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a b s t r a c t

Correlative fluorescence and soft X-ray cryo-microscopy/tomography on flat sample holders is perfectly
suited to study the uncompromised physiological status of adherent cells at its best possible
preservation by imaging after fast cryo-immobilization. To understand the mechanism by which
herpesviruses induce nucleoplasmic reticulum, i.e. invaginations of the nuclear envelope, during their
egress from the host cell nucleus, morphologically similar structures found in laminopathies and after
chemical induction were investigated as a potentially more easily accessible model system. For example,
anti-retroviral protease inhibitors like Saquinavir also induce invaginations of the nuclear membranes.
With the help of newly designed multimodal nanoparticles as alignment and correlation markers, and
by optimizing fluorescence cryo-microscopy data acquisition, an elaborate three-dimensional network of
nucleoplasmic reticulumwas demonstrated in nuclei of Saquinavir-treated rabbit kidney cells expressing
a fluorescently labeled inner nuclear membrane protein. In part of the protease inhibitor-treated
samples, nuclei exhibited dramatic ultrastructural changes indicative of programmed cell death/
apoptosis. This unexpected observation highlights another unique feature of soft X-ray microscopy, i.e.
high absorption contrast information not relying on labeled cellular components, at a 3D resolution of
approximately 40 nm (half-pitch) and through a sample thickness of several micrometers. These
properties make it a valuable part of the cell biology imaging toolbox to visualize the cellular
ultrastructure in its completeness.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Soft X-ray cryo-microscopy/tomography (cryoXM/T) is becom-
ing an important and gap-bridging tool in the “post-reductionist

era of biochemistry” [1], by directly imaging biological structures
embedded in their native cellular environment to a resolution of a
few tens of nanometers (recently reviewed, from a more technical
point of view, for instance, in [2], and by [3]). Though hitherto
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mainly accessible at synchrotron facilities, new soft X-ray sources
with a brightness close to early synchrotrons enable three-
dimensional X-ray microscopy in the home laboratory [4,5].
Having started later and, by that, lagging behind the technological
development of electron cryo-microscopy/tomography (cryoEM/T)
by decades, basic design of the light path and of the components
of cryoXM apparatuses is still under extensive consideration and
ongoing improvement [6–8]. Concerning the tomographic sample
stage design of cryoXT end stations, different opinions have been
presented. For example, Parkinson et al. [9] claimed that use of
grids and other mounting systems developed for electron micro-
scopy hinders full rotation and, therefore, a mounting system such
as thin-walled glass capillary tubes is preferable. Otherwise,
“artifacts can be seen in the reconstruction due to missing data”
(quoted from [10]). Evidently, this “missing wedge” problem,
which is well-known and inherent in flat specimen stage designs,
did not hinder cryoET to produce groundbreaking results in
structural biology (for a recent review, see, for instance, [11]).
Alleviating techniques originally developed for electron (cryo-)
tomography of flat samples, like dual axis or Saxton scheme tilt
series acquisition [12–15], might also help in cryoXT. Furthermore,
taking shading/superposition in real samples into account, also the
single-axis tomographic approach using a capillary sample holder
misses data and does not result in isotropic resolution. Thus,
elongated features oriented nearly perpendicular to the tilt axis
suffer from a loss of resolution [16].

We consider different sample stage designs in cryoXT as
practical alternatives, adequately chosen to match the biological
object studied. Capillaries are perfectly suited for smaller particles/
cells in suspension, like large viruses, bacteria, unicellular green
algae, yeast or blood cells [17–19]. A certain and unavoidable
reduction of the signal to noise ratio by the material of the
capillary is balanced by full rotational data sampling, allowing
for improved axial resolution in three-dimensional reconstruc-
tions. Flat, adherent cells such as mammalian cell monolayer
cultures are better imaged on flat sample carriers/grids, serving
as growth substrate. This way, detachment steps like trypsiniza-
tion, necessary for loading them into capillary holders [9], can be
omitted, thus leaving especially delicate and fragile cell lines like
neurons intact. Otherwise, this harsh treatment might activate

apoptotic pathways (examples showing dendrites/axons/synapses
in cryoET, for instance, in Ref. [20] or [21] and [22]). Cells on
supporting grids can readily be exposed to biological or chemical
challenges, and incubation can be stopped at certain time points
by cryo-immobilization without compromising the physiological
status by further sample preparation. For example, PTK cells
infected on-grid with vaccinia virus were analyzed by cryoXT,
discriminating different maturation stages of the virus [23]. Here,
we present results after incubation of mammalian cells on flat
cryoXT grids with a therapeutic drug. Ultrastructural changes
in the thickest cellular compartment, the nucleus, which is
accessible to higher resolution imaging techniques like cryoET only
after elaborate sample thinning procedures [24,25], are character-
ized in toto.

