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Abstract

This paper investigates a RVF epidemic model by qualitative analysis and numerical simulations. Qualitative analysis have
been used to explore the stability dynamics of the equilibrium points while visualization techniques such as bifurcation
diagrams, Poincaré maps, maxima return maps and largest Lyapunov exponents are numerically computed to confirm
further complexity of these dynamics induced by the seasonal forcing on the mosquitoes oviposition rates. The obtained
results show that ordinary differential equation models with external forcing can have rich dynamic behaviour, ranging from
bifurcation to strange attractors which may explain the observed fluctuations found in RVF empiric outbreak data, as well as
the non deterministic nature of RVF inter-epidemic activities. Furthermore, the coexistence of the endemic equilibrium is
subjected to existence of certain number of infected Aedes mosquitoes, suggesting that Aedes have potential to initiate RVF
epidemics through transovarial transmission and to sustain low levels of the disease during post epidemic periods.
Therefore we argue that locations that may serve as RVF virus reservoirs should be eliminated or kept under control to
prevent multi-periodic outbreaks and consequent chains of infections. The epidemiological significance of this study is: (1)
low levels of birth rate (in both Aedes and Culex) can trigger unpredictable outbreaks; (2) Aedes mosquitoes are more likely
capable of inducing unpredictable behaviour compared to the Culex; (3) higher oviposition rates on mosquitoes do not in
general imply manifestation of irregular behaviour on the dynamics of the disease. Finally, our model with external seasonal
forcing on vector oviposition rates is able to mimic the linear increase in livestock seroprevalence during inter-epidemic
period showing a constant exposure and presence of active transmission foci. This suggests that RVF outbreaks partly build
upon RVF inter-epidemic activities. Therefore, active RVF surveillance in livestock is recommended.
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Introduction

Rift Valley fever (RVF) virus, a member of the genus

phlebovirus and family Bunyaviridae, which has been isolated

from at least 40 mosquito species in the field [1], infects both wild

and domestic animals and humans. The RVF epizootics and

epidemics are closely linked to the occurrence of the warm phase

of the El Nino/Southern Oscillation (ENSO) phenomenon [2].

This phenomenon is characterized by elevated Indian Ocean

temperatures which lead to heavy rainfall and flooding of habitats

suitable for the production of immature Aedes and Culex
mosquitoes that serve as the primary RVF virus (RVFV) vectors

in East Africa [3,4]. Studies have shown that the life cycle of

RVFV has distinct endemic and epidemic cycles. During the

endemic cycle the virus persists during dry season/inter-epizootic

periods through vertical transmission in Aedes mosquito eggs [3].

Aedes eggs need to be dry for several days before they can mature.

After maturing, they hatch during the next flooding event large

enough to cover them with water [5,6]. The eggs have high

desiccation resistance and can survive dry conditions in a dormant

form for months to years. At the beginning of the rainy season,

Aedes mosquitoes quickly multiply into large numbers before

declining due to the need for dry conditions for egg maturation

[9]. There can be a second peak in mosquito densities at the end of

the rainy season if there is a gap in rainfall for several days [5].

When these mosquitoes lay their eggs in flooded areas (including

dambos), transovarially infected adults may emerge and transmit

RVFV to nearby domestic animals, including sheep, goats, cattle,

and camels. High viremias in these animals may then lead to the

infection of secondary arthropod vector species including various

Culex species [7].

Epizootic/epidemic cycles are driven by the subsequent

elevation of various Culex mosquito populations, which serve as

excellent secondary vectors if immature mosquito habitats remain

flooded for a long enough period [4]. Their eggs require water to

mature and hatch and the mosquitoes survive the dry season in

adult form and during the rainy season, the population of Culex
mosquitoes reaches a maximum towards the end of the season [9].

The propagation of these secondary vectors may spread the virus

to additional infection in animal and human, causing an outbreak.
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The disease is known to occur in outbreaks that come in cycles of

5–15 years in the Eastern Africa region and the Horn of Africa

[10].

We observe that RVF outbreaks are highly linked to seasonal

variations on rainfall, which is in turn reflected through seasonal

fluctuations in mosquito population densities. Aedes eggs require

water to hatch and dry condition for maturation, and at the

beginning of the rainy season quickly grow to large numbers while

Culex eggs require water to mature and hatch, and survive dry

season in adult form and during the rainy season reach maximum

numbers towards the end of the season. Thus, fluctuations in both

seasons (wet and dry) favour the complex dynamics of both

mosquito species. Hence the complexity observed on the dynamics

of RVF virus transmission and maintenance.

The interplay between the internal nonlinear dynamic of

ecological systems and various external factors that affect them,

makes understanding of population fluctuation a unique problem

[11].

Mathematical models have been developed in order to provide

a better understanding of the nature and dynamics of the

transmission and persistence of the disease, as well as predict

outbreaks and simulate the impact of control strategies

[9,12,17,18]. Most of these models considered constant mosquito

oviposition rates, ignoring effects of seasonal fluctuations in the

mosquito population size. Furthermore, some have ignored the

effects of vertical transmission and secondary vectors [18] and

some only considered Aedes species [9]. Temperature, rainfall and

humidity have great influence in all stages of mosquito develop-

ment from the emergence and viability of eggs, to the size and

longevity of adults [19,20]. Recently, Mpeshe et al. [21] modified

their previous study [18] to include vertical transmission in Aedes
species and climate-driven parameters. These models provide

important insights but do not investigate the stability dynamics

and attractors structures of the model when there are external

forces in the density of vector populations.

The most common manifestation of external forcing is through

seasonality including both natural (e.g. the occurrence of the warm

phase of the El Nino/Southern oscillation phenomenon) and

induced (e.g human deforestation or human pollution).

Studies for understanding dynamical consequences of regular

and stochastic external forcing are still ongoing but poorly

understood [22–25]. To the best of our knowledge, no systematic

investigation of stability and attractor structures of a realistic RVF

model comprising two populations of mosquitoes (Aedes and

Culex) and one livestock host population with two infected classes

(asymptomatic and symptomatic) and seasonal variation on

mosquito oviposition rates has been carried out.

Based on the model proposed by Gaff et al. [12], we investigate

a two vector and one host epidemic model, to capture the

dynamical behaviour of both the disease free and endemic

equilibria, the effects of seasonality on mosquito oviposition rates

(b1,b3), parametrized by d1, d3 and effects of asymptomatic class

in livestock (parametrized by 1{h2). We prove existence and

global stability of both the disease-free and the endemic equilibria

in the absence of secondary vectors (I3~0), as well as the

existence and local stability of both disease free and endemic

equilibrium points of the overall model. We then investigate the

structures of model attractors through bifurcation analysis, taking

as bifurcation parameters d1 and d3 the strengths of seasonality of

mosquito oviposition rates. The bifurcation diagrams with

simultaneous variation of seasonal forcing on the oviposition rates

of the two mosquito species reveal the complexity induced by their

interactions. The understanding of possible state space scenarios

through bifurcation analysis is helpful for understanding RVF

epidemiological data with its seasonality aspects. To obtain robust

analysis we then compute the largest Lyapunov exponents,

Poincaré maps and maxima return maps.

The section methods gives a detailed description of the model

and its parameters. In section results the model is used to study the

dynamic behaviour of the disease stability and bifurcation analysis.

Simulations are performed to investigate model dependence on

initial condition and attractors structures of the model applying an

external forcing on mosquito’s oviposition rates.

Methods

Gaff et al. [12] proposed a one host and two vectors population

model for RVF with vertical transmission in Aedes vectors to study

the transmission of RVF and the impact of vertical transmission on

the persistence of the disease. Chitnis et al. [9] analysed a RVF

model with vertical transmission for Aedes mosquitoes and

included asymptomatic class for livestock and removed one

population of mosquitoes.

The model presented in this paper adopts a similar structure as

in Gaff et al. [12]. We introduce an asymptomatic class for

livestock [9], because for many species of livestock, RVF virus

infection are frequently subclinical [26,27]. As the main purpose of

this study is to study the dynamic behaviour of the disease,

influenced by changes in climate and oscillation of rainfall, we

include seasonal variation in the oviposition rates of both Aedes
and Culex mosquitoes.

We divide the livestock population into four classes: suscep-

tible, S2, asymptomatic, A2, infectious, I2, and recovered

(immune), R2. Livestock enter the susceptible class through birth

(at a constant rate). Birth rates are important because after an

outbreak, herd immunity can reach 80% and the proportion of

susceptible livestock must be renewed through birth or move-

ment before another outbreak can occur [28]. When an

infectious mosquito bites a susceptible animal, there is a finite

probability that the animal becomes infected. Since the duration

of the latent period in cattle is small relative to their life span, we

do not model the exposed stage. Many adult cattle do not exhibit

clinical signs apart from abortion of foetuses [6,26], thus, include

an asymptomatic class for infectious animals that transmit the

virus at a lower rate than those with acute clinical symptoms.

After being successfully infected by an infectious Aedes and/or

Culex mosquito, livestock move from the susceptible class S2 to

either the infected symptomatic I2 or asymptomatic A2 class.

After some time, the symptomatic and asymptomatic livestock

recover and move to the recovered class, R2. The recovered

livestock have immunity to the disease for life. Cattle leave the

population through a per capita natural death rate and through a

per capita disease-induced death rate only for symptomatic

livestock. The size of the livestock population is given by

N2~S2zA2zI2zR2.

