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Abstract

Accurately quantifying gene expression levels is a key goal of experiments using RNA-sequencing to assay the
transcriptome. This typically requires aligning the short reads generated to the genome or transcriptome before quantifying
expression of pre-defined sets of genes. Differences in the alignment/quantification tools can have a major effect upon the
expression levels found with important consequences for biological interpretation. Here we address two main issues: do
different analysis pipelines affect the gene expression levels inferred from RNA-seq data? And, how close are the expression
levels inferred to the ‘‘true’’ expression levels? We evaluate fifty gene profiling pipelines in experimental and simulated data
sets with different characteristics (e.g, read length and sequencing depth). In the absence of knowledge of the ‘ground
truth’ in real RNAseq data sets, we used simulated data to assess the differences between the ‘‘true’’ expression and those
reconstructed by the analysis pipelines. Even though this approach does not take into account all known biases present in
RNAseq data, it still allows to estimate the accuracy of the gene expression values inferred by different analysis pipelines.
The results show that i) overall there is a high correlation between the expression levels inferred by the best pipelines and
the true quantification values; ii) the error in the estimated gene expression values can vary considerably across genes; and
iii) a small set of genes have expression estimates with consistently high error (across data sets and methods). Finally,
although the mapping software is important, the quantification method makes a greater difference to the results.
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Introduction

Over the past five years, RNA-sequencing (RNA-seq) has been

gradually overtaking microarrays to become the tool of choice for

genome-wide analysis of the transcriptome [1]. Although RNA-seq

offers multiple different perspectives on transcriptomic diversity

(e.g., alternative splicing, allele-specific expression) one of the most

important uses has been the quantification of gene expression

levels or comparing them across conditions. However, processing

the millions of short reads generated in a typical RNA-seq

experiment to obtain measurements of gene expression levels

requires considerable bioinformatics skills and computational

resources. This process can be divided into three main steps (see

Figure 1):

1. Filtering out reads that fall below some quality threshold

2. Aligning the reads to the genome or transcriptome

3. Quantifying gene expression levels

The first step involves the identification of low quality reads

(e.g., reads with biased base composition) that can be filtered out

prior to mapping, thus avoiding potential mismatches and

downstream errors. To perform the alignment, the user typically

applies one of the many high-throughput sequencing mapping

tools available [2], which requires choosing whether to align reads

to the transcriptome or to the genome. Whilst the former is less

computationally expensive, it is limited by the large number of

reads that map to multiple transcripts of the same gene and by its

reliance upon previously assembled annotation files. By contrast,

mapping reads to the genome requires no knowledge of the set of

transcribed regions or the way in which exons are spliced together.

Given this greater flexibility, most approaches have mapped

against the entire genome (where available) and we focus on this

approach henceforth. In the third step, the aligned reads are

passed to a quantification method [3–7] to obtain a measure of

each gene’s expression (e.g., raw counts or normalized counts such

as RPKMs [8]). Alternatively, tools for quantifying the expression

of each transcript of a gene [7,9–12] can be used and aggregated

to obtain overall expression values.

Clearly, at each step of this process, the practitioner must select

one of many possible options. A specific analysis pipeline is often

selected based on subjective factors, such as popularity, ease of use,

or past experience with some of the methods (possibly in a different

context). It is unclear whether this choice, which is fundamental in

many RNA-seq experiments, affects the measures of gene

expression and hence downstream interpretation.

Previous studies have essentially compared set of alignment

methods, typically used one quantification method, and have

focused their results on assessing whether these approaches result

in differences in the sets of differentially expressed genes identified.

For example [13] assessed the ability to detect differentially
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expressed genes using three different aligners, a single quantifica-

tion method (HT-Seq), and five differential expression methods by

comparing the results to the ones obtained with microarrays.