Focusing on cell biological applications [26], the methodologi-
cal development gained momentum by correlating cryoXM with
fluorescence cryo-microscopy (cryoFM; for review, see Refs.
[3,27]). The power of this combined approach has recently been
shown by localizing a fluorescently labeled protein within
nanometer-resolved sub-cellular/sub-organelle structures. In that
study, pUL34, the nuclear membrane-anchored component of the
nuclear egress complex (NEC) of the Herpesviridae which interacts
with viral pUL31, was found entering the perinuclear space in
pUL34/pUL31 co-expressing mammalian cells by expanding the
nucleoplasmic reticulum (NR) with vesicular structures induced by
the NEC [28,29]. The follow-up study presented here was designed
to analyze functional and structural aspects of the nuclear envel-
ope modifications occurring during herpesvirus nuclear egress (for
a recent review, see [30]), by employing a biochemically well
characterized and more easily accessible experimental model.
Thus, human immunodeficiency virus protease inhibitors like
Saquinavir that are part of HAART (highly active antiretroviral
therapy) have been reported to also induce invaginations of the
nuclear membranes [31]. These invaginations, so-called type I/II
NR (for review, see [32]), are also known from laminopathies like
the ageing disorder Hutchinson-Gilford progeria syndrome [33].
In parallel, we tested different multimodal nanoparticle designs as
alignment and targeting/correlation markers for cryoXT (for recent
review and applications not only in nano-imaging, see [34]
and [35]). Although only partly serving the biological purpose of

Fig. 1. Quantum dot-containing nanoparticles as alignment markers in cryoXT of vitreous mammalian cells. (A) Sub-area of the zero degree image taken from a tilt series of a
nucleus of a rabbit kidney epithelial-like RK13 cell (sample thickness: 8 mm) stably expressing LBR1TM-GFP (cf. Supplement Movie 1, pre-aligned tilt series). Note the low
absorbance contrast of photoluminescent aqueous CdSe/ZnS microspheres (λmax.em.¼625 nm; diameter: �150 nm; yellow frame) as compared to standard gold-coated silica
beads (center). (B) Density profiles of the other tested multimodal nanoparticles, polyelectrolyte-Qdots 605 coated gold beads (left; diameter: 208 nm) and standard gold-
coated silica beads (right; diameter: 267 nm) in a zero degree image of a cryoXT tilt series (sample thickness: 3 mm). Note that the polyelectrolyte-Qdots 605 coat
(λmax.em.¼605 nm) of the former nanoparticles, although imaged without cellular background in a hole of the Quantifoil carbon coat of the grid, did not provide sufficient
contrast to be detected separately from the gold core (total diameter of the nanoparticles measured by dynamic light scattering: 277 nm, standard deviation 8 nm; cf.
Supporting information). (C–E) Soft X-ray cryo-tomography of two nuclei before cytokinesis in a RK13 cell expressing LBR1TM-GFP, incubated on-grid with 20 mM Saquinavir
for 48 h. The tilt series was aligned with the help of polyelectrolyte-Qdots 605 coated gold beads as alignment markers (green circles in C: three polyelectrolyte-Qdots 605
coated gold beads in the periphery of the image frame, and two cellular marker points, most probably lipid bodies, were used for alignment; asterisk: ice contamination on
the sample surfaces; cf. Supplement Movie 2, pre-aligned tilt series). The next panels show the corresponding reconstruction (D, cyan bar: measuring position of the density
profile shown as inset; profile determined from unbinned data, pixel size: 9.9 nm, revealing the inner and outer nuclear membrane of the upper nucleus with a distance of
40 nm; cf. Supplement Movie 3, sliced view through the tomographic reconstruction; thickness of reconstructed volume: 4.1 mm) and visualization as rendered volume with
inverse contrast (E, arrows: nucleoplasmic reticulum; Supplement Movie 4, animated sub-volume of the lower nucleus). Scale bars are 500 nm (A) and 2 mm (C–E).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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this study, i.e. to provide a robust experimental model for induc-
tion and correlated cryoFM/cryoXT characterization of type I/II NR,
our results from Saquinavir treated cells give new insights into
programmed cell death/apoptosis, a cellular process not yet
studied by cryoXM/T.

2. Material and methods

2.1. Cells and incubation

Rabbit kidney (RK13) cells expressing the N-terminal 285
amino acids comprising the nucleoplasmic tail and the first
transmembrane span of human lamin B receptor protein, fused
to eGFP (enhanced green fluorescent protein), were generated by
transfection with plasmid pLBR1TM-GFP [36] by calcium phos-
phate co-precipitation [37] and selection with 0.5 mg/ml G418.
Stable eGFP-positive cell clones showing nuclear rim staining were
isolated by aspiration and further characterized. For the incubation
experiments described here, this cell line (catalog no. RIE 1213 of
the Collection of Cell Lines in Veterinary at the FLI, Greifswald-
Insel Riems, Germany) was grown in Dulbecco's modified Eagle
medium (Gibco-Invitrogen, Karlsruhe, Germany) supplemented
with 10% (w/v) fetal calf serum and 1% (v/v) PSN Antibiotic
Mixture (Gibco-Invitrogen). HeLa cells (ATCC CCL-2, human cervi-
cal adenocarcinoma cells) transiently expressing eGFP-tagged
lamin B1 were cultivated as described above, and details for their
transient transfection protocol are given in Ref. [38].