We divide the Aedes and Culex mosquitoes population into

three classes: susceptible, Sa, exposed, Ea, and infectious, Ia. The

subscripts a~1 and a~3 represent Aedes and Culex mosquitoes,

respectively. Female mosquitoes (we do not include male

mosquitoes in our model because only female mosquitoes bite

animals for blood meals) enter the susceptible class through birth.

The virus enters a susceptible mosquito, Sa, with finite probability,

when the mosquito bites an infectious animal and the mosquito

moves to the exposed class, Ea. After some period of time,

depending on the ambient temperature and humidity [29], the

mosquito moves from the exposed class to the infectious class, Ia.

To reflect the vertical transmission in the Aedes species,

compartments for uninfected P1 and infected U1 eggs are
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included. As the Culex species cannot transmit RVF vertically,

only uninfected eggs P3 are included. Mosquitoes once infected

remain infectious during their lifespan. Mosquitoes leave the

population through a per capita natural death rate. The size of

each adult mosquito population is N1~S1zE1zI1 for adult

Aedes mosquitoes and N3~S3zE3zI3 for adult Culex mosqui-

toes. The three populations are modelled with carrying capacity

K1,K2,K3, for Aedes, livestock and Culex respectively. While in

[12], the total number of mosquito bites on cattle depends on the

number of mosquitoes, in our model, the total number of bites

varies with both the cattle and mosquito population sizes. This

allows a more realistic modelling of situations where there is a high

ratio of mosquitoes to cattle, and where cattle availability to

mosquitoes is reduced through control interventions [9].

0.1 Mathematical Model
The state variables in Table 1 and parameters in Table 2 for

the RVF model (Figure 1) satisfy the following system of equations:

Aedes

_PP1(t) ~b1(N1{q1I1){h1P1,

_UU1(t) ~b1q1I1{h1U1,

_SS1(t) ~h1P1{
s1s2b12

s1N1zs2N2
I2S1{

s1s2
~bb12

s1N1zs2N2
A2S1{d1

S1N1

K1
,

_EE1(t) ~

s1s2b12

s1N1zs2N2
I2S1z

s1s2
~bb12

s1N1zs2N2
A2S1

{c1E1{d1
E1N1

K1
,

_I1(t) ~ c1E1zh1U1{d1
I1N1

K1
,

ð1Þ

Livestock

_SS2(t) ~ b2N2{
s1s2b21

s1N1zs2N2
I1S2{

s3s2b23

s3N3zs2N2
I3S2{d2

S2N2

K2
,

_AA2(t) ~ (1{h2)
s1s2b21

s1N1zs2N2

I1S2z(1{h2)
s3s2b23

s3N3zs2N2

I3S2{

"2A2{d2
A2N2

K2
,

_I2(t) ~ h2
s1s2b21

s1N1zs2N2
I1S2zh2

s3s2b23

s3N3zs2N2
I3S2{E2I2{

d2
I2N2

K2
{m2I2,

_RR2(t) ~ "2A2z"2I2{d2
R2N2

K2
,

ð2Þ

Culex

_PP3(t) ~ b3N3{h3P3,

_SS3(t) ~ h3P3{
s3s2b32

s3N3zs2N2
I2S3{

s3s2
~bb32

s3N3zs2N2
A2S3{d3

S3N3

K3
,

_EE3(t) ~
s3s2b32

s3N3zs2N2
I2S3z

s3s2
~bb32

s3N3zs2N2
A2S3{c3E3{d3

E3N3

K3
,

_I3(t) ~ c3E3{d3
I3N3

K3
, ð3Þ

where from the model flowchart in Fig.1, mh for h~1,2,3

represents the natural death rate given by dh
XhNh

Kh

, Xh represent-

ing each compartment of every species in the model, with

Figure 1. Flow diagram of RVFV transmission with each species, namely, Aedes mosquitoes, Culex mosquitoes and livestock (the
solid lines represent the transition between compartments and the dash lines represent the transmission between different
species).
doi:10.1371/journal.pone.0108172.g001
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dN1

dt
~ b1N1{

d1

K1
(N1)2,

dN2

dt
~ b2N2{

d2

K2
(N2)2{m2I2,

dN3

dt
~ b3N3{

d3

K3
(N3)2:

ð4Þ

Following the approach in [9], sa, where a~1 for Aedes and

a~3 for Culex is the rate at which a mosquito would like to bite

livestock (related to the gonotrophic cycle length), and s2 is the

maximum number of bites that an animal can support per unit

time (through physical availability and any intervention measures

on livestock taken by humans). Then, saNa is the total number of

bites that the mosquitoes would like to achieve per unit time and

s2N2 is the availability of livestock. Thus, the total number of

mosquito-livestock contacts is half the harmonic mean of saNa

and s2N2,

�bb~�bb(N2,Na)~
saNas2N2

saNazs2N2
~

sas2

sa(Na=N2)zs2
Na:

In addition to having the correct limits at zero and infinity, this

form also meets the necessary criteria that �bbƒmin(saNa,s2N2)

where �bb is the total number of bites per unit time. The total

number of mosquito-livestock contacts depends on the populations

of both species. We define �bb2~�bb2(N2,Na)~�bb(N2,Na)=N2 as the

number of bites per livestock per unit time, and
�bba~�bba(N2,Na)~�bb(N2,Na)=Na as the number of bites per

mosquito per unit time.

We defined the force of infection from mosquitoes to livestock,

la
2(t), as the product of the number of mosquito bites that one

animal has per unit time, b2, the probability of disease

transmission from the mosquito to the animal, b2a, and the

probability that the mosquito is infectious, Ia=Na. We define the

force of infection from livestock to mosquitoes, l2
a(t), as the force

of infection from infectious (symptomatic and asymptomatic)

livestock. This is expressed as the number of livestock bites one

mosquito has per unit time, �bba; the probability of disease

transmission from an infected (asymptomatic) animal to the

mosquito, ba2(~bba2); and the probability that the animal is

infectious, I2=N2(A2=N2). Therefore the forces of infection are

given by:

l2
1~

s1s2N2

s1N1zs2N2
(b12

I2

N2
z~bb12

A2

N2
)~

s1s2b12I2

s1N1zs2N2
z

s1s2
~bb12A2

s1N1zs2N2
,

l1
2~

s1s2N1

s1N1zs2N2
b21

I1

N1
~

s1s2b21I1

s1N1zs2N2
,

l3
2~

s3s2N3

s3N3zs2N2
b23

I3

N3
~

s3s2b23I3

s3N3zs2N2
,

l2
3~

s3s2N2

s3N3zs2N2
(b32

I2

N2
z~bb32

A2

N2
)~

s3s2b32I2

s3N3zs2N2
z

s3s2
~bb32A2

s3N3zs2N2
,

The model system (1,2,3) is biologically relevant (solutions are

positive) in the set

V~
(P1,U1,S1,E1,I1,S2,A2,I2,R2,P3,S3,E3,I3) [ R13

z : P1,U1,

S1,E1,I1,S2,A2,I2,R2,P3,S3,

(

E3,I3§0,N1ƒ
b1K1

d1
,N2ƒ

b2K2

d2
,N3ƒ

b3K3

d3
,P1zU1ƒ

b1N1

h1
,

P3ƒ
b3N3

h3

�
ð5Þ

Lemma 1. The model system (1,2,3) is well-posed in V which is
invariant and attracting.

Proof 1. When Si~0 for i~1,2,3 then
dS1

dt
~h1P1,

dS2

dt
~b2N2,

dS3

dt
~h3P3 that is

dSi

dt
§0 for i~1,2,3

for t§0.

Similarly, when Ei~0,Ii~0,P1~U1~P3~A2~R2~0 for

i~1,2,3 we have
dEi

dt
§0,

dIi

dt
§0,

dP1

dt
§0,

dU1

dt
§0,

dP3

dt
§0,

dA2

dt
§0,

dI2

dt
§0. If SizEizIi§0 for i~1,2,3 and

S2zA2zI2zR2§0 we have
dNi

dt
~biNi{di

N2
i

Ki

uNi(t)~

biKi

dizNi(0)e{bit
for i~1,3 and we show that for t? Niƒ

biKi

di

~1,3.

Similarly, if P1zU1§0 we can show that _PP1z _UU1ƒ
b1N1

h1
and

_PP3ƒ
b3N3

h3
for t§0. Thus, the solution remain in the feasible

region V if it starts in this region.

Results

0.2 Basic Reproduction Number
For epidemiology models, a quantity, R0 is derived to assess the

stability of the disease free equilibrium [12]. R0 represents the the

number of individuals infected by a single infected individual

during his or her entire infectious period, in a population which is

Table 1. State variables for the model system (1,2,3).

Variable Description

P1 Number of uninfected Aedes mosquito eggs

Q1 Number of infected Aedes mosquito eggs

S1 Number of susceptible Aedes mosquitoes

E1 Number of exposed Aedes mosquitoes

I1 Number of infected Aedes mosquitoes

S2 Number of susceptible livestock

E2 Number of exposed livestock

A2 Number of asymptomatic livestock

I2 Number of infected livestock

P3 Number of uninfected Culex mosquito eggs

S3 Number of susceptible Culex mosquitoes

E3 Number of exposed Culex mosquitoes

I3 Number of infected Culex mosquitoes

doi:10.1371/journal.pone.0108172.t001
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entirely susceptible [30]. When R0v1, if a disease is introduced,

there are insufficient new cases per case, and the disease cannot

invade the population. When R0w1, the disease may become

endemic; the greater R0 is above 1, the less likely stochastic fade

out of the disease can occur. To compute this threshold we use the

next generation operator approach, as described by Diekmann et

al. [31] and van den Driessche and Watmough [32] as well as to

describe the conditions for which the disease-free equilibrium

points lose stability.