Other studies have assessed how different methods for identifying

differentially expressed genes [13–15] perform when applied to the

same input data sets. More recently, the RGASP consortium

presented two broad evaluations of RNA-seq data analysis

methods: one on the performance of several spliced alignment

programs by focusing on the quality of the alignments [16]; the

second study evaluated computational methods for transcript

reconstruction and quantification from RNA-seq data [17]. In this

work we address complementary yet fundamental questions: do

different analysis pipelines affect the gene expression levels inferred

from RNA-seq data? And, how close are the expression levels

inferred to the ‘‘true’’ expression levels?

To address these questions we applied fifty RNA-sequencing

pipelines (utilising all combinations of ten alignment methods and

five quantification methods) to both real and simulated data and

investigated whether this affected the estimates of gene expression

levels. The alignment methods considered include both splice-

aware (e.g., TopHat and Star) and splice-unaware (e.g., Bowtie)

aligners in order to assess the effect of splice-aware aligners upon

the inferred expression estimates. The quantification methods used

were different versions or modes of HT-Seq, Cufflinks and Flux-

capacitor.

A limitation of using real data to compare different pipelines for

processing RNA-sequencing data is that no ground truth is known,

and thus it is impossible to state that one method is more accurate

than another. To address this limitation forty data sets were

generated in silico with different characteristics (read length,

coverage, single- and paired-end reads) to assess the error of each

pipeline (how different is the output of each pipeline compared to

the true expression values), the effect of sequencing depth on the

results and whether longer reads lead to reduced errors.

Results

Pipeline choice affects measurements for real data
We first investigated how the choice of processing pipeline

affected gene expression measurement levels obtained from four

independent RNA-sequencing experiments (See Methods). For

each of the 50 pipelines we obtained measures of gene expression

levels and compared them across pipelines. We observed that, in

general, the measurements of gene expression obtained from

different pipelines were highly correlated, with a median

Spearman correlation of 0.99 (Figure 2A and Figure S1–3 in File

S1). Nevertheless, between any two pairs of pipelines, we observed

that many genes had significantly different expression estimates

(False Discovery Rate of 1%) with some genes having up to 10-fold

differences in expression (for a specific comparison see Figure 2,

panels C and D). This suggests that while the overall correlation in

gene expression levels is relatively high, for a subset of genes

different pipelines yield very different results.

Simulated data
A limitation of using ‘‘real’’ data is that no ground truth exists,

hence we next explored this more rigorously by performing a

simulation study. We generated in silico data sets with different

read lengths (50, 100, 150, 200 bp), overall coverage (10X, 30X,

60X, 120X) and with both single- and paired-end reads (see

Materials and Methods for details). Note that each data set

contains eight libraries. These data allowed us to assess how near

the output of each pipeline was to the true expression values, the

effect of sequencing depth on the results and whether longer reads

lead to reduced errors. Obviously an ideal simulated data set

should have properties similar to those observed in real data sets.

However, to be able to compare all genes across different data sets

thirty two data sets were generated in silico where all transcripts

had approximately the same level of expression (referred as STE).

In this setting the genes in a data set still have different raw

expression levels that result from the stochastic nature of the

simulator, different transcript lengths and number of transcripts,

and sequencing depth. However, whilst having distinct advantag-

es, these data sets (STE) do not recapitulate the expression patterns

tipically observed in real data where a subset of all genes is

expressed at varying levels. To address this potential limitation and

validate any findings found using the STE data sets we generated

in silico eight data sets (designated as MTE) in a way that

resembles the expression patterns often observed in real data.

Overall, 82% of all pipeline runs (from a total of 1600) to

analyze the STE data sets succeeded (see Figure S6 in File S1 for a

breakdown by pipeline, read length, and depth). Some pipelines

failed (during the mapping or quantification stage) therefore we

only ranked the pipelines where more than 50% of runs

succeeded. Using this criterion, four pipelines where Bowtie1

was used as the mapper were excluded from further analysis.