Saquinavir (mesylate) was provided by the NHS Reagent
Program (https://www.aidsreagent.org) and was prepared as a
5 mM stock, either in methanol or in dimethyl sulfoxide (DMSO).
We found the latter stock solution yielding a stronger reaction
during incubation. That might be related to a lower solubility of
Saquinavir in methanol as compared to DMSO [39]. Controls were
incubated with the corresponding concentration of the solvent
only. All incubation steps were performed directly with the cells
growing on the perforated carbon foil of the HZB-2 gold grids
arranged in plastic microscope slide growth chambers (m-slide
2�9 well, Ibidi GmbH, Munich, Germany; [29]).

2.2. Preparation of the nanoparticles

Size-tunable photoluminescent aqueous CdSe/ZnS (emission
maximum: 625 nm) microspheres were prepared as described [40].

Multilayer polyelectrolyte-Qdots 605 coated (commercial quan-
tum dots with emission maximum at 605 nm; Invitrogen #
Q21701MP) gold beads were prepared essentially as described
[41]. Firstly, commercial gold nanoparticles with mean core diameter
198713 nm (as measured from transmission electron microscopy
images), a hydrodynamic diameter of 21072 nm and a ζ-potential
of �20.370.7 mV (both measured in Milli-Q water with dynamic
light scattering in a zetasizer) were coated with several layers of
polyelectrolytes with opposite charge by means of the Layer-by-
Layer (LbL) approach [42]. Poly(styrene sulfonate) (PSS) and poly
(allylamine hydrochloride) (PAH) were used as the negative and the
positive polyelectrolyte, respectively. Nine layers of polyelectrolytes
were added on the gold beads (i.e. Au@(PAH/PSS)4 PAH) making
their surface positively charged. It is known that the presence of
metallic nanostructures in close proximity to quantum dots can
modify their photoluminescence properties [43,44]. The number of
polyelectrolyte layers was chosen to avoid the quenching of the
Qdots 605 nanoparticles since every layer has been reported to have
a thickness between 0.5 and 2 nm [45,46]. Qdots 605 nanoparticles
were functionalized with the polymer poly(isobutylene-alt-maleic
anhydride) as reported elsewhere [47] and therefore they were
negatively charged (the ζ-potential and hydrodynamic diameter

measured in Milli-Q water were �35.370.6 mV and 1972 nm,
respectively). Negatively charged Qdots 605 nanoparticles were
attached on the gold beads due to electrostatic interactions. One
last layer of PSS was added to the core-shell structure. The final
hydrodynamic diameter and ζ-potential were 27774 nm and
�9.570.9 mV, respectively. Nanoparticle suspensions were concen-
trated by gentle centrifugation or by sedimentation overnight. A
detailed “Protocol for the synthesis and characterization of
polyelectrolyte-Qdots 605 coated gold beads” is provided in the
Supporting information.

2.3. Sample preparation for fluorescence and soft X-ray
cryo-microscopy

A detailed “Protocol for partially coherent X-ray microscopy”
is provided in the Supplement of [48]. Improvements or alter-
native procedures of the sample preparation steps for cryoXM/T
at the HZB TXM at beamline U41-FSGM of the BESSY II electron
storage ring in Berlin/Germany, including live-cell microscopy
and cryo-immobilization by plunge freezing, are explained in
Ref. [29], and were employed here. Before cell seeding and
incubation, one microliter of the respective highly concentrated
nanoparticle suspension was applied to the carbon-coated
mesh area of the grids, and, additionally, two microliter of a
1:4 dilution in culture medium on top of the grown/incubated
cells, immediately before blotting and plunge freezing.

2.4. External and in-column light cryo-microscopy

External cryoFM was performed with a second-generation
cryo-holder (Cryostage2) essentially as described in [49]. In
order to avoid getting objectives in touch with the rim of the
dedicated objective cavity underneath the Cryostage2 during
changes of magnification, the working position of the motor-
ized stage (DC 120�100, Märzhäuser, Wetzlar, Germany) on an
AxioObserver.Z1 inverted microscope (equipped with HXP 120
for fluorescence excitation and an AxioCam MRm for detection;
Carl Zeiss MicroImaging GmbH, Goẗtingen, Germany) was
statically brought close to its upper focus limit. After transfer-
ring the vitreous sample on a HZB-2 grid into the modified
sample holder of the Cryostage2 (pre-cooled with a Norhof LN2

Microdosing system, Series 900, Maarssen, The Netherlands),
an automated three channel grid scan was performed (phase
contrast; eGFP: eGFP HQ filter set F36-528 from AHF analysen-
technik AG, Tübingen, Germany; nanoparticles: Texas Red ET
filter set F46-008 from AHF), first with a 20� objective
(numerical aperture, N.A. 0.4), and the latter two detection
channels then separately, due to exceeding file size, with a long
working distance 63� objective (N.A. 0.75).

A technical outline of the in-column epi-fluorescence
and reflected light microscope of the HZB TXM is provided by
Schneider et al. [3], and was deployed for this study as detailed in
Ref. [29].

2.5. Soft X-ray cryo-microscopy/tomography at the HZB TXM
at beamline U41-FSGM of the BESSY II electron storage ring in
Berlin/Germany

Details of data acquisition and analysis are given in [29].
Targeting on areas in the vitreous sample suitable for tomo-
graphy was guided by external or, additionally, in-column
cryoFM data. Soft X-ray exposure was set to 4 s or longer to
average illumination fluctuations as much as possible, and the
monochromator slit was adjusted to exploit only one third of
the full dynamic range of the camera, in order to avoid radiation
damage during tilt series acquisition. Tilt series presented here
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were taken with the 25 nm zone plate objective (object pixel
size: 9.9 nm), from �601 to 601 tilt angle with 11 spacing, by
default.