Since the model incorporates both vertical and horizontal

transmission, R0 for the system is the sum of the R0 values for each

mode of transmission determined separately [33],

R0~R0,V zR0,H :

To compute each component of R0, the model equations in

vector form are the difference between the rate of new infection in

compartment i, Fi and the rate of transfer between compartment i
and all other compartments due to other processes, Vi [32], (see

Appendix S1). Then, R0 is given by

R0~
b1q1

2m1

z
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0,V z4R2
0,H

q
ð6Þ

where R0,V ~
b1q1

m1

and

R0,H~


(l0

3 )2b23c3N0
2 N0

3

m3(c3zm3)

(1{h2)~bb32

~ee2zm2

z
h2b32

e2zm2zm2

" #
z

(l0
1 )2b21c1N0

1 N0
2

m1(c1zm1)

(1{h2)~bb12

~ee2zm2

z
h2b12

e2zm2zm2

" #vuut :

ð7Þ

0.3 Basic Reproduction Number for periodic environment
In periodic environment, the basic reproduction number is the

generalization of the R0 in non periodic environment. It is known

as the transmissibility number �RR0, which is defined as the average

number of secondary cases arising from the introduction of a single

infectious individual into a completely susceptible population at a

random time of the year [34]. Thus, �RR0 is defined through the

spectral radius of a linear integral operator on a space of periodic

functions, given by the integral operator Gj (see Appendix S1),

Gj~
b1q1

m1z2pji
.

h1

h1z2pji
z

c1

c1zm1z2pji
.

(l0
1 )2b21S0

2S0
1

m1z2pji

(1{h2)~bb12

"2zm2z2pji
z

h2b12

"2zm2zm2z2pji

" #

z
c3

c3zm3z2pji
.

(l0
3 )2b23S0

3S0
2

m3z2pji

(1{h2)~bb32

"2zm2z2pji
z

h2b32

"2zm2zm2z2pji

" #
:

ð8Þ

As proposed by Bacaer [36], the transmissibility number �RR0 is

given by
�RR0~G0z

d2
i

2
Re(

G0G1

G0{G1
) ð9Þ

where Re(.) is the real part of (.). G0 is the basic reproduction

number for the non-seasonal model, obtained when di~0.

The size of �RR0 is reduced compared to R0 when oviposition

rates are constant, and this makes it slightly difficult for the virus to

invade the population with such fluctuations on the transmission

rates [36].

From G0 the following sub-reproduction numbers

R21,R12,R23,R32 can be obtained: R21 is the number of new

infections in livestock from one infected Aedes mosquito and is

given by

R21~
c1

c1zb1
|

b21l0
1N0

2

b1
,

representing the product of the probability that the Aedes

mosquito survives the exposed stage
c1

c1zb1
, the number of bites

on livestock per mosquito l0
1 N0

2 , the probability of transmission per

bite b21, and the infectious lifespan of Aedes mosquito 1=b1.

R12 is the number of new infections in Aedes mosquitoes from

one infected (asymptomatic or symptomatic) animal, and is given

by the weighted sum of new infections resulting from asymptom-

atic and symptomatic livestock

R12~l0
1N0

1

(1{h2)~bb12

~ee2zb2
z

h2b12

e2zb2zm2

 !
:

This is the product of the number of bites an animal receives

l0
1N0

1 , the probability of transmission per bite (~bb12 for an

asymptomatic animal and b12 for symptomatic animal), and the

duration of the infective period (
1

~ee2zb2

for an asymptomatic

animal and
1

e2zb2zm2

for symptomatic animal) weighted by the

probability that an animal either becomes asymptomatic or

symptomatic upon infection.

R23 is the number of new infections in livestock from one

infected Culex mosquito and is given by

R23~
c3

c3zb3
|

b23l0
3N0

2

b3
:

This is the product of the probability that the Culex mosquito

survives the exposed stage
c3

c3zb3
, the number of bites on livestock

per mosquito l0
3 N0

2 , the probability of transmission per bite b23,

and the infectious lifespan of Culex mosquito 1=b3.

R32 is the number of new infections in 
from an infected (asymptomatic or symptomatic) animal and is 

given by the weighted sum of new infections resulting

from asymptomatic and symptomatic livestock

R32~l0
3N0

3

(1{h2)~bb32

~ee2zb2
z

h2b32

e2zb2zm2

 !
:

This is the product of the number of bites one animal receives

l0
3N0

3 , the probability of transmission per bite (~bb32 for an

asymptomatic animal and b32 for symptomatic animal), and the

duration of the infective period ( 1
~ee2zb2

for an asymptomatic animal

and 1
e2zb2zm2

for symptomatic animal) weighted by the probability

ð7Þ

Nonlinear Dynamics of Rift Valley Fever Model

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e108172

Culex mosquitoes ~

~



that an animal either becomes asymptomatic or symptomatic

upon infection.

If q1w0, R0 increases because vertical transmission directly

increases the number of infectious mosquitoes and indirectly

increases the transmission from livestock to mosquitoes and back

to livestock.

0.4 Stability analysis
The computation of the equilibria for model system (1,2,3)

yields, respectively: the disease-free equilibrium (DFE),

X 0 ~(P0
1,U0

1 ,S0
1,E0

1 ,I0
1 ,S0

2,A0
2,I0

2 ,R0
2,P0

3,S0
3,E0

3 ,I0
3 )

~(
b1N1

h1
,0,

b1K1
d1

,0,0,
b2K2

d2
,0,0,0,

b3N3
h3

,
b3K3

d3
,0,0)

ð10Þ

and the endemic equilibrium (EE)

X �~(P�1,U�1 ,S�1,E�1 ,I�1 ,S�2,A�2,I�2 ,R�2,P�3,S�3,E�3 ,I�3 )

where

P�1~
b1N1{b1q1I�1

h1
U�1 ~

b1q1I�1
h1

ð11Þ

S�1~
b1N1{b1q1I�1

g1I�2 zg2A�2zm1

E�1~
m1{b1q1

c1

I�1 ð12Þ

I�1 ~
g1I�2 zg2A�2

g1I�2 zg2A�2zm1

|
b1N1{b1q1I�1

(c1zm1)g7
ð13Þ

S�2~
b2N2

g3I�1 zg4I�3 zm2

ð14Þ

A�2~
g3I�1 zg4I�3

g3I�1 zg4I�3 zm2

|
1

g8
I�2 ~

g3I�1 zg4I�3
g3I�1 zg4I�3 zm2

|
1

g9
ð15Þ

R�2~
~ee2A�2ze2I�2

m2

P�3~
b3N3

h3
ð16Þ

S�3~
b3N3

g5I�2 zg6A�2zm3

E�3~
m3

c3

I�3 I�3 ~
g5I�2 zg6A�2

g5I�2 zg6A�2zm3

|
1

l4
,

ð17Þ

g1~
s1s2b12

s1N1zs2N2
, g2~

s1s2
~bb12

s1N1zs2N2
, g3~

s1s2b21

s1N1zs2N2
,

g4~
s3s2b23

s3N3zs2N2
, g5~

s3s2b32

s3N3zs2N2
, g6~

s3s2
~bb32

s3N3zs2N2
,

g7~
m1{b1q1

c1

, g8~
~ee2zm2

1{h2ð Þb2N2
, g9~

e2zm2zm2

h2b2N2
,

l4~
m3 c3zm3ð Þ

c3b3N3
, l5~ c1zm1ð Þg7.

Substituting equations (15) into equation (13) we obtain

b1N1g3l6I�1 zb1N1g4l6I�3 {m1m2l5I�1 ~g3l7(I�1 )2zg4l7I�1 I�3 ð18Þ

where l6~
g1g8zg2g9

g8g9
,l7~b1q1l6zl5l6zm1l5.

In solving for the equilibria, we omit the expression containing

R2 because it can be determined when S2,A2 and I2 are known.

We then determine analytically the conditions under which these

equilibria are stable or unstable. The following result holds without

proof to avoid repetition:

Lemma 2. The resulting model is biologically relevant
(solutions are positive) in the set

V1~ (f P1,U1,S1,E1,I1,S2,A2,I2,P3,S3,E3,I3) R112
z :

P1,U1,S1,E1,I1,S2,A2,I2,P3,S3,E3,I3§0,N1ƒ
b1K1

d1
,

N2ƒ
b2K2

d2
,N3ƒ

b3K3

d3
,P1zU1ƒ

b1N1

h1
,P3ƒ

b3N3

h3

� ð19Þ

The model system (1,2,3) being nonlinear, stability analysis will

be carried out via linearisation. The Jacobian matrix of system

(1,2,3) at an arbitrary equilibrium is

J~

{h1 0 0 0 {b1q1 0 0 0 0 0 0 0

0 {h1 0 0 b1q1 0 0 0 0 0 0

h1 0 {a1{m1 0 0 0 {a2 {a3 0 0 0 0

0 0 a1 {a14 0 0 a2 a3 0 0 0 0

0 h1 0 c1 {m1 0 0 0 0 0 0 0

0 0 0 0 {a4 {a5{m2 0 0 0 0 0 {a9

0 0 0 0 1{h2ð Þa4 1{h2ð Þa5 {a6 0 0 0 0 1{h2ð Þa9

0 0 0 0 h2a4 h2a5 0 {a7 0 0 0 h2a9

0 0 0 0 0 0 0 0 {h3 0 0 0

0 0 0 0 0 0 {a10 {a11 h3 {a12{m3 0 0

0 0 0 0 0 0 a10 a11 0 a12 {a13 0

0 0 0 0 0 0 0 0 0 0 c3 {m3

2
6666666666666666666666664

3
7777777777777777777777775

ð20Þ

where a1~g1I2zg2A2,a2~g2S1,a3~g1S1,a4~g3S2,a5~g3I1z

g4I3,a6~~2zm2,a7~ 2zm2zm2,a9~g4S2,a10~g6S3,a11~g5S3,
a12~g5I2zg6A2,a13~c3{m3,a14~c1zm1.