Overall gene profiling comparison
To assess the various processing pipelines we used two different

metrics: the Spearman correlation between the inferred and the

true expression values; and the relative error (see Methods for

more details). Figure 3 summarizes the results. We observed that,

for all pipelines and data sets, the Spearman correlation between

the true and inferred expression values is typically high (median of

Figure 1. Gene profiling: from reads to gene expression.
doi:10.1371/journal.pone.0107026.g001
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0.92). The median error observed across all data sets and pipelines

is slightly below 20%. When examining the sign of the error, i.e,

whether the relative expression of a gene is over-or-under

estimated when compared to the true expression values, we found

that two third of genes had the gene expression levels underes-

timated while about one third overestimated (see Figure S10 in

File S1).

When we segment the error by the quantification method

(Figure 3C) we observe that the median error for most quantifi-

cation methods is close to the overall median error but the spread

of the error varies largely. This suggests that some quantification

methods (such as HT-Seq) are less dependent on the choice of the

mapper than others.

To obtain an overall summary (Figure 4), we ranked the

pipelines for each data set (e.g., for the Spearman correlation we

ranked the pipelines for each data set from 1 to 50 - from highest

to lowest correlation). In the table it is shown the average rank for

each pipeline, which was obtained by averaging the rankings of the

pipeline across the 32 STE data sets. Therefore, since it is an

average, it may happen that several pipelines have the same

ranking or that no pipeline has an average rank of 1. An overall

measure of performance, per pipeline, was obtained by summing

the two individual rankings.

Importantly, the error observed is independent of gene length.

When the error is compared to the coverage of a gene the

regression line of the error remains at the same level for different

gene lengths (see Figure S7 in File S1). This is consistent across

different data sets and the same trend can be observed in multiple

pipelines.

Figure 2. Illumina body map (E-MTAB-513) - RNA-seq data from Human. A) Spearman correlation distribution between the gene expression
profiles inferred by different pipelines; B) correlation between two specific pipelines (the respective Spearman correlation is shown in plot A as a
purple box); C) fold change between the gene expression values inferred by the same two pipelines - dots in red denote genes where the expression
values are significantly different between the two selected pipelines (for a false discovery rate of 0:01); D) read counts inferred by the two pipelines
for the six selected (boxed) genes in plot C).
doi:10.1371/journal.pone.0107026.g002
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Effect of aligners and quantification methods on gene
profiling

When we segment the error by mapper (Figure 3D) it is

unsuprisingly clear that error is higher for unspliced aligners

(Bowtie 1 & 2, BWA 1 & 2). This difference is more pronounced in

Figure S4 in File S1 where we observe that the error for unspliced

aligners increased with read length. From the set of spliced

aligners, Tophat1, OSA and Star show a very similar low median

error rate and spread. These results suggest that these three

mappers produce alignments with approximately the same quality.

A similar observation was made in a previous study [18] that

compared several methods for read alignment including TopHat

and OSA.

Despite this, we observe that the overall pipeline rankings

grouped the pipelines by quantification method, thus suggesting

that the selection of the quantification method is more relevant

than the (spliced) aligner used. It is also striking that one of the

simplest quantification methods, HTSeq, when used in conjunc-

tion with different aligners shows up frequently towards the top of

the rankings. Note that HTSeq discards all multi-mapping reads

(i.e., reads that map to multiple locations) while Cufflinks and

Flux-Capacitor attempt to allocate these reads to the most

‘‘probable’’ transcript/gene.

Effect of sequencing data characteristics on gene
profiling

Figure 5 shows the error distribution across all data sets and

pipelines for different sequencing depths and segmented by read

length. The median error decreases significantly (for Mann-

Whitney-Wilcoxon test and a significance level of 0.05) when

increasing depth from 10x to 30x. For larger depths the median

error decreases but not significantly. Interestingly, if we restrict the

analysis to data sets with read lengths of 50 or 100 bp there is no

significant difference in the median errors when increasing the

depth.

The rankings of the pipelines evaluated using paired-end data

(a.k.a. pair-end tags) or single-end data are similar, having a

Spearman correlation of 0.88 (see Table S5 and Table S6 in File

S1). By comparing the two tables it is possible to observe that most

pipelines in the top ranked positions, when considering data sets

with single-end reads, are also in the top rank positions when

considering the data sets with paired-end reads. Overall, the mean

error observed was slightly higher in the data sets with paired-end

data.

