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Abstract

Disrupted in schizophrenia 1 (DISC1) is a risk factor for a spectrum of neuropsychiatric illnesses including schizophrenia,
bipolar disorder, and major depressive disorder. Here we use two missense Disc1 mouse mutants, described previously with
distinct behavioural phenotypes, to demonstrate that Disc1 variation exerts differing effects on the formation of newly
generated neurons in the adult hippocampus. Disc1 mice carrying a homozygous Q31L mutation, and displaying
depressive-like phenotypes, have fewer proliferating cells while Disc1 mice with a homozygous L100P mutation that induces
schizophrenia-like phenotypes, show changes in the generation, placement and maturation of newly generated neurons in
the hippocampal dentate gyrus. Our results demonstrate Disc1 allele specific effects in the adult hippocampus, and suggest
that the divergence in behavioural phenotypes may in part stem from changes in specific cell populations in the brain.
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Introduction

DISC1 was originally identified as a gene disrupted by a

balanced chromosomal translocation t(1;11)(q42.1;q14.3) in a

large Scottish family with several major mental disorders including

schizophrenia, bipolar disorder and recurrent major depressive

disorder [1]. DISC1 is an intracellular scaffold protein that binds

to a number of proteins contributing to different signaling

pathways [2]. These include interactions with GSK3b and

phosphodiesterase 4 (PDE4) at the N-terminus, and NDEL1 and

LIS1 at the C-terminus. [3–5]. Each of these interacting proteins

have been implicated in neural development; GSK3b regulation

by wnt signaling enhances neural progenitor proliferation [6],

mutations in NDEL1 and LIS1 cause neuronal migration defects

[7,8], and the DISC1-PDE4 complex can modulate the NDEL1/

LIS1 interactions [3]. Overexpression of several human DISC1

variants associated with neuropsychiatric phenotypes in cell lines

in vitro or in embryonic cortical progenitors in vivo fails to

stimulate cell proliferation and activate b-catenin activity to the

same extent as overexpressing wild-type DISC1 [9]. Knockdown

of DISC1 in mice leads to reduced cell proliferation and neuronal

migration defects in the hippocampus due to perturbations in

GSK3b and Ndel1 respectively [4,10]. Collectively, these results

suggest a hypothesis that alterations in DISC1 structure, either due

to distinct mutations or individual variations, differentially affect

downstream pathways, which might contribute to the different

facets of psychiatric disease seen in patients with abnormalities in

DISC1.

We previously described two independently derived ENU-

induced mouse Disc1 missense mutants which provides an

opportunity to test this hypothesis, since they exhibit distinct

behavioral abnormalities related to depression (Disc131L/31L) and

schizophrenia (Disc1100P/100P), and affect binding of DISC1 to

PDE4 and GSK3b [11,12]. In the embryonic cortex, both Disc1
mutations lead to reductions of neural progenitors, and to

mispositioning of neurons in the cortical layers, but the effects of

the mutations in adult mice, and in the hippocampus remain

unknown [13]. Here, we investigate the effects of the two germline

Disc1 mutations in the hippocampus of adult mice, and determine

whether the mutations differentially affect cell proliferation and

neuronal migration. Our data suggest that the homozygous Q31L

mutation reduces cell proliferation and the homozygous L100P

mutation induces deficits in the generation, positioning, and

maturation of new neurons in the hippocampus.

Results

DISC1 expression not altered by missense mutations
Due to the report that many commercially available DISC1

antibodies fail to accurately detect the major DISC1 isoform

[14,15], we used an in-house polyclonal C-terminal antibody (see

Material and methods) to detect DISC1 in the cortex and
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hippocampus from the DISC1 mutant and control mice. We

verified the specificity of the antibody by showing a unique band

close to 100 kDa that was absent in mice with a targeted disruption

in exons 2 and 3 (Disc1D2D3) [14] (Figure 1A). When we used this

antibody on brain lysates from the DISC1 mice, we found no

differences in DISC1 expression between the Disc131L/31L or

Disc1100P/100P mice compared to age-matched wildtype controls

(Figure 1A).

Loss of neural progenitors in Disc131L/31L mice
Given that several disease associated DISC1 variants down-

regulate wnt signaling and disrupt neural progenitor proliferation

[9], we examined whether either Disc1 missense mutation could

affect proliferation in the adult mouse hippocampal dentate gyrus.