Evaluating J at the disease-free equilibrium and using basic

properties of matrix algebra, it is evident from the characteristic

polynomial of J that the following eigenvalues

l1~{m1,l2~{h1,l3~{m2,l4~{h3,l5~{m3 have negative

real part and the remaining reduced matrix is

J1~

{h1 0 b1q1 0 0 0 0

0 {(c1zm1) 0 g2S0
1 g1S0

1 0 0

h1 c1 {m1 0 0 0 0

0 0 (1{h2)g3S0
2 {(~ee2zm2) 0 0 (1{h2)g4S0

2

0 0 h2g3S0
2 0 {(~ee2zm2zm2) 0 h2g4S0

2

0 0 0 g6S0
3 g5S0

3 {(c3zm3) 0

0 0 0 0 0 c3 {m3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð21Þð21Þ

ð20Þ
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The stability of a disease-free equilibria should be established

from the eigenvalues of the reduced Jacobian matrix (21). To

simplify the computations, we perform the following operations on

matrix (21): first we add the first row to the third one and take the

resultant as the new third row; second we multiply the second row

by c1=(c1zm1) and add it to the new third row, then take the

resultant as the new third row and at last we multiply the sixth row

by c3=(c3zm3) and add it to the last row and maintaining the rest

as it is, we obtain the following matrix

J2~

{h1 0 b1q1 0 0 0 0

0 {(c1zm1) 0 g2S0
1 g1S0

1 0 0

0 0 b1q1{m1

c1g2S0
1

c1zm1

c1g1S0
1

c1zm1

0 0

0 0 (1{h2)g3S0
2 {(~ee2zm2) 0 0 (1{h2)g4S0

2

0 0 h2g3S0
2 0 {(~ee2zm2zm2) 0 h2g4S0

2

0 0 0 g6S0
3 g5S0

3 {(c3zm3) 0

0 0 0
c3g6S0

3

c3zm3

c3g5S0
3

c3zm3

0 {m3

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

ð22Þ

From the basic properties of matrix algebra, it is evident from

the characteristic polynomial of J2 that the following eigenvalues

l1~{h1,l2~{(c1zm1) and l3~{(c3zm3) have negative

~JJ(X 0)~

b1q1{m1

c1g2S0
1

c1zm1

c1g1S0
1

c1zm1

0

(1{h2)g3S0
2 {(~ee2zm2) 0 (1{h2)g4S0

2

h2g3S0
2 0 {(e2zm2zm2) h2g4S0

2

0
c3g6S0

3

c3zm3

c3g5S0
3

c3zm3

{m3

0
BBBBBBBB@

1
CCCCCCCCA

ð23Þ

0.5 Stability analysis of the model (1,2,3) without Culex
species

In the absence of Culex species, I�3 ~0, equation (18) can be

written as

g3l7(I�1 )2{(b1N1g3l6{m1m2l5)I�1 ~0: ð24Þ

Equation (24) has two possible solutions I�1 ~0 or I�1=0. The

case I�1 ~0 implies an existence of a disease-free equilibria and the

case I�1=0 implies an existence of an endemic equilibria. Let us

now derive conditions under which positive endemic equilibria

exist. For I�1=0, we get

I�1 ~

b1N1c1g3(g1

~ee2zm2

(1{h2)b2N2
zg2

e2zm2zm2

h2b2N2
){m1m2(c1zm1)(m1{b1q1)

(~ee2zm2)(e2zm2zm2)

(1{h2)h2b2b2N2N2

g3½b1q1c1(g1g8zg2g9)z(c1zm1)(m1{b1q1)(g1g8zg2g9)zm1(c1zm1)(m1{b1q1)g8g9�
,

ð25Þ

I�1 is epidemiologically meaningful, that is, I�1 w0 if and only if

b1N1c1g3½h2b2N2g1(~ee2zm2)z(1{h2)b2N2g2(e2zm2zm2)

wm1m2(c1zm1)(m1{b1q1)(~ee2zm2)(e2zm2zm2)

which can be written in the form

b1b2

m1m2(1{
b1q1

m1
)
|

g3c1N2

m1(c1zm1)
|

(1{h2)g2N1

~ee2zm2

z
h2g1N1

e2zm2zm2

� �
w1

where R1
0~

g3c3N2

m1(c1zm1)
|

(1{h2)g2N1

~ee2zm2

z
h2g1N1

e2zm2zm2

� �
is the

basic reproductive number for the model without Culex species

and R21~
g3c3N2

m1(c1zm1)
represents the number of new infections in

livestock from one infected Aedes mosquito and

R12~
(1{h2)g2N1

~ee2zm2

z
h2g1N1

e2zm2zm2

represent the number of new

infections in Aedes mosquitoes from one infected (asymptomatic or

symptomatic) animal and R0,V~
b1q1

m1
represents the vertical

transmission reproductive number. Therefore, I�1 w0 if and only

if R0,V v1 and R1
0w1. Thus, the following result holds:

Theorem 1. The RVF model (1,2,3) without Culex species has
exactly one disease-free equilibrium point (DFE), X 0

1 ~

(P0
1,U0

1 ,S0
1,E0

1 ,I0
1 ,S0

2,A0
2,I0

2 ,R0
2)~(

b1N1

h1
,0,

b1K1

d1
,0,0,

b2K2

d2
,0,0,0)

for R1
0ƒ1 and exactly one endemic equilibrium point (EE),

X �1 ~(P�1,U�1 ,S�1,E�1 ,I�1 ,S�2,A�2,I�2 ,R�2) whenever R1
0w1.

The result in Theorem 1 indicates the impossibility of backward

bifurcation in the RVF model system (1,2,3) without Culex species

since it has no endemic equilibrium when R1
0v1. This explains

that the model (1,2,3) without Culex species has a globally

asymptotically stable disease-free equilibrium whenever R1
0ƒ1.

In its simplest form, backward bifurcation in epidemic models

usually implies the existence of two subcritical endemic equilibria

when the basic reproductive number for R1
0v1, and a unique

supercritical endemic equilibrium for R1
0w1 [37]. Thus, a unique

ð22Þ

ð25Þ
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real part and the remaining reduced matrix is



positive endemic equilibrium exists only when R1
0w1. We note

that the increase in complexity of an epidemic model (by adding

more infected classes, for example) can lead to backward

bifurcation and even more complicated phenomena associated

with endemic equilibria [37]. However, increase in complexity of

the proposed RVF model does not appear to give rise to more

complex behaviour with regard to endemic equilibria.

0.5.1 Local stability of DFE, X 0
1 . In the absence of

secondary vector (Culex species) that serve as RVF outbreak

amplifiers the Jacobian matrix ~JJ(X 0) in (23) reduces to

J(X 0
1 )~

b1q1{m1

c1g2S0
1

c1zm1

c1g1S0
1

c1zm1

(1{h2)g3S0
2 {(~ee2zm2) 0

h2g3S0
2 0 {(e2zm2zm2)

0
BB@

1
CCA ð26Þ

The characteristic equation corresponding to the above

Jacobian matrix is

l3zAl2zBlzC~0 ð27Þ

where A~e2zm2zm2z~ee2zm2zm1 1{
b1q1

m1

� �
, B~

{ h2g3S0
2

c1g1S0
1

c1zm1
{ 1{ h2ð Þ g3S0

2

c1g2S0
1

c1zm1
z e2 zm2 z m2ð Þ

~ee2zm2ð Þ z e2zm2zm2ð Þ m1{b1q1ð Þz ~ee2zm2ð Þ m1zb1q1ð Þ,

C~{h2g3S0
2

c1g1S0
1

c1zm1

~ee2zm2ð Þ{ 1{h2ð Þg3S0
2

c1g2S0
1

c1zm1

e2zm2zð

m2Þ z ~ee2zm2ð Þ e2zm2zm2ð Þ m1{b1q1ð Þ:

Here Aw0 for
b1q1

m1

v1, Bw0 ^ Cw0 for
b1q1

m1

v1 ^ R1
0v1.

Thus the equation (27) has no root which is positive or zero

(Descartes’ rule of sign). The equation (27) will only have negative

roots or complex roots with negative real part if AB{Cw0

(according to Routh-Hurwitz criteria), that is,
b1q1

m1

v1 ^ R1
0v1.