Gene level analysis
An inspection of the results at gene level shows that a small

subset of genes have consistently low/high errors across pipelines

and data sets (Figure S5 in File S1). Figure 6 compares the set of

genes with low and high errors to the remaining genes and gene

characteristics (length, number of transcripts, GC-content, true

read counts, and the sum of the length of all transcripts) in an

attempt to understand if the set of genes with consistent high/low

error could be explained by some characteristic.

The set of genes with consistent low error tend to have a high

number of read counts. It is also noticeable that the set of genes

with low error have longer gene lengths and more transcripts.

However, this results directly from the simulated data since the

number of true read counts are proportional to the sum of the

length of the transcripts of a gene (which can be observed in panel

E). This was confirmed in the additional eight simulated MTE

data sets where there was no observed overlap between the genes

with low error and the set of genes with consistent low error.

Discussion

Overall the measurements of gene expression obtained from

different pipelines are often highly correlated in the experimental

data sets. However, between any two pairs of pipelines, many

genes had significantly different expression estimates, thus different

pipelines yield very different results for a subset of genes.

When considering the simulated data sets, the read counts

inferred by the pipelines are highly correlated with the true values

(see Figure 3). Since the data are simulated, the difference between

the inferred read counts and the true values can be explained by

reads that: i) had poor sequencing quality; ii) the aligner was

unable to align; iii) the alignment or quantification method

wrongly assigned to a gene. If the unaccounted or wrongly

counted reads affect all genes in an unbiased way, then the relative

expression values of the genes will remain close to the true values,

and therefore lowering the error.

Figure 4 shows the top ranked pipelines and demonstrates that

there is no clear best pipeline across the metrics considered. For

instance, the pipeline with OSA x Flux-capacitor has an average

ranking of 22nd using the error metric, while having one of the

highest average Spearman correlation. Note that these conclusions

are based on simulated data.

Previous studies mentioned the critical role of the aligner

[13,16] but our results show that the rankings are more often

determined by the quantification method instead of the aligner

used. This does not mean that the aligner used is unimportant,

instead it indicates that the quality of (spliced) aligners may have

reached a point where it does not appear to make a big difference

which one is used in the context of gene profiling analysis. The

preponderance of HT-Seq in the top positions is rather

remarkable when one considers that it discards all alignments

involving reads that map to multiple locations, as opposed to

methods that use more complex algorithms to deal with such reads

(such as Cufflinks and Flux-Capacitor). Possibly the more complex

quantification methods may still have room for improvement.

Overall, increasing the sequencing depth reduced the quanti-

fication errors of the pipelines (see Figure 5), but only up to a

certain point. The median error decreases significantly (for Mann-

Whitney-Wilcoxon test and a significance level of 0.05) when

increasing depth from 10x to 30x. For deeper depths the median

error decreases but not significantly. When considering the

additional eight MTE data sets the median error only decreases

significantly when the sequencing depth was increased from 30x to

60x. For greater depths (120x) the error is not reduced. Previous

studies [19] suggested that a rather stable detection of protein

coding genes is reached at sequencing depths closer to 30x.

Regarding the set of genes with consistently high error across

multiple data sets and pipelines, none of the gene characteristics

considered (e.g., gene length, number of transcripts, gc-content,

read counts) was a sine qua non condition to discriminate them

Figure 3. Distribution of Spearman correlation (A) and error (B) observed across all 32 data sets and all pipelines. Each observation
corresponds to the value computed using a pipeline on a specific data set. The distribution of the error across all data sets and pipelines segmented
by aligner (C) and quantification method (D). The distribution of the error across all data sets for the pipeline with lowest error for each aligner (E) and
quantification method (F).
doi:10.1371/journal.pone.0107026.g003
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(Figure 6). We next considered the size of the genes’ exons. The