We initially looked at the efficiency of dissociated adult

hippocampal cells in generating primary neurospheres in vitro
with a colony forming assay to assess whether any proliferation

deficits were present (Fig. 1B). Within the adult hippocampus, the

majority of neurospheres are formed from cells expressing Hes5,

which is expressed in neural stem cells and subsequently down

regulated in more neuronally committed progenitors [16–18].

Notably, Hes5 deficient cells are unable to form adult primary

neurospheres, and so neurosphere formation in the adult

hippocampus is an index of the proliferative capacity of

progenitors that have not committed to a neuronal fate [17].

When we cultured adult hippocampal cells from the Disc1 mutant

Figure 1. Deficits in cell proliferation are restricted to Disc131L/31L mice. (A) Missense mutations do not affect expression of full length DISC1
in tissue lysates taken from the cortex and hippocampus, as shown using a C-terminal DISC1 antibody that recognizes a specific 100 kDa band in the
adult mouse tissue brain homogenates that are absent in Disc1D2D3 mice. (B) Significantly fewer primary neurospheres (P = 0.007; post-hoc Bonferroni
p,0.05) derived from dissociated adult hippocampal cells in Disc131L/31L mice (n = 6) compared with either wild-type (n = 6) or Disc1100P/100P (n = 4)
mutants. (C) Confocal z-stacks of mouse sections labeled with an antibody raised against the neural progenitor marker Tbr2 (red) and nuclei label
Hoechst 33242 (blue) indicate that Disc131L/31L mutants (n = 8) have significantly (D) fewer Tbr2 labelled cells (ANOVA, P = 0.014) than either wild-type
(n = 9, post-hoc Bonferroni p,0.05) or Disc1100P/100P (n = 9, post-hoc Bonferroni p,0.05) mice. (E) Cell death as measured by activated caspase-3
immunoreactivity was not significantly different between genotypes (ANOVA, p = 0.74, n = 4 wild type, Disc1100P/100P; n = 5 Disc131L/31L; Scale bar
100 mm. Data presented as mean 6 SEM.
doi:10.1371/journal.pone.0108088.g001
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mice at a density of 1000 cells/ml in a 96-well plate format, we

noted a significant deficit in Disc131L/31L mice compared to both

wild-type and Disc1100P/100P mice in the percentage of wells with

neurospheres formed (WT (n = 6) 88.0%68.0, Disc1100P/100P

(n = 4):98.8%61.3, Disc131L/31L (n = 6): 49.7%611.0, mean 6

SEM; ANOVA, F(2,18) = 6.628, P = 0.007; post-hoc Bonferroni

p,0.05).

Within the adult SGZ, multipotent neural stem cells generate

new neurons through the generation of more fate restricted

progenitors. To assess whether the cell proliferation deficits

induced by the homozygous Q31L mutation extended to

neuronally committed progenitors, we labeled cells in the SGZ

with an antibody against T-box brain gene 2 (Tbr2), which is

expressed by the majority of dividing progenitors that differentiate

into neurons in the SGZ, and are therefore a marker for the

intermediate progenitors cells (IPCs) that arise from NSC divisions

[19]. We noted a significant deficit in Tbr2+ cells (Fig. 1C–D) only

in Disc131L/31L mice (WT (n = 9): 91586979.9, Disc1100P/100P

(n = 9):1051261611, Disc131L/31L (n = 8): 52136650.2, Tbr2+

cells/mm3 dentate gyrus; ANOVA F(2,23) = 5.207, P = 0.014)

compared to both wild-type controls (post-hoc Bonferroni p,0.05)

and Disc1100P/100P mutant mice (post-hoc Bonferroni p,0.05),

demonstrating a general proliferation defect caused by the Q31L

mutation. While the vast majority of Tbr2 immunopositive cells

were restricted to the SGZ, we detected a few Tbr2+ cells in the

hilus and dentate gyrus molecular layer irrespective of Disc1
genotype, which was detected in hippocampal sections in reports

from other groups [20,21]. This suggests that there are either a few

undifferentiated progenitors normally residing in the granule cell

layer, or that some postmitotic neurons retain Tbr2 activity. To

determine whether the loss of neural progenitors in Disc131L/31L

mice reflects an enhanced cell death, we labeled tissue sections

with an antibody detecting activated caspase-3 to label apoptotic

cells in the dentate gyrus. We, however, found no significant

change in cellular apoptosis (Fig. 1E, ANOVA, p = 0.74, n = 4

wild type, Disc1100P/100P; n = 5 Disc131L/31L) between the Disc1
mutants and wild-type controls, suggesting that the loss of Tbr2+

cells in the Disc131L/31L mice was more likely associated with cell

proliferation defects.