Tomographic reconstruction was performed using the
Etomo GUI of IMOD [50,51]. If not stated otherwise, tomo-
grams and slices presented here are binned with a kernel of
2�2�2, and slices are shown in the corresponding voxel size
thickness. Visualization was performed with Amira 5.2 (Visage
Imaging GmbH, Berlin) and Adobe Photoshop CS4 (Adobe
Systems Inc.).

3. Results

3.1. Photoluminescent aqueous CdSe/ZnS microspheres as fiducial
markers

Fiducial-marker based alignment of tomographic tilt series
is the ‘gold’ standard to assure highest possible resolution in
soft X-ray as well as in electron cryo-tomograms. Thus, finding
chemically inert nanoparticles providing high soft X-ray con-
trast, with a diameter of approximately 200 nm and, preferably,
fluorescence for correlative microscopic purposes, is of high
priority (Fig. 1). Good candidates exhibiting a bright fluores-
cence signal which were thought, potentially, being more
resistant to bleaching by soft X-ray radiation than the fluor-
ophores in our earlier study [29], are quantum dots like in size-
tunable photoluminescent aqueous CdSe/ZnS microspheres
[40]. Such microspheres are composed of oligomers of amphi-
philic polymaleic acid n-hexadecanol ester, with multiple
embedded CdSe/ZnS quantum dots. They were tested as align-
ment markers in cryoXT of vitreous adherent cells (Fig. 1A). In
their current shape, i.e. �150 nm in diameter in which the
CdSe/ZnS quantum dots are not adding much soft X-ray con-
trast to the polymeric spheres, the center of each microsphere
could not be determined reliably throughout the full tilt series,
thus preventing high-quality alignment of the images at least
for thicker samples (45 mm; cf. Supplement Movie 1). How-
ever, reliable marker particle tracking was possible with stan-
dard gold markers (cf. [48]), consisting of silica-spheres with a

gold shell, �270 nm in diameter [52], up to high tilt angles
where, due to limits in the depth of focus of the zone plate
objective of the soft X-ray microscope, images get blurred in
regions off the tilt axis (Fig. 1A, Supplement Movie 1). Still, the
fluorescence of the aqueous CdSe/ZnS microspheres was very
bright (peak emission wavelength: 625 nm; [40]), possibly
allowing to localize single nanoparticles in correlative cryoFM.
Thus, we consider it worthwhile to improve the performance of
these nanoparticles, by enlarging the diameter to at least
200 nm, and by increasing the concentration of CdSe/ZnS
quantum dots in the polymeric microspheres. Additionally,
polystyrene microspheres with embedded CdSe/ZnS quantum
dots were tested without success, due to low contrast and even
smaller size (�80 nm in diameter; data not presented).

3.2. Polyelectrolyte-Qdots 605 coated gold beads as fiducial markers

Multilayer capsules with a massive gold core (Fig. 1B) and a
polyelectrolyte shell comprising quantum dots performed simi-
larly well, and sometimes even better, as alignment markers
compared to the standard silica-spheres with a gold shell (cf.
[48]; Fig. 1C–E). As exemplified along the data analysis steps of
cryoXT in cells treated with Saquinavir, the high contrast and, thus,
excellent traceability of the polyelectrolyte-Qdots 605 coated gold
spheres in the tomographic tilt series (Fig. 1C; Supplement
Movie 2) added to a low residual error mean of the alignment
(0.78, standard deviation: 0.47). This resulted in a tomographic
reconstruction revealing structural details at a 3D resolution close

Fig. 2. Modification of Cryostage2 (MPI Biochemistry, Martinsried) to enable
correlative fluorescence cryo-measurements of vitreous samples, on dedicated
grids (IFR-1 or HZB-2) for the soft X-ray cryo-microscope at the beamline U41-
FSGM of BESSY II (Berlin). (A) Overview of the Cryostage2 mounted in a motorized
microscope stage of an inverted light microscope. (B) Modified specimen slider of
the Cryostage2 (left, with HZB-2 gold grids in position 2 and 4) in comparison to the
original slider for 3.05 mm standard electron microscopic grids only (right).
(C) Loading and (D) imaging position of a HZB-2 gold grid in the sample chamber
of the Cryostage2.

