxidation

rates (Boxenbaum, 1982, Boxenbaum and Ronfeld, 1983). The MLP Clearance product

represents the volume from which drug would be cleared per person’s maximum life-span

potential assuming constant drug exposure. Using antipyrine as an example, Boxenbaum

demonstrated that the regression of volume cleared per MLP is approximately proportional

to body weight. With respect to humans, it would appear that the relatively low intrinsic

unbound clearance (with respect to liver weight) is synchronized to his (or hers) longevity;

i.e. the low activity is conserved over the relatively longer chronological MLP. Boxenbaum

also explored the possibility of using brain weight (BRW) as a correction factor since MLP

is closely correlated to BRW MLP=185.4 (BRW0.636) (W(− 0.225)). Boxenbaum’s work was

later supported by the results of other scientists. Results from our previous work also

demonstrated that the MLP and BRW correction improved the accuracy of human clearance
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predictions when the allometry power exponent b was higher than 0.80–0.90 (Feng et al.,

1998a, Feng et al., 1998b, Feng et al., 2000, Mahmood and Balian, 1996). The results from

our current study indicated that multiple species scaling generally worked better than single

species allometry for small-molecule drugs, and the ROE, MA and SA+MA methods using a

correction with MLP or BRW could help to increase the accuracy of prediction for small-

molecule drugs mainly hepatically eliminated. However, there were a few notable outliers

with high prediction error even after using MLP or BRW as a correction factor. All these

drugs are mainly hepatically eliminated either by metabolism or by biliary excretion and

have relatively low clearance.

Relationship between CL and molecular size

The results of this study also indicated that the pharmacokinetic properties of small- and

macro-molecule drugs are quite different when the relationship between clearance and

molecular weight was examined. A trend for macro-molecules is observed (Figure 4), in

which the CL values of those drugs in group 2 (MW ≥ 69 kDa) are significantly lower than

those in group 1 (MW < 69 kDa). It is generally known that a molecule with MW < 10 kDa

is readily excreted by glomerular filtration in the kidney, while a molecule with MW ≥ 69

kDa (MW of albumin ≈ 69 kDa) is highly restricted at the glomerulus (Braeckman, 2000,

Lin, 2009). Therefore, glomerular filtration could limit the renal excretion of group 2 drugs,

and this may help us to understand the differences in clearance between group 1 and 2.

However, one needs to be cautious in directly relating clearance with molecular weight,

since MW does not necessarily represent the effective molecular size and the effective

molecular radius may be a better way to determine the degree of glomerular filtration. Drug

molecules in group 2 may be eliminated mainly by non-specific proteolysis or receptor

mediated degradation. Other physicochemical properties such as lipophilicity, charge and

functional groups may further influence the distribution and elimination mechanisms

(Braeckman, 2000).

Conclusion

In summary, human clearance of macro-molecule drugs may be predicted using single-

species allometric scaling with an optimal component value of “0.80” or using multiple-

species simple allometry scaling. No correction by MLP or BRW seems needed for the

scaling of macro-molecules probably due to their elimination mechanism. The therapeutic

proteins are mainly eliminated by non-specific proteolysis that is very different compared to

the complicated oxidative metabolic pathways of the small-molecules. In general, human

clearance of small-molecule drugs may be predicted (AFE value of 2.0) using monkey body

weight scaling and an optimal allometry exponent value of “0.65”. However, the prediction

appears less accurate when mouse, rat or dog data are used for single species allometric

scaling. Human clearance is also well predicted using SA method with AFE < 2.0 for small-

molecules renally excreted. The prediction error is higher for small-molecules hepatically

excreted, and correction using MLP or BRW (ROE, MA and SA+MA methods) could help

to reduce the prediction error. Human clearance of both small- and macro-molecule drugs

could also be predicted using the monkey liver blood flow method, but the prediction using

liver blood flow from other species did not work as well especially for the small molecules.
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For small molecule drugs with complicated oxidative metabolic pathway and significant

cross-species differences in hepatic metabolism, the simple allometry power equation may

not work well for the estimation of human clearance, and in addition to MLP and BRW,

other correction factors (e.g. liver blood blow, in vitro metabolic clearance, free fraction in

blood, binding affinity to receptors or subcellular components, etc.) have been proposed to

enhance the accuracy of prediction. Each of these techniques mentioned above has its own

merits and drawbacks, and some of them have had only partial success in predicting human

clearance. Research work using in vitro, in vivo, and in silico models are still ongoing to

further improve the estimation accuracy of human pharmacokinetic profiles to help reducing

the risk and the tremendous financial costs associated with failed clinical trials.
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Figure 1.
Average fold-error (AFE) for human clearance predictions using single animal species with

allometry exponent fixed in the range of 0.6–0.9.
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Figure 2.
Correlation between the prediction accuracy [ratio of predicted/observed (Pred/Obs)] and

the observed value of human clearance (CL) for small-molecule drugs using single species

allometric scaling with fixed exponent of 0.65 (the average optimal value from Figure 1).

The solid horizontal line represents the identity with Pred/Obs ratio = 1 and the upper and

lower dotted horizontal lines represent 2-fold above and 2-fold below the identity,

respectively. Several outliers with prediction error of greater than 10 were denoted as open

circles. The two dotted vertical lines represent the criteria dividing small-molecules with low

(hepatic extraction ratio < 0.3), medium, and high (hepatic extraction ratio > 0.7) clearance

drugs.
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Figure 3.
Correlation between the prediction accuracy [ratio of predicted/observed (Pred/Obs)] and

the observed value of human clearance (CL) for macro-molecule drugs using single species

allometric scaling with fixed exponent of 0.80 (the average optimal value from Figure 1).

The solid horizontal line represents the identity with Pred/Obs ratio = 1 and the upper and

lower dotted horizontal lines represent 2-fold above and 2-fold below the identity,

respectively.
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Figure 4.
Relationship between human clearance and molecular weight for small- and macro-molecule

drugs. Whiskers of box and whiskers plots represent the 5–95th percentile of data. For

small-molecules: group1, MW < 300 Da (n = 233); group 2, 300 ≤ MW < 400 Da (n = 221);

group 3, 400 ≤ MW (n = 221). For macro-molecules: group 1, MW < 69 kDa (n = 49) and

group 2 (n = 29), MW ≥ 69 kDa (**p < 0.01 as determined by t-test).
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