Thus, the system (1,2,3) without Culex species is stable about the

interior equilibrium X 0
1 and the following result holds:

Theorem 2. For R1
0v1 the model system (1,2,3) without Culex

mosquitoes has a unique DFE point which is locally asymptotically

stable in V1.
0.5.2 Global asymptotic stability of DFE, X 0

1 . To ensure

that the disease elimination is independent of the initial sizes of the

populations, we need to show that the disease-free equilibrium X �1
is globally asymptotically stable (GAS). This is established using

the approach proposed in Castillo-Chavez et al. [38]. There are

two conditions that if met guarantee the global asymptotic stability

of the disease-free state. First, system (1,2,3) without Culex
mosquitoes must be written in the form:

dX

dt
~F (x,Z),

dZ

dt
~G(X ,Z), G(x,0)~0

ð28Þ

where X Rm denotes (its components) the number of uninfected

individuals and Z R n denotes (its components) the number of

infected individuals including latent and infectious. U0~(x0,0)
denotes the disease-free equilibrium of this system.

(H1) For
dX

dt
~F (X ,0), X 0 is globally asymptotic stable

(H2) G(X ,Z)~AZ{ĜG(X ,Z), ĜG(X ,Z)§0 for (X ,Z) V1

where ~D GZ (X 0,0) (see [31] for more details) is an M-matrix

A are nonnegative) and V1 is the

If the system (28) satisfies the above two conditions then the

following Theorem holds.

Theorem 3. The fixed point U0~(x0,0) is globally asymptotic
stable equilibrium of system (28) provided that R1

0v1 (locally
asymptotic stable) and that assumptions (H1) and (H2) are
satisfied.

Proof 2. Rewriting the model system (1,2,3) without Culex
mosquitoes in the form of equation (28) then X~(P1,S1,S2,R2),

Z~(U1,E1,I1,A2,I2)T and F (X ,0)~(b1N1{h1P1,h1P1{m1S1,
b2N2{m2S2,0), then

A~DZG(X 0,0)~

{h1 0 b1q1 0 0

0 {(c1zm1) 0
s1s2

~bb12
s1N1zs2N2

S0
1

s1s2b12
s1N1zs2N2

S0
1

h1 c1 {m1 0 0

0 0 (1{h2)
s1s2b21

s1N1zs2N2
S0

2 {(~ee2zm2) 0

0 0 h2
s1s2b21

s1N1zs2N2
S0

2 0 {(e2zm2zm2)

0
BBBBBBBB@

1
CCCCCCCCA

ð29Þ

and ĜG(X ,Z)~AZ{G(X ,Z)~

~

{h1 0 b1q1 0 0

0 {(c1zm1) 0
s1s2

~bb12
s1N1zs2N2

S0
1

s1s2b12
s1N1zs2N2

S0
1

h1 c1 {m1 0 0

0 0 (1{h2)
s1s2b21

s1N1zs2N2
S0

2 {(~ee2zm2) 0

0 0 h2
s1s2b21

s1N1zs2N2
S0

2 0 {(e2zm2zm2)

0
BBBBBBBB@

1
CCCCCCCCA

U1

E1

I1

A2

I2

0
BBBBBB@

1
CCCCCCA

{

{

b1q1I1{h1U1

s1s2b12
s1N1zs2N2

S1I2z
s1s2

~bb12
s1N1zs2N2

S1A2{(c1zm1)E1

c1E1zh1U1{m1I1

(1{h2)
s1s2b21

s1N1zs2N2
S2I1{("2zm2)A2

h2
s1s2b21

s1N1zs2N2
S2I1{("2zm2zm2)I2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

~

0

s1s2
s1N1zs2N2

(b12I2z~bb12A2)(S0
1{S1)

0

(1{h2)
s1s2b21

s1N1zs2N2
(S0

2{S2)

h2
s1s2b21

s1N1zs2N2
(S0

2{S2)

0
BBBBBBBBB@

1
CCCCCCCCCA

Since 0ƒS1ƒK1 and 0ƒS2ƒK2 it is clear that ĜG(X ,Z)§0.
Then X 0~(b1N1{h1P1,h1P1{m1S1,b2N2{m2S2,0) is globally

asymptotic stable equilibrium of
dX

dt
~F (X ,0). Hence, by the above

Theorem, U0 which represents the disease-free equilibrium X 0
1 is

globally asymptotic stable.
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region where the model makes biological sense.

(the off diagonal elements of

wA

∈

~

∈
∈



0.5.3 Global asymptotic stability of EE, X �1 . Since the

DFE is locally stable when R1
0v1 (this will suggest local stability of

the EE for the reverse condition [32]), we only investigate the

global stability of the endemic equilibrium.

Theorem 4. For R1
0w1, the model system (1,2,3) without Culex

mosquitoes has unique positive EE point X �1 , such that
E�1
E1

ƒ

F�1 S�1E1

F1S1E�1
ƒ1 for ,0vE1vE�1

S�2
S2

§

I�1 S�2
I1S2

§1 for 0vS2vS�2 ^ 0vI1vI�1 and

S�1
S1

ƒ

P1S�1G�1
P�1S1G1

ƒ1 for 0vS�1vS1 ^ 0vP1vP�1

Then, X �1 is globally asymptotic stable in V10 5V1.
Proof 3. Global stability of the EE is explored via the

construction of a suitable Lyapunov function. Let us consider the
following function:

V (P1,U1,S1,E1,I1,S2,A2,I2)

~e1(P1{P�1 ln P1)ze2(U1{U�1 ln U1)ze3(S1{S�1 ln S1)

ze4(E1{E�1 ln E1)ze5(I1{I�1 ln I1)ze6(S2{S�2 ln S2)

ze7(A2{A�2 ln A2)ze8(I2{I�2 ln I2),

ð30Þ

where eiw0 for i~1,2, � � � ,8 with e7~
1

I�1 S�2
,e8~

1{h2

h2

1

I�1 S�2
.

e and e2 5 are chosen very small such e X2
�
1 vd, e X5

�
1 vd for d (0,1).

V (w0 in V1
0

) is a Lyapunov function (Korobeinikov [39]). The
time derivative of V is

_VV~e1(1{
P�1
P1

) _PP1ze2(1{
U�1
U1

) _UU1ze3(1{
S�1
S1

) _SS1

ze4(1{
E�1
E1

) _EE1ze5(1{
I�1
I1

) _II1ze6(1{
S�2
S2

) _SS2

ze7(1{
A�2
A2

) _AA2ze8(1{
I�2
I2

) _II2

~e1(1{
P�1
P1

) b1(N1{q1I1){h1P1½ �

ze2(1{
U�1
U1

) b1q1I1{h1U1½ �

ze3(1{
S�1
S1

) h1P1{g1I2S1{g2A2S1{m1S1½ �

ze4(1{
E�1
E1

) g1I2S1zg2A2S1{(c1zm1)E1½ �

ze5(1{
I�1
I1

) c1E1zh1U1{m1I1½ �

ze6(1{
S�2
S2

)(b2N2{g3I1S2{m2S2)

ze7(1{
A�2
A2

) (1{h2)g3I1S2{("2zm2)A2½ �

ze8(1{
I�2
I2

) h2g3I1S2{("2zm2zm2)I2½ �:

ð31Þ

At X �1 , we have b1N1~b1q1I�1 zh1P�1, b1q1~
h1U�1

I�1
, h1~

g1I�2 S�1zg2A�2S�1zm1S�1
P�1

, c1zm1~
g1I�2 S�1zg2A�2S�1

E�1
, m1~

c1E�1zh1U�1
I�1

, b2N2~g3I�1 S�2zm2S�2, ~""2zm2~
(1{h2)g3I�1 S�2

A�2
,

"2zm2zm2~
h2g3I�1 S�2

I�2
.

Let F1~g1I2zg2A2, F�1 ~g1I�2 zg2A�2, G1~g1I2zg2A2zm1,

G�1~g1I�2 zg2A�2zm1, H1~c1E1zh1U1, H�1~c1E�1zh1U�1 .

Then, _VV can now be written as

_VV~e1(1{
P�1
P1

)(b1q1I�1 zh1P�1{b1q1I1{h1P1)

ze2(1{
U�1
U1

)(
h1U�1

I�1
{h1U1)ze3(1{

S�1
S1

)(
P1G�1S�1

P�1
{G1S1)

ze4(1{
E�1
E1

)(F1S1{
F�1 S�1E1

E�1
)ze5(1{

I�1
I1

)(H1{
H�1 I1

I�1
)

ze6(1{
S�2
S2

) (g3I�1 zm2)S�2{(g3I1zm2)S2

� 	

ze7(1{
A�2
A2

) (1{h2)g3I1S2{
(1{h2)g3I�1 S�2A2

A�2

� �

ze8(1{
I�2
I2

) h2g3I1S2{
h2g3I�1 S�2I2

I�2

� �
:

ð32Þ

Further simplification yields

_VV~{e1(1{
P�1
P1

)2h1P1{e6(1{
S�2
S2

)2m2S2

zF (P1,U1,S1,E1,I1,S2,A2,I2)