Disc1100P/100P mutants have fewer immature neurons in
the SGZ

We next investigated whether the loss of neural progenitors in

the SGZ of the Disc131L/31L mice would lead to changes in the

neurons that they differentiate into. The specific role of DISC1 in

newly generated neurons in the SGZ is unclear, since neurons

display evidence of excessive dendritic branching in mice with an

acute DISC1 knockdown, while neurons have limited arbors in

mice expressing a truncated DISC1 protein [15,22].

To recognize immature neurons in the SGZ, we labeled cells

with an antibody to doublecortin (DCX), which is expressed in

postmitotic immature neurons [23]. When we examined the

morphology of the cells labelled by DCX, we observed numerous

gaps in the SGZ layer in Disc1100P/100P mice compared to wild-

type controls and Disc131L/31L mice, resulting in fewer neuronal

processes extending across the granule cell layer (Figure 2A). This

suggested that the number of DCX+ cells were reduced in the

Disc1100P/100P mice. To confirm this, we quantified the number of

DCX+ cell bodies in the SGZ for the Disc1 mice (Fig 2B, WT

(n = 8): 7347464590, Disc1100P/100P (n = 6): 5320963364,

Disc131L/31L (n = 5): 6460365025 DCX+ cells/mm3 dentate

gyrus, mean 6 SEM), revealing a significant (ANOVA

F(2,67) = 5.374, p = 0.0085; post-hoc Bonferroni p,0.05; n = 8

WT, n = 5 Disc131L/31L. n = 6 Disc1100P/100P) difference between

only the Disc1100P/100P mutant mice and wild-type controls.

Although the total number of DCX+ cells were reduced in

number, the effect of the Disc131L/31L mutation did not reach

statistical significance.

As DCX+ neurons functionally integrate and mature into the

granule cell layer of the dentate gyrus, we next investigated if a

correlation existed between the loss of DCX+ cells and a deficit in

Figure 2. Loss of immature neurons in Disc1100P/100P mice. (A)
Immunolabelling of immature neurons residing in the subgranular zone
with an antibody raised against doublecortin (DCX) identify frequent
gaps (arrows) in DCX staining solely in Disc1100P/100P mice that reflect a
significant loss (B) of DCX+ cell bodies compared to wild-type controls
(post-hoc Bonferroni p,0.05; n = 8 wild type, n = 5 Disc131L/31L. n = 6
Disc1100P/100P). Data presented as mean 6 SEM. Scale Bar (A) 100 mm (B)
25 mm
doi:10.1371/journal.pone.0108088.g002
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mature neurons as measured by dentate gyrus thickness. A one-

way ANOVA revealed significant thinning (13.9% loss) of the

dentate gyrus only in Disc1100P/100P mice (Table 1), though a

Student’s t-test performed between Disc131L/31L mice and wild-

type controls suggested a trend (p = 0.056) towards thinning

(8.7%). Importantly, differences in hippocampal morphology for

the Disc1100P/100P mice were specific to the dentate gyrus, as we

observed no significant changes (ANOVA, p.0.3) in CA1 or CA3

thickness or hippocampal height or width for either Disc1 mutant

(Table 1). These data support a strong effect of the Disc1 L100P

mutation on neurons in the dentate gyrus.