hypothesis was that the genes with high error could have shorter

exons. Figure S8 in File S1 shows the distribution of the

percentage of the length of the genes with exons smaller than

200 or 500 nucleotides does not differ between the set of genes

with high error and the remaining genes. We also tested other

possible hypothesis that could explain the list of genes with

consistent high error based on the gene sequences, such as

similarity to other genes (e.g., paralogous), repetitive sequences or

shared subsequences. This can be condensed to the question of

Figure 4. Average rankings of the pipelines observed on the 32 data sets using two metrics (relative error and Spearman
correlation). The overall rank was obtained by summing the average rank (N = 32) obtained on each metric. The average value and standard
deviation across data sets is shown for each metric. The pipelines are sorted by overall rank.
doi:10.1371/journal.pone.0107026.g004
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knowing how unique a gene’s sequence is, i.e., how many regions

in the genome are similar to the exons of a gene. Figure S9 in File

S1 shows that more than 50% of the genes with very high error

also have higher number of similar regions in the genome than the

set of remaining genes (see Material and Methods for details).

However, 50% of the genes in the low error list also have a higher

number regions in the genome similar to the genes’s exons.

Furthermore, many of these genes also have high gene expression

inference errors in the additional eight data sets where the range of

expression values and number of expressed genes is closer to the

values observed in real data. The list of genes is provided in Tables

S7, S8, and S9 in File S1. The consistent high error observed for

some genes across data sets and pipelines could not be predicted or

discriminated based solely on the set of characteristics considered.

Further analysis are required to determine if the same pattern is

observed in other organisms. Nevertheless it may still be useful to

consider this information when analysing Human RNA-seq data

since several of these genes have been associated to various

diseases (e.g., Urod [20], SNX5 [21], CAV2 [22]).

The median error observed across all data sets and pipelines is

around 20%. The error does not affect all genes in the same way.

The trend observed is that the error tends to get smaller with

higher expression values (read counts). However, this does not

mean that lower expressed genes will always have high errors. In

fact we observed genes (see Figure S5) across all data sets and

pipelines with an error close to 0% with either low or high

expression values. Furthermore, genes with very high error but

with either low or high expression values were also found,

suggesting that other factors besides the expression values may

affect the accuracy of the gene profiling methods.

Conclusions

All in all, we have evaluated and compared gene profiling

computational pipelines as a whole, from the initial sequencing

reads to gene expression values. Fifty gene profiling pipelines were

evaluated on thirty two in silico simulated data sets. The main

findings can be resumed as follows:

1. The overall correlation between the quantification values

inferred by the different pipelines and true values is above 0.90

and the error is around 20%. The error does not affect all

genes in the same way and can vary considerably. A set of

genes was found to have consistent high error (across data sets

and pipelines) suggesting that other factors besides the

expression values may affect the accuracy of the gene profiling

methods.

2. The rankings indicate that quantification method used by a

pipeline makes a greater difference in the results than the

(spliced) aligner selected.

3. The read length effect on the performance of the pipelines

varies depending if a spliced or unspliced aligner is used. The

difference between using spliced and unspliced aligners is

important - the error increases with the length of the reads with

unspliced aligners.

4. The sequencing depth has an effect upon the errors of the

pipelines. The overall error tends to stabilize around 30x/60x,

hence deeper sequencing depths (more than 60x) will not yield

more accurate results in the context of gene expression

quantification.

Figure 5. Distribution of the error across all data sets and pipelines for different sequencing depths and segmented by read length
(RL).
doi:10.1371/journal.pone.0107026.g005
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There are several limitations with our approach. First, part of

the results have been obtained using synthetic data and it is

unclear to what extent these results are applicable to other

experimental data sets. Although this question can arguably be

raised for any kind of data used, simulated or experimental, we

attempted to minimize this issue by using a large number of data

sets. Second, we employed a single method to generate RNA-Seq

data in silico which may introduce some bias. Thirdly, since we

simulated RNA-seq from a single species (Human) it is possible

that the pipelines evaluated may behave differently on data from

evolutionary distant species. Lastly, this study does include several

mappers and quantification methods but it is certainly not

exaustive since many more mappers and quantification methods

exist. In spite of these limitations, the results and conclusions

presented have practical implications for RNA-seq data analysis.