ð33Þ

where

F~e1b1q1(1{
P�1
P1

)(
I�1
I1

{1)I1

ze2h2(1{
U�1
U1

)(
U�1 I1

U1I�1
{1)U1

ze3(1{
S�1
S1

)(
P1S�1G�1
P�1S1G1

{1)S1G1

ze4(1{
E�1
E1

)(1{
F�1 S�1E1

F1S1E�1
)S1F1

ze5(1{
I�1
I1

)(1{
H�1 I1

H1I�1
)H1

ze6g3(1{
S�2
S2

)(
I�1 S�2
I1S2

{1)I1S2

ze7(1{h2)g3(1{
A�2
A2

)(1{
I�1 S�2A2

I1S2A�2
)I1S2

ze8h2g3(1{
I�2
I2

)(1{
I�1 S�2I2

I1S2I�2
)I1S2:

ð34Þ
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Recalling that U�1 ~
b1q1

h1

I�1 , e7~
1

I�1 S�2
and e8~

1{h2

h2

1

I�1 S�2
we

obtain,

e2h2(1{
U�1
U1

)(
U�1 I1

U1I�1
{1)U1

~e2h2U�1 (1{
U1

U�1
{

U�1 I1

U1I�1
)ze2h2

b1q1

h1
I1,

ð35Þ

e5(1{
I�1
I1

)(1{
H�1 I1

H1I�1
)H1~e5H1(1{

I�1
I1

{
H�1 I1

H1I�1
)ze5H�1 , ð36Þ

and e7(1{h2)g3(1{
A�2
A2

)(1 {
I�1 S�2A2

I1S2A�2
)I1S2 z e8h2g3(1{

I�2
I2

)

(1 {
I�1 S�2I2

I1S2I�2
)I1S2~(1{h2)g3

I1S2

I�1 S�2
(2 {

A�2
A2

{
I�1 S�2A2

I1S2A�2
{

I�2
I2

{

I�1 S�2I2

I1S2I�2
)z2(1{h2)g3:

By theorems hypothesis,

e1b1q1(1{
P�1
P1

)(
I�1
I1

{1)I1ƒ0,

e3(1{
S�1
S1

)(
P1S�1G�1
P�1S1G1

{1)S1G1ƒ0,

e4(1{
E�1
E1

)(1{
F�1 S�1E1

F1S1E�1
)S1F1,

e6g3(1{
S�2
S2

)(
I�1 S�2
I1S2

{1)I1S2ƒ0,

where strict equalities holds only when,

P1~P�1,I1~I�1 ,S1~S�1,E1~E�1 and S2~S�2

.

Furthermore,

U1

U�1
z

U�1 I1

U1I�1
§2,

I�1
I1

z
H�1 I1

H1I�1
§2,

A�2
A2

z
I�1 S�2A2

I1S2A�2
z

I�2
I2

z
I�1 S�2I2

I1S2I�2
§4,

for all I1,S2,A2,I2§0, because the arithmetic mean is greater than
or equal to the geometric mean. Thus, Fƒ0 for

P1,U1,S1,E1,I1,S2,A2,I2w0. Hence, _VVƒ0 for all
P1,U1,S1,E1,I1,S2,A2,I2w0 and is equal to zero for
P1~P�1,U1~U�1 ,S1~S�1,E1~E�1 ,I1~I�1 ,S2~S�2,A2~A�2,I2~I�2

and X �1 is the only equilibrium state of the system on this plane.

Therefore, the largest compact invariant set in V1
0

such that _VVƒ0 is
the singleton X �1 which is the endemic equilibrium point. LaSalle’s
invariant principle [40] guarantees that X �1 is globally asymptot-

ically stable (GAS) in V1
0

, the interior of V1.

0.6 Stability analysis of the overall model (1,2,3)
The overall model system (1,2,3) describes the epidemiological

and ecological complexity involved on RVF dynamics. Theorem 2

in van den Driesche and Watmough [32] states that the local

stability of the disease-free equilibrium of the model can be

determined by its basic reproduction number, R0. However, in

host-vector models where multiple transmission cycle are observed

to occur as in the case of our model (vertical transmission, host to

Aedes infection, Aedes to host infection, host to Culex infection and

Culex to host infection) the basic reproductive number obtained

via next-generation method does not give the number of host

infected by a single host if there an intermediate vector, but rather

the geometric mean of the number of infections per generation

[41]. Therefore, in our case the local stability of the disease -free

equilibrium, X 0, (10) of the model is established through the

Routh-Hurtwitz criteria [42,43], and the following result holds.

Theorem 5. The model system (1,2,3) always has the disease-

free equilibrium X 0. If b1q1

m1
v1 ^ R1

0v1 ^ R3
0v1 ^ R0v1, the

disease-free equilibrium is locally asymptotically stable in V1.

Proof 4. To prove the stability of the equilibrium point X 0 we
use the Jacobian matrix (23) of the linearised system, which yield the
following characteristic polynomial:

x4zn1x3zn2x2zn3xzn4~0 ð37Þ

where n1~m3z~ee2zm2ze2zm2zm2zm1{b1q1, n2~m3 ~ee2zm2ð Þ
1{c1ð Þzm3 e2zm2zm2ð Þ 1{c2ð Þ z m1{b1q1ð Þ ~ee2zm2ð Þ 1{c3ð Þ

z m1{b1q1ð Þ e2zm2z m2ð Þ 1{c4ð Þz m3 m1{b1q1ð Þz ~ee2zm2ð Þ
e2zm2zm2ð Þ, n3~ m1{b1q1ð Þ ~ee2zm2ð Þ e2zm2zm2ð Þ 1{R1

0


 �
z

m3 ~ee2 z m2ð Þ e2 z m2zm2ð Þ 1{R3
0


 �
zm3 m1{b1q1ð Þ ~ee2 zm2ð Þ 1{½

c1zc3ð Þ�zm3 m1{b1q1ð Þ e2zm2zm2ð Þ 1{ c2zc4ð Þ½ �, n4~m3

m1 { b1q1ð Þ ~ee2 zm2ð Þ e2 z m2 zm2ð Þ 1 { c1zc2zc3z c4ð Þ½ �
~ m3 m1 { b1q1ð Þ ~ee2 z m2ð Þ e2 zm2 zm2ð Þ 1 { R0ð Þ,

with c1 ~
(1{h2)c3g4g6S0

2S0
3

m3(c3zm3)("2zm2)
, c2~

h2c3g4g5S0
2S0

3

m3(c3zm3)("2zm2zm2)
,

c3~
(1{h2)c1g1g3S0

1S0
2

(m1{b1q1)("2zm2)
, c4~

h2c1g1g3S0
1S0

2

(m1{b1q1)("2zm2zm2)
, R3

0~

c1zc2~
c3g4S2

m3(c3zm3)

(1{h2)g6S0
3

"2zm2

z
h2g5S0

3

"2zm2zm2

� �

.

Thus, n1w0 for
b1q1

m1

v1, n2w0 for
b1q1

m1

v1 ^ c1v1,

c2v1,c3v1,c4v1, n3w0 for
b1q1

m1

v1 ^ c1zc3v1c2zc4v1

and n4w0 for R1
0v1 ^ R3

0v1 ^ R0v1. Thus the equation (37)
has no root which is positive or zero (Descartes’ rule of sign).
Therefore equation (37) will only have negative roots or complex
roots with negative real part if n3(n2n1{n3){n2

1n4w0 (according

to Routh-Hurwitz criteria), that is,
b1q1

m1

v1 ^ R1
0v1 ^ R3

0v1^

R0v1. Thus, the system (1,2,3) is locally asymptotically stable about
the interior equilibrium X 0.
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0.6.1 Existence and uniqueness of endemic equilibrium,

X �. The existence of the endemic equilibrium in V1, is

determined by equation (18). Taking A~g3l7,B~g4l7,
C~b1N1g3l6,D~m1m2l5 and E~b1N1g4l6, equation (18) can be

written as

A(I�1 )2z(BI�3 zD{C)I�1 zEI�3 ~0: ð38Þ

Solving equation (38) for fI�1 ,I�3g we get

fI�1 w0,I�3 ~{
I�1 (AI�1 zD{C)

I�1 B{E
g which gives fI�1 w0,I�3 ~

g3c1b2I�1 (aR1
0{1{g3l7I�1 )

g4½g3c1b2l7I�1 {m1(c1zm1)R1
0�
g, with a~ b1b2

m2(m1{b1q1)
. The

existence of positive I�3 is given by the following inequalities:

E

B
vI�1 v

C{D

A
_ C{D

A
vI�1 v

E

B
.

Since
E

B
~

b1N1g4l6

g4l7
~

b1N1l6

l7
and

C{D

A
~

b1N1g3l6{m1m2l5

g3l7

~
b1N1l6

l7
{

m1m2l5

g3l7
, we get that the meaningful inequality is

C{D

A
vI�1 v

E

B
, thus

aR1
0{1

g3l7
vI�1 v

m1(c1zm1)R1
0

g3c1b2l7
.

Since I�1 w0, then C{D should be positive. C{D is the

expression on the numerator of equation (25), which was verified

to be positive whenever R1
0w1 and b1q1

m1
v1. This gives the

Figure 2. Based on equation (38), we represent the condition
for existence of infected Culex mosquitoes at the endemic
equilibrium (EE) state. The existence of infected Culex is impossible
in region I. In region II both Aedes and Culex coexist. The border black
line represents the threshold of coexistence, which is exactly I�3 ~100.
doi:10.1371/journal.pone.0108172.g002

Figure 3. We display the time series of (I1zI3) left and (A2zI2) right. Parameters used for (a) and (b) are d1~0:6, d3~0:6, for (c) and (d) are
d1~70, d3~1:1, finally for (e) and (f) are d1~24:7, d3~1:1. Figures (d) and (f) show a linear increase in livestock seroprevalence during post-epidemic
which comes in cycles of 5 to 7 years approximately.
doi:10.1371/journal.pone.0108172.g003

Nonlinear Dynamics of Rift Valley Fever Model

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e108172



threshold for the endemic persistence. Therefore the following

result holds:

Theorem 6. The RVF model (1,2,3) has a unique endemic

equilibrium point X � whenever R1
0w1 and

aR1
0{1

g3l7
vI�1

v

m1(c1zm1)R1
0

g3c1b2l7
.