Ectopic migration of a select population of DCX+ cells in
Disc1100P/100P mice

Mice expressing a truncated N-terminal DISC1 fragment have

a loss of DCX+ cells, altered positioning of immature neurons in

the granule cell layer, and a reduction in the dendritic complexity

of the DCX+ immature neurons, suggesting that alterations in

DISC1 can affect multiple aspects of neuron morphology [15]. As

we had identified changes in the number of the DCX+ in

Disc1100P/100P mice, we next analyzed the positioning of immature

neurons in the SGZ (Fig. 3A, dashed lines indicate upper granule

cell layer boundary). While the majority of DCX+ cell somas

resided neatly along the SGZ, a small percentage of DCX+ somas

were positioned away from the cells (Fig. 3A, arrowheads) in all the

Disc1 genotypes (Fig. 3B, WT (n = 7): 3.39%60.36, Disc1100P/100P

(n = 5): 3.11%60.92, Disc131L/31L (n = 5): 2.23%60.39, mean 6

SEM). When we examined the positioning of these migrating

immature neurons by binning the distances from the SGZ into

10 mm sections, we noted that a small percentage of these DCX+

cells in the Disc1100P/100P (5.63%62.75, mean 6 SEM) migrated

further than 70 mm away from the majority of DCX+ somas in the

SGZ (Fig. 3A, arrow), which was significantly further than either

wild-type or Disc131L/31L mutant mice (Fig. 3C, ANOVA

F(2,14) = 5.180, p = 0.021; post-hoc Tukey p,0.05; WT (n = 7),

Disc1100P/100P (n = 5): Disc131L/31L (n = 5)). These results indicate

that in Disc1100P/100P mice, a select population of immature

neurons ectopically position away from the SGZ.

Immature neurons in Disc1100P/100P mutants have less
complex dendritic arbors

Finally, we investigated the dendritic complexity of immature

neurons in the Disc1 cohort using Sholl analysis [24] to count the

number of dendritic intersections crossing a series of concentric

circles of increasing size centered at the DCX+ cell soma (Fig. 4A).

We specifically focused on DCX+ neurons that extended primary

axons into the granule cell layer (and perpendicular to the SGZ),

and generated at least one dendritic arbor to exclude the

population of neurons that either extended smaller axons parallel

to the SGZ or had not matured and generated dendritic

morphology. In the wildtype and Disc131L/31L mice, DCX+

neurons displayed highly branched dendritic arbors extending

across the granule cell layer into the molecular layer which

contrasted with those in the dentate gyrus of Disc1100P/100P

mutant mice, which exhibited fewer branches, especially within

the molecular layer (Fig. 4B). When we quantified the number of

dendritic intersections, we observed a significant reduction in

dendritic complexity in Disc1100P/100P mice, but not Disc131L/31L

mice (Fig. 4C, Two-way repeated measures ANOVA, genotype x

distance interaction F(25,950) = 2.320, p = 0.0003; n = 5 animals

each genotype with between 35–75 neurons measured per animal).

We conclude that within the hippocampal dentate gyrus, the Disc1

Q31L mutation affects all the proliferating progenitors, while the

L100P mutation selectively affects the postmitotic neurons.

Discussion

Disc1 is an attractive gene to study the relationship between

disease and cellular phenotypes in the hippocampus due to

evidence for DISC1 as a genetic risk factor for a spectrum of major

mental disorders, and because mouse Disc1 repression has been

shown to affect neural progenitor proliferation and neuron

specification in the dentate gyrus [4,22]. We have delineated

mutation specific roles for mouse DISC1 in regulating both cell

proliferation in the SGZ, and the subsequent migration and

maturation of immature neurons in the SGZ. The evidence points

to the Q31L and L100P mutations in Disc1 affecting different cell

populations in the SGZ, most likely through selectively aberrant

cell signaling. Our results support evidence that cognitive and

structural changes in the brain are associated with DISC1
variation [25].

Previously, acute Disc1 knockdown in the adult mouse dentate

gyrus induced a loss of proliferating cells and generated both

schizophrenia-related and depression-related phenotypes [4].

Interestingly, in these mice, Mao et al (2009) also noted aberrant

neuronal positioning into the granule cell layer and enhanced

dendritic complexity of granule cell neurons that supported an

earlier study focused on the maturation of newly generated

neurons following Disc1 knockdown [22]. Our results, however,

support data suggesting that marked changes in the early

progenitor proliferation exert a minimal effect on the SGZ

immature neuron population, as the DCX labeled neurons in the

Disc131L/31L mice appear to be similar to wild-type controls

despite the loss of proliferating progenitors in the same mice [26].

Additionally, the Disc1100P/100P mice, in contrast to the mice

Table 1. Hippocampal Neuroanatomical Measurements between Disc131L/31L, Disc1100P/100P and wild-type mice.