Figure 6. Genes with very high error (w100%) and very low error (v10%) across all data sets and pipelines combining OSA or
Tophat1 with htseq-ine, Cufflinks2, and Flux-capacitor. For each group of genes it is shown the distribution of: A) gene length; B) number of
transcripts; C) GC-content; D) true quantification (number of reads); E) sum of the length of transcripts of a gene. The p (p-value) was obtained by
performing an unpaired t-test.
doi:10.1371/journal.pone.0107026.g006
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Materials and Methods

Data
We analyzed the Illumina Human Body Map RNA-seq set

(ArrayExpress accession: E-MTAB-513; http://www.ebi.ac.uk/

arrayexpress) and three other experimental data sets. More details

are provided in Table S3 in File S1.

Synthetic RNA-seq reads were generated in silico using Flux-

Simulator (version 1.2.1-20130219021747) [23]. The Flux-simu-

lator aims to provide an in silico reproduction of the experimental

pipelines for RNA-Seq by using models based on analyzed RNA-

Seq experiments from different cell types, sample preparation

protocols and sequencing platforms.

Each simulated data set represents two conditions containing

four replicates, where all transcripts have approximately the same

level of expression. To achieve a sequencing depth of D
(transcriptome sequencing depth represents the average number

of times a given base in the transcriptome is sequence), and

assuming a transcriptome size of 60 MB, the approximate number

of reads (nreads) for a data set was defined as nreads~
D � 60 � 1000000

read length
. The following options were used in the

generation of all data sets with Flux-simulator: FRAG_SUB-

STRATE = RNA; FRAG_METHOD = UR; RTRANSCRIP-

TION = YES; RT_MOTIF = default; PCR_DISTRIBUTION =

default; GC_MEAN = NaN; PCR_PROBABILITY = 0.05; FIL-

TERING = NO; TSS_MEAN = 50; POLYA_SCALE = 100;

POLYA_SHAPE = 1.5. FRAG_UR_ETA was set to 350 for

reads smaller than 150 and 4x the read read length otherwise. By

setting the GC_MEAN = NaN we disabled GC biases. The

NB_Molecules parameter was set to twice the number of reads.

The Flux-simulator error models feature was used to simulate

sequencing errors and base quality values. Instead of using the

default error models available in Flux-simulator, we generated

custom error models based on the reads from the experiment E-

MTAB-513.

The Human genome (GRCh37.66) and respective annotation

were obtained from Ensembl. The analysis focused on features

annotated as protein coding genes and reads were simulated

independently from all transcripts of each gene. Table S3

summarizes the experimental data used and Table S4 in File S1

the synthetic data sets. The synthetic data set name includes

information about the read length (length), sequencing depth

(depth), and if the libraries are paired-end (pe) or single-end (se):

lvrlw:dvdepthw:vseDpew. For instance, the data set with the

name l100.d30.se contains single-end 100 base long reads with a

sequencing depth of 30x.

An additional set of eight data sets was generated in silico using

Flux-simulator as described above with the following differences: i)

the range of expression values was automatically determined by

Flux-simulator to mimic the range of expression values observed in

experimental data; ii) the read lengths considered were 50 bp and

100 bp; iii) all libraries were single-end.

The data sets are publicly available at http://www.ebi.ac.uk/

,nf/gpeval/.

RNA-seq gene expression pipelines
A RNA-seq pipeline for estimating gene expression is here

considered as being composed by two steps: i) one tool for

mapping the reads and generating the alignments; and ii) one

quantification tool that takes the alignments and other information

to infer the expression values of the genes.

There is a considerable number of tools for mapping high

throughput sequencing reads and RNA-seq data in particular [2].