The result in Theorem (6) indicates that depending on vertical

transmission efficiency, if the Aedes basic reproduction number

R1
0w1 and I�1 satisfy the inequality

aR1
0{1

g3l7
vI�1 v

m1(c1zm1)R1
0

g3c1b2l7
,

it is sufficient to cause an outbreak, since secondary vectors (Culex
species) co-exist and serve as disease amplifiers. Figure 2 shows the

region where I�3 is strictly positive when varying both I�1 and R1
0.

That is, in region II both infected Aedes and Culex co-exist while

in region I only infected Aedes exist. This confirm the analytical

results obtained above. The existence of infected Culex at endemic

equilibrium depend on the existence infected Aedes and initial

spread of the disease R1
0. Thus, Aedes species have the potential to

initiate the epidemic through transovarial transmission and the

potential to sustain low levels of the disease during post epidemic

periods.

0.7 Bifurcation and chaos investigation on the RVF model
To provide some numerical evidence for the qualitative

dynamic behaviour of the model (1,2,3), time series with both

transient and permanent regimes, phase portraits, Poincaré maps,

bifurcation diagrams, Lyapunov exponents have been used to

assess model sensitive dependence on initial conditions and return

maps are used to illustrate the above analytical results and for

determining new dynamics as the parameters vary. We start by

introducing a simple case of seasonality on time dependent

oviposition rates of mosquito populations (Aedes and Culex):

b1(t)~b1 1zd1 sin
2pt

T

� �� �
,b3(t)~b3 1zd3 sin

2pt

T

� �� �
ð39Þ

where b1 and b3 are the baseline parameters of the oviposition

rates of Aedes and Culex mosquitoes respectively, T~1 year, d1

and d3 are the external forcing amplitudes for the two species of

mosquitoes respectively, which represent the strength of season-

ality that controls the magnitude of the fluctuations. When

d1~d3:0, the model reduces to a non-seasonal model and the

system possesses two types of equilibria: disease free and endemic

equilibria. When the magnitude of the external forcing parameters

d1,d3 is sufficiently small, d1,d3 (0,1) the system responds with

oscillations of the same annual period as external forces (see Figs.3

(a) and (b)). However with larger values (for instance

d1~70,d3~1:1) the system shows other modes of oscillations

(see Figs.3 (c) and (d)) with period 5 as confirmed by Poicaré maps

Fig.4. In all this section, the system is integrated numerically with

the fifth order Runge-Kutta algorithm [44]. The initials conditions

Table 2. Parameters description for the RVF model (1,2,3).

Parameter Values References Parameters description and their dimensions

b1 0.06 [9,13] Per capita birth/death rate of Aedes mosquito species, Day21

b2 0.0022 [12] Per capita birth/death rate of livestock, Day21

b3 0.06 [9,13] Per capita birth/death rate of Culex mosquito species, Day21

q1 0.1 [14] Probability of vertical transmission from an infectious Aedes mosquito mother

to its eggs, dimensionless

ha 0.20 Assumed Development rate of mosquitoes, Day21, where a~1 and a~3

h2 0.6 [6,9] Probability of an infected host moving to the symptomatic stage, dimensionless

(1{h2) 0.4 [6,9] Probability of an infected host moving to the asymptomatic stage, dimensionless

s1,s3 0.33 [5,9] Number of times one Aedes, Culex mosquito would want to bite a host per Day, if it were freely available. This is a
function of the mosquito’s gonotrophic cycle (the amount of time a mosquito requires to produce eggs) and its
preference for livestock blood, Day21

s2 19 [9] The maximum number of mosquito bites a host can sustain per Day. This is a function of the host’s exposed surface
area, the efforts it takes to prevent mosquito bites (such as switching its tail), and any vector control interventions in
place to kill mosquitoes encountering hosts or preventing bites, Day21

b2a 0.21 [6,9] Probability of transmission of infection from an infectious mosquito to a susceptible host given that a contact
between the two occurs, dimensionless, where a~1 and a~3

ba2 0.7,0.15 [6,9] Probability of transmission of infection from an infectious host to a susceptible mosquito given that a contact
between the two occurs, dimensionless, where a~1 and a~3

~bba2
0.30 [6,9] Probability of transmission of infection from an asymptomatic host to a susceptible mosquito given that a contact

between the two occurs, dimensionless

1=ca 6 [12,15] is the average duration of the mosquitoes latent period, Days, where a~1 and a~3

1=e2 4 [5,9,16] is the average duration of the infectious period I2 , Days

1=~ee2 4 [9,13,16] is the average duration of the infectious asymptomatic period, Day21

m2 0.1 [9,13,16] Per capita disease-induced death rate for livestock, Day21

1=m1 20 [9,13] Lifespan of Aedes mosquitoes, Days

1=m2 2190 [12] Lifespan of livestock animals, Days

1=m3 20 [9,13] Lifespan of Culex mosquitoes, Days

doi:10.1371/journal.pone.0108172.t002
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and other values are P1(0)~1000, U1(0)~999, E1(0)~0,

I1(0)~1, S2(0)~1000, A2(0)~0, I2(0)~0, R2(0)~0,

P3(0)~1000, S3(0)~5000, E3(0)~0, I3(0)~0, K1~10000,

K2~2000 and K3~10000. The parameter values are shown in

Table 2.

0.7.1 Time series simulations. Figure 3 depicts the time

evolution of the sum of infectious Aedes and Culex mosquitoes,

I1zI3 and sum of infectious asymptomatic and symptomatic

livestock for different values of d1~0:6,d3~0:6; d1~70,d3~1:1
and d1~24:7,d3~1:1. In (a) the number of infectious mosquitoes

oscillates yearly reaching the same maximum. In (c) the quantity

I1zI3 also oscillates with first peak of above 500 around the

second year. In (c) we notice a long lasting peak of about 500

infectious mosquitoes in the interval 18–25 months, which is likely

to cause an inter-epidemic outbreak. Fig.3(b) shows a constant low

oscillation, high peaks around second and fifth year in (d) and high

peaks around second and fourth year in (f). Note that the internal

figures describes the permanent regime which represent the

dynamics where the system is expected to adapt to the external

forcing. The time series for d1,d3 (0,1), also show that the total of

infected vectors I1zI3 and infected livestock A2zI2 stay quite

away from zero, avoiding the chance of extinction in stochastic

system with reasonable size (see Figs.3 (a) and (b)). This is due to

the fact that for d1, d3 (0,1) vector oviposition continues

In the region d1w1,d2w1, Figs.3 (c)–(f), we observe fluctuations

in the total number of infected from reasonable small peaks

(describing RVF post-epidemic activities) to very low values, which

in this case drive almost surely the system to extinction.

0.7.2 Phase portrait diagrams and Poincaré

maps. Instead of studying the entire complicated trajectories,

important information is encoded in the phase plane. This

approach allow us to analyse geometrically the total dynamics of

the system. Varying d1,d3 the state space plots show a rich

dynamical behaviour with bifurcations from limit cycles, multi-

periodic oscillation to completely irregular behaviour which is

usually the fingerprint of chaos (see Fig.4).

Poincaré map is a useful tool for analysing the dynamics of a

nonlinear system. It allows good insight for global dynamics of the

system by displaying the types of attractors of the system [45]. The

successive iterations of the map are defined as:

Figure 4. Phase portrait with couple (I2zA2,S2) on the left and (I1zI3,S1zS3) on the right. In (a) and (b), d1~0:6, d3~0:6, the system
is attracted by a limit cycle. In (c) and (d), d1~70, d3~1:1, the system is multi-periodic. And in (e) and (f), d1~24:7, d3~1:1, the systems behave
with higher multi periodicity.
doi:10.1371/journal.pone.0108172.g004

Nonlinear Dynamics of Rift Valley Fever Model

PLOS ONE | www.plosone.org 13 October 2014 | Volume 9 | Issue 10 | e108172

seasons. This is not the case of East African region, where we

have two rainy seasons (long and short) and a dry season, where

intervals of interepidemic periods.

under this former we expect stochastic extinction during some

throughout the year, albeit at lower rates during unfavourable

∈

∈



P : S?S

S~ XDt~0,
2p

V
,
4p

V
,
8p

V
, . . .

� �
[ R13 ð40Þ

The attractor is generated by sampling the system stroboscop-

ically at time corresponding to the multiple of the period

T~2p=V. We have used 100,000 points and a period of one

year. Figures 5 (a) and (b) with (d1~0:6, d3~0:6) show that the

system is attracted by a limit cycle, because of the presence of a

single dot. In this case the system is periodic. In (c) and (d) with

(d1~70, d3~1:1) we notice a presence of a few dots, thus, the

system is multi-periodic and in (e) and (f) with (d1~24:7, d3~1:1)

we notice a strange attractor which is usually a sign of a chaotic

system.