Measurement Wild-type (n = 9) Disc131L/31L (n = 7) Disc1100P/100P (n = 7)

Dentate thickness (mm) 99.762.6 91.063.4 85.864.9

CA1 thickness (mm) 64.462.1 63.062.6 68.361.4

CA3 thickness (mm) 114.16 6.6 111.362.6 108.368.2

Hippocampal width (mm) 2.2660.12 2.5160.07 2.2360.18

Hippocampal height (mm) 1.1866.6 1.2260.03 1.2460.03

A significant difference only in dentate granule cell layer thickness between wild-type and Disc1100P/100P mice was noted (ANOVA F(2,20) = 4.07, P = 0.032; post-hoc
Bonferroni p,0.05), though Student’s t test indicated a strong correlation (p = 0.06) between wild-type and Disc131L/31L mice. Within the hippocampus, the thinning of
the granule cell layer in the mutants is specific to the dentate gyrus, as no significant differences are observed between genotypes in the thickness of the pyramidal cell
layer in the CA1 and CA3 regions, and the overall height and width of the hippocampus. Data presented as mean 6 SEM.
doi:10.1371/journal.pone.0108088.t001
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described following shRNA-mediated Disc1 knockdown, have a

loss of dendritic branching and neuronal maturity that are

consistent with mice expressing a truncated DISC1 protein due

to germline disruption of Disc1 affecting exons 7 and 8 [15,27].

Our findings likely differ from the shRNA-mediated approach due

to the timing of the Disc1 disruption, as our colony of Disc1
mutant mice carry the missense mutations through the germline.

Supporting this, early postnatal, but not adult, induction of a C-

terminal human DISC1 protein in mice leads to a loss of dendritic

complexity of neurons in the adult hippocampus [28].

Interestingly, mice lacking Npas3, a genetic risk factor for

schizophrenia, have SGZ proliferation deficits that accompany a

thinning of the dentate gyrus and a loss of dendritic complexity in

the mature neurons extending processes into the molecular layer

and CA3 [29,30]. While Disc131L/31L mutants have proliferation

deficits and a degree of dentate gyrus thinning (though not

reaching statistical significance) consistent with Npas3 null mice,

only Disc1100P/100P mice have similar changes in neuronal

morphology. We can conclude that both neural progenitor

proliferation and immature neuron integrity influence dentate

gyrus thickness.

Cell proliferation and depression-related phenotypes
Several independent groups have examined behavioral pheno-

types in mice after selective changes in adult neurogenesis, but the

results are inconclusive due to experimental differences and

timings [31–34]. Chronic unpredictable stress, a paradigm for

inducing depression-related phenotypes, which necessitates expos-

ing rats or mice to multiple stressors for several weeks, leads to a

loss of early neural stem cell (NSC) progenitors and more

neuronally committed progenitors in the adult SGZ, supporting

a link between depression and decreased neurogenesis [34]. Acute

stressors acting on mice for only 45 minutes, however, only affect

the proliferation of NSCs in the SGZ, and spare the more

Figure 3. Ectopic migration of select populations of immature neurons in Disc1100P/100P mice. (A–C) An analysis of doublecortin (DCX)
positive cells prematurely migrating away from the subgranular zone (SGZ) (A, upper boundary of GCL demarcated with dashed line) reveal no
significant (B) differences (ANOVA, p = 0.35, n = 7 wild type, n = 5 Disc131L/31L, n = 5 Disc1100P/100P) between genotypes. Arrowheads point to DCX+ cell
somas positioned in the GCL within 70 mm of the SGZ, while the arrow in Disc1100P/100P section shows DCX+ cell positioned greater than 70 mm away
from SGZ. (C) Binning of DCX+ cells in the GCL into 10 mm distance segments from 20 mm away from the SGZ reveal a small but significant (ANOVA
F(2,14) = 5.180, p = 0.021; post-hoc Tukey p,0.05; n = 7 wild type, n = 5 Disc131L/31L, n = 5 Disc1100P/100P) percentage of cells that migrate a distance
greater than 70 mm in the Disc1100P/100P mice compared to wild-type and Disc131L/31L mice. Data presented as mean 6 SEM. Scale Bar 50 mm
doi:10.1371/journal.pone.0108088.g003
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neuronally committed progenitors [34]. The inference is that the