Fig. 3. Polyelectrolyte-Qdots 605 coated gold beads as correlation markers in
fluorescence and cryoXT. RK13 cells stably expressing the (inner) nuclear
membrane marker protein LBR1TM-GFP (green channel in A–D) were incubated
on a Quantifoil R2/2 carbon-coated HZB-2 gold grid with 20 mM Saquinavir for
48 h. Polyelectrolyte-Qdots 605 coated gold beads (λmax.em.¼605 nm; red
channel in A-D) were applied to the carbon support film before cell seeding
and incubation. Pre-scanning of the sample was performed with a 20�
objective (N.A. 0.4) at 37 1C in an inverted setup, i.e. the perforated carbon
support foil facing the objective lens, 4 h before vitrification (A), and after
vitrification at �170 1C on a modified Cryostage2 with the cells facing the
objective lens (B; the same grid slots as in A are depicted). Note the shading/
absorption of epi-fluorescence by the support foil in A. (C-E) Correlation of
fluorescence and cryoXT data in a nucleus of a Saquinavir-treated RK13 cell.
Fluorescence was acquired externally on a Cryostage2 (C; objective: 63� , N.A.
0.75), and in-column of the HZB TXM (D; objective: 100� , N.A. 0.75). The lateral
position of a single polyelectrolyte-Qdots 605 coated gold bead is marked by an
asterisk in C-E, and additionally by orange XY-lines in the (rendered) volume of
the X-ray tomogram (C–E, arrows: nucleoplasmic reticulum; cf. Supplement
Movie 5, dynamic superimposition of D and E; Supplement Movie 6, sliced view
through the tomographic reconstruction; thickness: 2.8 mm). Scale bars are
50 mm (A and B) and 2 mm (C–E). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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to the practical limit (cf. [29]), like visualization of the two
membranes of the nuclear envelope (Fig. 1D, Supplement
Movie 3), and the NR running through the nucleus, in a recon-
structed subvolume (Fig. 1E, Supplement Movie 4).

In order to perform cryoFM for subsequent correlation with
cryoXT of the vitreous specimens, and to save precious beam
time at the HZB TXM in Berlin, the Cryostage2 (MPI of
Biochemistry, Martinsried, [49]) was modified to support the
use of HZB-2 grids (Fig. 2). Thus, plunge frozen samples can be
pre-scanned and pre-selected in the home laboratory, increas-
ing search efficiency at the HZB TXM, and in advance providing
fluorescence data for later correlation, at a similar resolution as
it can be achieved with the in-column light cryo-microscope of
the HZB TXM in Berlin (Fig. 3; cf. [3,29]). The red fluorescence of
the polyelectrolyte-Qdots 605 coated gold beads was detect-
able under cell growth conditions (37 1C; Fig. 3A) and in
vitreous samples at approximately �170 1C (Fig. 3B). The
fluorescence signal was strong enough to localize single nano-
particles with our equipment for external or in-column corre-
lative cryoFM (long working distance objectives; Fig. 3C–E). In
the analyzed nucleus of a Saquinavir-treated RK13 cell stably
expressing the (inner) nuclear membrane marker protein
LBR1TM-GFP, a part of the green fluorescing structures was
found to correlate with the tubular structures of the NR seen by
soft X-ray data, demonstrating the membranous character of
these tubes (Fig. 3C–E, Supplement Movies 5 and 6).

Comparison between in-column cryoFM before and after
cryoXT data acquisition showed that the fluorescence of quantum
dots was strongly diminished by soft X-ray irradiation (Fig. 4A–E),
resembling earlier observations for fluorescence of GFP and of
FluoSpheres [29]. Occasionally, red fluorescing masses were found,
and non-fluorescent nanoparticles were also observed. This might
indicate a partial instability of the Qdots 605-containing poly-
electrolyte shell. Additional purification procedures and/or more
gentle concentration steps avoiding centrifugation might help to
improve the marker preparation.

3.3. Apoptosis in Saquinavir-treated nuclei

In this study, we applied Saquinavir, an antiviral therapeutic
protease inhibitor known to also cause prelamin A accumulation
as a side effect [31] and, therefore, to induce changes in the
nucleus which are comparable in ultrastructure to what we have
observed in cells co-expressing herpesvirus NEC proteins pUL31
and pUL34 [29]. Unexpectedly, in most of the cells treated with a
moderate Saquinavir concentration, a clear apoptotic phenotype
was observed with compacted and segregated chromatin masking
other structural changes in the nucleus almost completely (cf.
Table 1). Thus, fluorescent proteins anchored to the inner nuclear
membrane (here: lamin B receptor construct, LBR1TM-GFP; [36])
were no longer usable as a reliable marker to find tubes of NR in
correlated cryoXT data (Fig. 5A and B; Supplement Movie 10). In
these apoptotic nuclei, we observed detachment of the chromatin
area from the nuclear envelope with a distinct boundary of
unknown origin but not involving the inner nuclear membrane,
as shown by the still intact double membranes of the nuclear
envelope observed regularly at least in the higher resolved parts of
the tomograms (Fig. 5B, C, arrowheads; cf. Supplement Movies 10
and 11). Aside from partial disintegration of both nuclear mem-
branes (Fig. 5C, Supplement Movie 11), another apparent change
in the overall structure of the apoptotic nuclei was their excep-
tional flatness on the growth substrate (thinnest measurement:
1.5 mm). Typical symptoms for apoptotic/autophagic processes in
Saquinavir-treated samples, such as extensive vesiculation in the
cytoplasm, were also observed by live-cell microscopy in control
experiments (Fig. 5D–G; Supplement Movies 12 and 13), and in

soft X-ray cryo-tomograms of HeLa cells transiently expressing
GFP-tagged lamin B1, after 48 h of incubation with 20 mM Saqui-
navir (Supplement Movie 14).