We included the following aligners in the evaluation: TopHat1

[24], TopHat2 [25], Osa [18], Star [26], GSNAP [27], Bowtie2

[28], Bowtie1 [29], Smalt (http://www.sanger.ac.uk/resources/

software/smalt/), BWA1 [30], BWA2 [31]. Table S2 in File S1

summarizes which mappers are capable of aligning spliced reads

(reads that span multiple exons).

The quantification tools considered include HT-Seq [3] (union

mode/htseq-u and intersection non-empty mode/htseq-ine), Flux-

capacitor [6], Cufflinks1 [4], Cufflinks2 [5].

The pipelines considered in the comparison include all

combinations of selected aligners and quantification methods,

which gives a total of 50 pipelines. All pipelines considered were

implemented and executed using the iRAP RNA-seq pipeline

[32]. Many of the methods that are compared in this paper allow

the user to select the value of certain parameters, that can affect

the results in various ways. We have mostly used the default values

provided in the iRAP pipeline. Table S1 in File S1 summarizes the

parameter values used for each tool. For information about the

meaning of the different parameters, we refer to the manuals and

original publications describing the respective methods.

Methodology
The following metrics were used to compare the expression

estimates inferred by different pipelines given the same data set:

N Spearman correlation between the true and inferred read

counts per gene;

N Relative error.

The error metric measures how different the inferred quanti-

fication values are from the true values. The Spearman correlation

allows an investigation of whether the ranking of gene expression

levels in the inferred and true data sets are consistent. Arguably,

the most appropriate metric to evaluate the accuracy of the

pipelines is their error. For a given data set, let G be the number of

genes, S the number of samples, C the number of conditions, P

the number of pipelines, and ogscp the number of reads assigned to

gene g (1, . . . ,G ) in sample s (1, . . . ,S ) for condition c (1,2) using

pipeline p (where p [ 1, . . . , P denote the index of the pipeline).

For the simulated data sets the true quantification value is known

and it is denoted as tgsc. Nps is the total number of reads of sample

s assigned by the pipeline p.

The quantification error for a gene g using pipeline p is

calculated as:

errgp~100 �
X

s[S

Dogsp{tgsD
tgs

The overall quantification error of pipeline p is defined as

errp~

X
g[Gerrgp

G

The formulation does not acknowledge that some reads may be

discarded in some stage of the analysis pipeline and, therefore, not

included in the quantification. To tackle this issue we propose the

relative (normalized) quantification error for a gene g using a

pipeline p, which is calculated in an analogous way:
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errNgp~100 �
X

s[S

D
ogsp

Nps

{
tgs

Nts

D

tgs

Nts

The relative quantification error is often referred to simply as

error. In practice, to handle the cases where the true quantification

of a gene is zero (reads), the error is computed by adding a 1 to the

denominator and numerator.

The overall quantification error of a pipeline p is defined as the

median error of all genes.

Finally, a note about the read counts for Cufflinks. Cufflinks

does not output read count; instead it produces, amongst many

values, the read coverage by transcript. Therefore, pseudo-counts

were produced based on read coverage for each transcript and

then aggregated to obtain the pseudo-counts per gene.

Rankings
The pipelines were ranked using the two metrics mentioned

above, separately for each data set. The average rank of a pipeline,

using each of the two metrics, was computed as the mean rank of

the pipeline across all data sets. The sum of the rankings of each

metric was used to create an overall rank. The mean overall rank

was determined when aggregating the results across data sets.

Uniqueness of gene sequences
A gene’s sequence ‘‘uniqueness’’ is calculated based on how

many regions in the genome are similar to the genes’s exons. The

similarity of each exon was computed by aligning each exon to the

genome using BLAST (version 2.2.12). Only high-scoring segment

pairs (HSP) with an e-value below 0.01 and more that 90%

identity, were considered. The alignments were later filtered by

length (greater than 30 or 150 nucleotides). The uniqueness of a

gene g with exons e1, . . . is computed as the max(na(e1), . . . )
where na(e) is the number of alignments obtained by BLAST for

an exon.
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