critical cell population affected through stress induced depression

is the NSCs, and the losses of downstream progenitors are a

secondary effect and a consequence of a long term loss in NSC

proliferation [34]. When we examined NSC proliferation in the

adult hippocampus using the neurosphere assay, we noted deficits

only in the Disc131L/31L mice, which have depression-related

phenotypes. Neurospheres formed from adult hippocampal tissue

require Hes5, a marker for NSCs that is not expressed in later

proliferating cells and postmitotic neurons [17]. Thus, we can

hypothesize that the loss of more neuronally committed Tbr2+

cells in the Disc131L/31L mice is a secondary effect. The majority of

NSCs in the adult hippocampus are quiescent, however, and not

actively dividing and generating new neurons [16,35]. Therefore,

it seems possible that DISC1 is either altering the balance between

the quiescent and active NSC population, or simply blocking NSC

division into downstream proliferating cell types. The data from

Mao et al (2009), which show that the DISC1-GSK3b complex

regulates cell proliferation [4], provide a framework for under-

standing how the Q31L mutation is potentially mediating the loss

of Tbr2+ intermediate progenitors (Figure 5) since it maps to the

disordered N-terminus of DISC1 that contains the expected

binding site to GSK3b [2], and has been shown to disrupt the

DISC1-GSK3b complex [36].

Newly generated neurons and schizophrenia-related
phenotypes

Disc1100P/100P mice were more active in the open field, and had

more severe deficits in working memory and prepulse inhibition

(PPI) than the Disc131L/31L mice [11]. The critical population of

cells mediating many hippocampal-dependent memory tasks

appears to be the newly born immature neurons in the SGZ

[37]. In mice, reductions in the number of immature neurons or

premature differentiation of progenitors lead to a loss in neuronal

complexity and leads to mice displaying deficits in spatial memory

tasks [31,32]. The reduction in DCX+ cells and less developed

dendritic arbors that we noted only in the Disc1100P/100P mice

(Fig 3C) thus may correlate to the more severe deficits in working

memory described previously [11]. This supports two separate

studies on mice lacking the full length DISC1 protein that display

working memory deficits without major changes in other tests of

hippocampal learning [15,38]. Notably, in mice carrying a

targeted disruption of the endogenous Disc1 allele, resulting in a

truncated N-terminal protein, working memory deficits accompa-

ny morphological changes in the immature neuron population that

are linked to elevated cAMP levels [15,27].

Our observation of allele specific phenotypes arising from

different Disc1 mutations with otherwise identical expression levels

throughout development provides an opportunity to distinguish

Figure 4. Sholl analysis of immature neurons indicates decreased complexity of the dendritic arbors in Disc1100P/100P mice (A–C). The
complexity of dendritic arbors from the Disc1 cohort was assessed using Sholl analysis to determine the number of dendritic intersections crossing
equidistant concentric circles (A) extending from the cell somas of neurons labeled with doublecortin. (B) High magnification (40x) z-image
projections of DCX+ neurons with primary processes extending across the granule cell layer (GCL) and into the molecular layer (ML) illustrate the loss
of complexity in Disc1100P/100P mice that are confirmed through linear Sholl analysis (C) (Two-way RM-ANOVA, p = 0.0003; n = 5 animals each
genotype) of dendrites from immature neurons extending from the subgranular zone (SGZ). Scale bar 25 mm. Data presented as mean 6 SEM.
doi:10.1371/journal.pone.0108088.g004
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possible molecular mechanisms. The contrasting effects of the

DISC1 mutations we observe in the hippocampus differ from a

study utilizing the same line of Disc1 mice to examine how DISC1

affects the embryonic cortex. In that report, both DISC1

mutations led to similar changes in neuronal morphology, spine

density, and distribution of neurons in the cortical layers [13],

suggesting that proteins within the DISC1 interactome that are

affected by these missense mutations are uniquely modulated

within select cell populations. To date, more than 30 different

proteins have been shown to have specific DISC1 interacting sites,

suggesting that the DISC1 mutant proteins likely modulate

multiple signalling pathways [39]. While it is unclear which of

Figure 5. Hypothetical model for how DISC1 mutation may affect interacting proteins within the cell populations residing in the
dentate gyrus. Neural stem cells (NSCs) generate neurons which extend processes across the granule cell layer through the generation of Tbr2+