Fig. 4. Fluorescence of polyelectrolyte-Qdots 605 coated gold beads gets bleached
by soft X-ray irradiation during tomographic data acquisition (red channel in B–E).
(A) Zero degree image of a tilt series. Note the bead aggregate, embedded in a
grainy matrix, in the upper part of the image (cf. Supplement Movie 7, pre-aligned
tilt series). (B–E) Fluorescence was acquired from two areas of a sample of RK13
cells stably expressing LBR1TM-GFP (green channel in B–E), incubated on a
Quantifoil R2/2 carbon-coated HZB-2 gold grid with 20 mM Saquinavir for 48 h,
in-column of the HZB TXM before (B and D) and subsequently to soft X-ray
exposure of �109 Gy (C, E; cf. Supplement Movie 8, dynamic superimposition of B
and C, and Supplement Movie 9, dynamic superimposition of D and E). As camera
settings were kept exactly the same, it demonstrates that fluorescence of aggre-
gated (B and C) and single polyelectrolyte-Qdots 605 coated gold beads (D and E),
applied in excess as alignment and correlation markers before cell seeding and
incubation, was bleached almost completely. The yellow square in B marks the
camera frame area at 01 tilt angle of the tilt series depicted in A. The yellow frame
in D marks the area of the tilt series shown in Fig. 3E and Supplement Movie 6.
Scale bars are 2 mm (A) and 10 mm (B–E). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Number of apoptotic/non-apoptotic nuclei observed in cryoXT data of vitreous
RK13 cells expressing LBR1TM-GFP, in dependence on incubation with 20 mM
Saquinavir.

Time of incubation

24 h 48 h

Control n.d. 2a/10b

20 mM Saquinavir, methanol stock n.d. 4/5
20 mM Saquinavir, DMSOc stock 15/0 n.d.

a Number of nuclei exhibiting apoptotic phenotype.
b Number of nuclei exhibiting no signs of apoptosis.
c Dimethyl sulfoxide.
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4. Discussion

Our experience with methods for fiducial-less alignment of
tomographic tilt series, based on the patch tracking mode of
IMOD/Etomo GUI [50] and a MATLAB implementation of algo-
rithms described in [53] in combination with the global alignment
correction capabilities of IMOD [51], confirm that manual align-
ment of cryoXT tilt series using fiducial markers provides in most
cases better results than automated feature tracking methods,
especially in thicker samples [54,55]. Thus, the development of
efficient fiducial markers for cryoXT is important to achieve high
resolution in tomographic reconstructions (Fig. 1). Furthermore, a
combination of high soft X-ray contrast with fluorescence emis-
sion in the very same multifunctional nanoparticle facilitates
correlative cryoFM/XT approaches (Fig. 3), potentially providing
multimodal markers to enable a localization/correlation accuracy
with high precision, as it has been demonstrated recently for
cryoFM/EM [56,57]. Thus, the added value of having both features,
fluorescence emission and soft X-ray absorption, in one nanopar-
ticle together is that cryoFM and cryoXM data can be spatially
registered to a common coordinate system, allowing for high
statistical confidence in correlating molecule-specific with struc-
tural (context) information. For this purpose, small point-like
markers are better suited than the regular two-micrometer holes
in the Quantifoil carbon growth support that can be seen in all
detection modalities, too [29]. In our experiments, the expecta-
tions toward high soft X-ray contrast and high fluorescence
emission efficiency of the markers were fulfilled by a design with
a massive gold core and quantum dots embedded in a multi-
layered shell around the core. Optimal thickness of the latter and,
thus, ensuring a certain distance between quantum dots and the
surface of the gold spheres to prevent fluorescence quenching
[58], was achieved by variation in the number of polyelectrolyte
layers. An increase in mechanical and chemical stability of the
multilayered nanoparticles, for instance in solutions with higher
ionic strength like cell growth media, might be achieved by
addition of a final silica layer.

Soft X-ray stability of quantum dots as fluorescent markers in
biological cryoXM has been studied before [59,60]. Since fluorophores
like organic dyes or genetic marker/tags are functionally destroyed by
rather low doses of soft X-ray irradiation, our results demonstrating
strong soft X-ray-induced photobleaching also of quantum dot fluor-
escence reconfirm that acquisition of fluorescence data is required
before any X-ray exposure ([29]; Fig. 4). In addition to the establish-
ment of an in-column epi-fluorescence and reflected light

cryo-microscope in the HZB TXM in Berlin [3], this is now supported
by expanding the sample spectrum of the Cryostage2 to IFR-1 or HZB-
2 grids in a more reproducible way than it has been shown using the
former Cryostage model from the Baumeister lab in Martinsried ([61];
cf. Fig. 2). Thus, in preparation for analysis at the synchrotron beam-
line, target structures and sample spots suitable for cryoXT can be pre-
selected in the home laboratory. This has also been demonstrated
recently employing a non-motorized cryo-stage (Linkam Scientific
Instruments, Epsom, UK; cf. [62]). High-numerical aperture cryo-
objectives are not commercially available, and the described light/
fluorescence cryo-microscopes are restricted to long- or cooled short-
working distance air objectives (for technical overview, see [63]),
currently achieving a N.A. of 0.95 [56]. The only application of a cryo-
immersion objective described so far, claiming a final N.A. of 1.3 under
cryo-conditions, is based on the combination of two objectives of
manufacturers that went out of business already in the first half of the
last century [64].