intermediate progenitors (IPCs) as shown in the ‘wild type’ illustration. Our data suggests that the homozygous Q31L mutation in DISC1 leads to a
loss of IPCs which may arise from a reduction in the formation of DISC1-GSK3b complexes in the NSCs leading to increased quiescence. With the
homozygous L100P mutation, however, we note a normal number of IPCs, but instead observe alterations in the morphology and migration of the
DCX+ postmitotic neurons, which we hypothesize may be due to changes in the NDEL1-LIS1 complex mediated by DISC1 interactions with PDE4.
doi:10.1371/journal.pone.0108088.g005
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several potential N-terminal protein interactors may play a

conjoint role with DISC1 with respect to the changes observed

in the DCX+ neurons, it is notable that the L100P strongly

disrupts binding of DISC1 to PDE4B [11], and the DISC1-PDE4

complex can regulate neurite outgrowth by modulating the LIS1/

NDEL1 complex [3]. As both LIS1 and NDEL1 are critical for

neuronal branching and migration [8], we can formulate a model

by which the L100P mutation modulates PDE4B activity, which

then suppresses neurite outgrowth through changes in the LIS1/

NDEL1 complex (Figure 5). Our results, by illustrating how

missense mutations in DISC1 can lead to specific cellular

phenotypes in the hippocampus, support a role for DISC1

variation in brain development, capacity and mental disorder.

Materials and Methods

Mice
All animal experiments were approved by a University of

Edinburgh internal ethics committee, and all procedures were

performed in compliance with UK Home Office regulations

(project license number 60/4179). Wild-type mice and the two

Disc1 homozygous mutants were generated as described previ-

ously [11]. Congenic strains of Disc1WT/WT, Disc1100P/100P, and

Disc131L/31L were generated by repeated (n = 12) backcrossing to

the C57BL/6JRcc strain (Harlan, Bicester, UK). Mice were

housed in a 12 hour light/dark cycle and fed a regular diet ad
libitum.

Antibodies
The following antibodies were used at the specified dilution:

rabbit anti-doublecortin (DCX) (1:400, Abcam), rabbit anti-Tbr2

(1:200, Abcam), and rabbit-anti-activated caspase 3 (1:100,

Abcam). Disc1 was detected using an in-house generated rabbit

anti-Disc1 antibody (SK6479, used at 1:2000 dilution) raised to

amino acids 666–852 of mouse Disc1. Full details of the

generation and characterization of this antibody will be provided

elsewhere (Ogawa et al, in preparation). Vinculin was detected

using mouse anti-Vinculin (ab18058 Abcam, used at 1:2000

dilution).

Immunohistochemistry
For counting Tbr2 and DCX immunopositive cells, every sixth

section taken from 20 mm thick coronal sections of the dentate

gyrus was processed for immunohistochemistry. The entire region

sectioned was approximately 2.5 mm, so that there were between

18–20 sections immunostained per mouse, which were then

counted using a blinded and randomized system. Sections were

incubated for 2 hours at room temperature in blocking buffer (BB)

(PBS with 5% normal goat serum, 3% BSA and 0.2% Triton-X-

100) before incubating overnight at 4uC in the primary antibody

diluted in BB. Following three washes with PBS, sections were

incubated with the appropriate Alexa conjugated secondary

antibody (Invitrogen, CA) for 1 hour, counterstained with Hoechst

33342 and mounted onto slides with Fluoromount-G (Southern

Biotech). Antigen retrieval before blocking was performed by

immersing the slides in preheated 10 mM citrate buffer and

boiling at low power in a microwave for 10 minutes. For cell

counts, every sixth section from the dentate gyrus was processed.

Analysis of Dendritic Complexity and Migration
The complexity of dendritic arbors of immature neurons

immunopositive for doublecortin (DCX) was assessed using

ImageJ (http://imagej.nih.gov/ij/) utilizing a Sholl analysis plugin

(Ghosh Lab Website, http://biology.ucsd.edu/labs/ghosh/

software/ShollAnalysis_.class) with 10 mm separating concentric

circles that centred at the cell soma. ImageJ was used to threshold

the confocal z-stack projections of DCX+ arbors prior to using the

plugin. Only neurons with clearly identifiable processes extending

across the granule cell layer were selected for Sholl analysis. Due to

the overlap of dendritic arbors in neuron dense areas in the

dentate gyrus, the number of intersections was divided by the

number of cell bodies. A comparison was made between the results

of this estimation versus traces of neuronal morphology made in

Adobe Photoshop. We observed a slight underestimation of the

number of dendritic intersections calculated per neuron by this

method, but the same trend between genotypes. Positioning of

DCX+ cells across the granule layer was assessed by converting the

distance spanning the granule layer and molecular layer into

10 mm bins and assigning bin values to each migrating cell. DCX+
cells were only scored if they were found a minimum of 20 mm

away from the centre of the subgranular zone. All images of DCX+

cells analyzed were z-stack projections of 0.5 mm slices taken at

40x magnification on a Leica confocal SP3.

Hippocampal Measurements
Paraformaldehyde perfused brains were sectioned at 20 mm in

the coronal plane, stained with Hoechst 33342 to label nuclei, and

imaged on a Leica confocal SP3. Measurements of dentate gyrus

thickness were made in the upper blade where the dentate gyrus is

parallel to the brain surface. For each brain, measurements were

taken at every sixth section spanning the dorsal to ventral

boundaries of the dentate gyrus.

Neurosphere Colony Forming Assay
Hippocampal tissues from adult three-month-old male mice

(WT = 6, Disc131L/31L = 6, Disc1100P/100P = 7) were dissected,

separated from the meninges, triturated, and incubated in 1 ml

of papain solution (1200 units Papain, 100 mg DNase I Type IV

(Sigma), 600 mg L-cysteine) at 37uC for 1 hour. Digested tissue was

neutralized with a basic high serum media (Dulbecco’s modified

Eagle’s medium (DMEM) with high glucose, 2 mM L-Glutamine

(Gibco), penicillin-streptomycin (Gibco), and 10% fetal calf serm).

Cell pellets obtained after a 5 minute 1200 g spin were

resuspended in neurosphere media (DMEM/F12 with pencillin:-

streptomycin, B-27 supplement (Gibco, Baltimore, MD) plus

10 ng/mL EGF and 10 ng/mL FGF). The number of neuro-

spheres formed after 7 days was counted from cells diluted to a

concentration of 20 cells/ml and placed in a 96 well plate. This

dilution was chosen since over 80% of the wells in the 96 well plate

at this concentration in the wild-type controls generated only a

single neurosphere.

Brain lysates
P90 female wild-type, 31L and 100P mice were culled by

cervical dislocation and brains were collected in ice cold PBS. For

each brain the hippocampus and cortex were dissected, snap

frozen and stored at 280uC. Per group the hippocampi and

cortices of three mice were pooled and lysed in PBS with 1% triton

X-100 and freshly added protease (Roche Complete) plus

phosphatase (Calbiochem Set II) inhibitors. Lysates were centri-

fuged at 13,000 rpm for 10 minutes at 4uC in a bench top

centrifuge. P7 wild-type and Disc1 exon 2-3 knockout (D/D exon

2-3) mouse brain lysates generated as described previously [14],

were gifted by Professor Kozo Kaibuchi (Nagoya University).

Protein concentrations were measured using a Bradford protein

assay (Biorad).
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Immunoblotting
Equal amounts of protein were loaded onto a 6% Bis-Tris

polyacrylamide gel. Separated proteins were transferred onto

polyvinylidene difluoride membrane membrane (GE Healthcare)

using semi-dry transfer (Biorad) in Tris-Glycine-SDS buffer with

20% methanol. Membranes were blocked in TBS-T (50 mM

Tris–HCl (pH 7.5), 150 mM NaCl and 0.1% Tween-20) contain-

ing 5% skimmed milk for 30 minutes at room temperature.

Incubation with primary or secondary antibodies was carried out

in PBS-T with 1% skimmed milk overnight at 4uC or for one hour

at room temperature, respectively. Protein bands were detected by

incubation with peroxidase-conjugated secondary antibodies

(DAKO) for 45 min at room temperature and visualized using

ECL or ECL-2 reagent (GE Healthcare). To assess protein loading

following probing with the anti-Disc1 antibody, the membrane

was stripped using Restore Western Blot stripping buffer (Thermo

Scientific) for 30 minutes at room temperature, followed by

washing in TBS-T.

Statistics
To assess statistical differences between the wild-type and

mutant Disc1 lines, a one-way ANOVA was used with an

appropriate post hoc test for multiple comparisons (when there was

a p,0.05) to compare between genotypes. A Student’s two-tailed

unpaired t-test was used to confirm significance and compare

differences between only two groups. For Sholl analysis, a two-way

repeated-measures ANOVA was performed with genotype and

distance as the two factors.
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