In this study, newly designed polyelectrolyte-Qdots 605 coated
gold beads helped us as tomographic alignment and fluorescent
correlation markers to visualize an elaborate three-dimensional
network of the LBR1TM-GFP-labeled NR in nuclei of Saquinavir-
treated rabbit kidney cells (Figs. 1 and 3). The overall features of
this network, comprising mostly flat and tubular invaginations of
the nuclear envelope, were in accordance to fluorescence and
conventional electron microscopy data presented before in com-
parable experimental systems [32,33]. In our previous study in
viral pUL34/pUL31 co-expressing mammalian cells, the NR tubes
were filled with vesicular structures induced by the NEC [29].
Unfortunately, due to their strong apoptotic phenotype, nuclei of
Saquinavir-treated cells were mostly not suitable to study the NR
by correlative cryoFM/XT in detail. We interpret the dramatic
structural changes in the nucleus, revealed here by cryoXT, as
apoptosis because Saquinavir is known to induce this highly
regulated and energy-dependent cellular process [65], and the
characteristics observed by cryoXT were in accordance with
general morphological changes in apoptotic nuclei (for review,
see [66]; Fig. 5). Thus, the process of apoptotic nuclear dismant-
ling includes events affecting the nuclear envelope, such as
detachment from chromatin and proteolysis of nuclear membrane
and pore proteins, as well as proteolysis of the nuclear matrix and
chromatin condensation in coordination with DNA fragmentation
[67]. However, the concentration of Saquinavir applied in our
study (20 mM), yielding an apoptotic morphology in most of the
nuclei of our cells after 24 h of incubation, was inefficient to
induce apoptosis/autophagy in a panel of ovarian cancer cell

Fig. 5. Apoptosis observed by cryoXT. In RK13 cells expressing LBR1TM-GFP (green channel in A, E and G) and incubated with 20 mM Saquinavir for 24 h, linear structures,
such as for Fig. 3C–E, in in-column fluorescence cryo-microscopic images (A; asterisk) were not matched by tubular structures in the soft X-ray cryo-tomogram of the same
nucleus (B; cf. Supplement Movie 10, sliced view through the tomographic reconstruction; total thickness: 2.6 mm), structures possibly marking the remnants of chromosome
territories appeared (B, hashtag), and the chromatin area was clearly detached from the nuclear envelope (the nuclear envelope is marked by arrowheads in B and C; note
outer and inner nuclear membrane, cf. Supplement Movies 10 and 11) and was confined by a boundary of unknown origin (B, arrow). Sometimes, the nuclear envelope was
found open to the cytoplasm (C, arrows; cf. Supplement Movie 11, sliced view through this tomographic reconstruction; thickness: 1.8 mm). As compared to the control (D),
live cell-microscopic phase contrast images revealed massive cytoplasmic vesiculation in RK13 cells exposed for 48 h to 20 mM Saquinavir (F, arrow). In the GFP-fluorescence
channel of these live cell-microscopic measurements, ‘speckles’ in the nuclei of the treated samples were more prevalent (G), as compared to the control (E; cf. Supplement
Movie 12, dynamic superimposition of D and E, and Supplement Movie 13, dynamic superimposition of F and G). Scale bars are 2 mm (A–C) and 20 mm (D–G).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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lines [39]. This might be explained by the fact that stable over-
expression of the LBR1TM-GFP tag, to observe the NR in fluores-
cence microscopy, made the RK13 cells more sensitive for
induction of apoptosis (cf. Table 1, controls). Additionally, it
might point to a higher sensitivity of cryoXM to detect apoptotic
changes in the nucleus, since live-cell phase contrast and fluor-
escence microscopy did not reveal clear differences between the
morphology of nuclei of Saquinavir-treated and control cells, in
contrast to cytoplasmic changes (Fig. 5D–G; Supplement
Movies 12 and 13). Similar apoptotic changes in the nuclear
ultrastructure were also observed in cryoXT data of Saquinar-
treated HeLa cells transiently expressing GFP-tagged lamin B1
(Supplement Movie 14), and in a nucleus of an untreated
cerebellar granule cell (not presented). Primary fibroblasts tran-
siently expressing GFP-tagged lamin B1 and treated with Saqui-
navir were studied before by fluorescence and conventional
transmission electron microscopy, but did not reveal apoptotic
events [31,32]. Thus, cryoXT, providing direct soft X-ray absorp-
tion contrast of natively preserved cellular components and
compartments in their full three-dimensional expansion, might
be even better suited to detect apoptosis in the nucleus than
conventional transmission electron microscopy relying on heavy-
metal adsorption of structures in thin sections, considered as
gold standard in apoptosis research so far [68].

In this project, it was not our principal aim to study apoptosis/
programmed cell death by cryoXT. Observing the described
changes in the nuclear ultrastructure in different cell types might
indicate a broader relevance of these data for research on this
important cell biological process [69]. Thus, we decided to present
this preliminary findings to document the potential of cryoXT for
apoptosis research, perhaps in further studies employing defined
model systems in an integrative approach of biochemical and
imaging methods (see, for instance [70,71]). In fact, other cryoXT
studies on nuclear ultrastructure have shown already comparable
features without connecting it to apoptotic events [72,73]. Unfor-
tunately, in these reports the spatial resolution does not allow to
support that speculation, by discriminating, for instance, the two
membranes of the nuclear envelope from each other and/or from
boundary layers around condensed chromatin, as shown here
(Fig. 5B and C; Supplement Movies 10 and 11). For investigating
the nature of the observed boundary layers in apoptotic nuclei,
also other X-ray cryo-imaging methods might be applied: X-ray
fluorescence tomography or energy-specific X-ray scanning micro-
scopy might help to elucidate by nanoscale elemental/chemical
mapping if, for instance, phosphor is enriched in these structures
(for methodological review, see Ref. [2]).

From a methodological point of view, data presented here
emphasize the advantages of cryoXM as compared to fluorescence
microscopy. In cryo-immobilized samples, cryoXM/T provides
high-contrast three-dimensional structural data based on absorp-
tion contrast, at a resolution better than super resolution in
fluorescence microscopy, not relying on fluorophore-tagged cell
components. Thus, a complete cell can be imaged in its native
structural state, making cryoXM/T together with other emerging
cryo-imaging approaches like focused ion beam milling for serial
block face scanning electron microscopy in vitreous samples [74] a
useful technique in an integrative toolbox of imaging methods for
cell biology research [75].

5. Conclusions

An elaborate three-dimensional network of the LBR1TM-GFP-
labeled NR was imaged in nuclei of Saquinavir-treated rabbit
kidney cells by correlative cryoFM/XT on flat sample grids. In
these experiments, newly designed polyelectrolyte-Qdots 605

coated gold beads were successfully employed as alignment and
correlation markers. In many of the cells treated with a moderate
Saquinavir concentration, however, compacted and segregated chro-
matin masked other structural changes in the nucleus. These dramatic
rearrangements in the nuclear ultrastructure were interpreted as
caused by programmed cell death/apoptosis. The presented data
recommend cryoXT as an auspicious imaging technique in apoptosis
research, especially in the cell nucleus.
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M. Eibauer, H. Gnaegi, W. Baumeister, J.M. Plitzko, Micromachining tools and
correlative approaches for cellular cryo-electron tomography, J. Struct. Biol.
172 (2010) 169–179.

[50] J.R. Kremer, D.N. Mastronarde, J.R. McIntosh, Computer visualization of three-
dimensional image data using IMOD, J. Struct. Biol. 116 (1996) 71–76.

[51] D.N. Mastronarde, Correction for non-perpendicularity of beam and tilt axis in
tomographic reconstructions with the IMOD package, J. Microsc. 230 (2008)
212–217.

[52] C. Graf, M. Meinke, Q. Gao, S. Hadam, J. Raabe, W. Sterry, U. Blume-Peytavi,
J. Lademann, E. Ruhl, A. Vogt, Qualitative detection of single submicron and
nanoparticles in human skin by scanning transmission X-ray microscopy, J.
Biomed. Opt. 14 (2009) 021015.

[53] C.O.S. Sorzano, C. Messaoudi, M. Eibauer, J.R. Bilbao-Castro, R. Hegerl,
S. Nickell, S. Marco, J.M. Carazo, Marker-free image registration of electron
tomography tilt-series, BMC Bioinform. 10 (2009) 124.

[54] E. Hummel, P. Guttmann, S. Werner, B. Tarek, G. Schneider, M. Kunz, A.
S. Frangakis, B. Westermann, 3d ultrastructural organization of whole Chla-
mydomonas reinhardtii cells studied by nanoscale soft X-ray tomography, PLoS
One 7 (2012) e53293.

[55] D.Y. Parkinson, C. Knoechel, C. Yang, C.A. Larabell, M.A. Le Gros, Automatic
alignment and reconstruction of images for soft X-ray tomography, J. Struct.
Biol. 177 (2012) 259–266.

[56] M. Schorb, J.A.G. Briggs, Correlated cryo-fluorescence and cryo-electron
microscopy with high spatial precision and improved sensitivity, Ultramicro-
scopy 143 (2014) 24–32.

[57] P. Schellenberger, R. Kaufmann, C.A. Siebert, C. Hagen, H. Wodrich,
K. Grünewald, High-precision correlative fluorescence and electron cryo
microscopy using two independent alignment markers, Ultramicroscopy 143
(2014) 41–51.

[58] X.D. Ma, H. Tan, T. Kipp, A. Mews, Fluorescence enhancement, blinking
suppression, and gray states of individual semiconductor nanocrystals close
to gold nanoparticles, Nano Lett. 10 (2010) 4166–4174.

[59] J.F. Steinbrener, Scanning luminescence X-ray microscopy exploring the use of
quantum dot nanocrystals as high spatial resolution biological labels (Master
thesis), Department of Physics and Astronomy, Stony Brook University, NY,
2006.

[60] S.K. Moser, A new combined detection system for STXM and the applicability
of (CdSe)ZnS nanocrystals to SLXM (Master thesis), Department of Physics and
Astronomy, Stony Brook University, Stony Brook University, Stony Brook, NY,
2008.
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