0.7.3 Maxima return maps of I1zI3,A2zI2 for state
phase plots. We have used maxima return maps in order to

get supplementary classification of different dynamics for param-

eters d1 and d3. For a time selected as tmax, at which

I1zI3 2zI2 have a local maximum, we have plotted the

number of infected mosquitoes and livestock respectively at time

tmax and at the next local maximum treturnmax. Figures 6 (a) and (b)

show that all consecutive maxima coincide with themselves as

shown by a single dot. In (c) and (d), we notice that consecutive

maxima are few and different as a sign of irregularity, and in (e)

and (f), we observe that a dot rarely comes back to the same point.

Thus, the fingerprint of chaotic attractor is clearly visible now with

the maxima return maps analysis.

0.7.4 Lyapunov exponents and bifurcation

diagrams. The largest Lyapunov Exponent (LE) is quantita-

tively characterized by the average rate of separation of

infinitesimally close trajectories in the phase space for a dynamic

system. It can be used to determine how sensitive a dynamical

system is to initial conditions [46]. In general for a N-dimensional

dynamical system described by a set of equations dX i

dt
~Fi(X,t), the

LEs are defined by [35]:

li~ lim
t??

lim
dXi

0
?0

1

t
ln

EdX i
t E

EdX i
0E

� �
, ð41Þ

where li is the ith LE and EdX i
t E is the distance between the

trajectories of the ith component of the vector field F at time t.

Figure 5. Poincaré maps with couple (I2zA2,S2) on the left and (I1zI3,S1zS3) on the right. In (a) and (b), d1~0:6, d3~0:6, in (c) and (d),
d1~70, d3~1:1 and in (e) and (f), d1~24:7, d3~1:1.
doi:10.1371/journal.pone.0108172.g005
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Recall that exponential divergence in the phase space is given by

the LEs. If the largest LE is less than or equal to zero, then the

system may be regarded as periodic or quasi-periodic. Otherwise,

if the largest LE is positive the system may have an irregular or

chaotic behaviour. Another important fact to be mentioned is that

negative LE does not, in general, indicate stability, and that

positive largest LE does not, in general indicate chaos [47].

In Figs.7 (a)–(d) we have computed the bifurcation diagrams

with respect to d1, the external forcing amplitude on the response

of the RVF model. Figures (e) and (f) show the maximal LE after

infinitesimal perturbation of 10{10 in the initial conditions. In

Fig.7(e), the maximal LE is positive for d1 > 60 and around 50

and 25. In Fig.7(f), the maximal LE is positive for 15 = d1 = 34

and for d1 > 85.

Figure 7 shows the bifurcation diagrams of the local maxima of

infectious mosquitoes and livestock undergoing forward forking

bifurcation from period-1 to period-6 oscillatory type behaviour.

In Fig.7(a), local maxima extrema I1 of infectious Aedes species

undergo irregular behaviour for d1 > 65, which is the fingerprint

of chaos. Fig.7(b) shows irregular behaviour for 15 = d1 = 34

and d1 > 85, with large number of periods. In Figs.7 (c) and (d),

we observe almost the same qualitative behaviour with the same

parameters, but with notable difference in the value of the local

maxima of the overall infectious mosquitoes fuelled by the

elevation of several secondary vectors which serve as disease

amplifiers. When d3~1:1 the local extrema A2zI2 undergoes

irregular behaviour for 15 = d1 = 34 and d1 > 85, with large

number of periods Fig.7(h).

We observe from Fig.7(e) that for a fixed d3~0:1 and varying d1

(0ƒd1 = 62) the largest Lyapunov exponent is fairly negative

indicating stable limit cycles and multi-periodicity with some shift

to positive values as the system bifurcates through period doubling

routes to chaos. Above d1~62 a positive Lyapunov exponent

clearly moves away from zero, indicating deterministically chaotic

attractors. For a fixed d3~1:1 and varying d1 Fig.7(f) the largest

Lyaponov exponent fairly confirms the behaviour seen through

bifurcation diagrams with positive values on the chaotic regions.

0.7.5 Interaction between Culex and Aedes oviposition

rates. In the preceding section we have fixed the value of d3,

while investigating the bifurcation behaviour when d1 is varying.

In Figure 8 we have computed the maximal LE when those two

parameters are varying. For 20 = d1,d3 = 100, the maximal LE

is negative, then the system is sensitive to initial conditions. For low

values of d3 and 18 = d1,d3 = 45, the maximal LE is positive.

Another remarkable fact is observed when d1 is around 10 no

matter the value of d3, the maximal LE will be positive. This shows

i fact that, Aedes oviposition rate is predominant in leading

Figure 6. We display the maxima return map of I1zI3 and A2zI2 with (a)–(b) d1~0:1, d3~0:1, (c)–(d) d1~70, d3~1:1 and (e)–(f)
d1~24:7, d3~1:1. The blanc line represents the first bisectrix of the plane.
doi:10.1371/journal.pone.0108172.g006

Nonlinear Dynamics of Rift Valley Fever Model

PLOS ONE | www.plosone.org 15 October 2014 | Volume 9 | Issue 10 | e108172



irregular behaviour in our system, confirming that Aedes are

indeed the RVF primary vectors.

Both maximal Lyapunov exponent functions of d1 and d3 and

the Poincaré map of the set (d1,d3) fig.8 around d1~10 agree with

each other, confirming the analytical results obtained in Theorem

6.

Recall that in certain Aedes species of the subgenera

Neomelaniconion and Aedimorphus, the female mosquitoes trans-

mit RVF virus vertically to their eggs [3]. When these mosquitoes

lay their eggs in flooded areas, transovarially infected adults may

emerge and transmit RVF virus to nearby domestic animals which

may then lead to the infection of secondary arthropod vectors

species including various Culex [48]. Thus, there is an initial

quantity of primary infected vectors required to trigger an

outbreak. Fig.8 shows that if the control magnitude of fluctuations

in Aedes oviposition rate is around 10, and the number of newly

transovarially infected mosquitoes is amplified by nearby domestic

animals, then, the number of infected (in both host and vector) will

Figure 7. In (a) and (b), bifurcation diagrams for the local maximal quantities of I1 by varying the parameter d1 and fixing d3 = 0.1(a)
and d3 = 1.1(b). In (c) and (d), bifurcation diagrams for the local maximal quantities of I1zI3 by varying the parameter d1 and fixing
d3 = 0.1(c) and d3 = 1.1(d). In (e) and (f), we have computed the largest LE for d3 = 0.1(e) and d3 = 1.1(f) and in (g) and (h), bifurcation
diagrams for the local maximal quantities of A2zI2 by varying the parameter d1, and fixing d3 = 0.1(h) and d3~1:1(f).
doi:10.1371/journal.pone.0108172.g007
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be sufficiently enough to cause subsequent elevation of secondary

vectors, including Culex species, and consequently trigger an

outbreak.

Discussion and Conclusion

The proposed model accounts for the population dynamics of

both livestock and mosquitoes (Aedes and Culex) and seasonal

changes in weather that heavily affects the vector population size.

Mosquito density varies over seasons, and the contact rates and

vector oviposition rates vary dynamically based upon both host

and vector densities since female mosquitoes need blood for

oviposition. Qualitative analysis of the model showed that there

exists a domain where the model is epidemiologically and

mathematically well-posed. We then analysed the existence and

stability of both disease free and endemic equilibria.

Dynamical analysis shows that when R0v1, then the disease

dies out and when R0w1 the disease become endemic. A suitably

constructed Lypunov function is used to determine the global

stability of the endemic equilibrium of the model without Culex
species and the existence of the endemic equilibrium of the overall

model is seen to exist whenever
aR1

0{1

g3l7
vI�1 v

m1(c1zm1)R1
0

g3c1b2l7
,

meaning that the co-existence of the infectious host, Aedes and

Culex mosquitoes is subjected to the number of infected Aedes
mosquitoes.

We have used visualisation techniques to study the behaviour of

RVF epidemic model under external forcing in the mosquito

oviposition rates. The bifurcation diagrams show the emergence

with increase in external forcing parameters d1,d3 of Hopf and

pitchfork modes of bifurcation. That they have much larger

amplification of infection levels that can take place if the system is

encouraged to switch to multi-periodic mode. In transition, further

amplification can occur if the multi-periodic mode becomes

unstable and the system moves into chaotic state before finding an

alternative stable periodic mode (e.g. Fig.7).

On the bifurcation diagrams the highest maximum number of

infectious Aedes mosquitoes is only observed for values of d1

(d1v10) with different values of d3, meaning that for the disease

to trigger an inter-epidemic a certain number of infectious Aedes
mosquitoes is necessary. This confirm the analytical results obtain

in section 0.6, as well as results obtained in [9] which showed that

when mosquito populations follow seasonal patterns with large

amplitudes, vertical transmission could play a significant role in

long-term persistence of a pathogen. Another important conclu-

sion is that even with a low maximum number of infectious

individuals, the bifurcation diagrams show that if for fixed d3~1:1
and varying d1 the system becomes chaotic in the interval

15 = d1 = 35, meaning that unpredictable and possibly uncon-

trolled low levels of inter-epidemic activities may occur, leading to

higher morbidity in livestock. Hence observed fluctuations in RVF

outbreak data and non deterministic nature of RVF inter-

epidemic activities could now be better understood considering

fluctuations on both rainy and dry season as significant factor.

A sero-survey study done in livestock approximately four years

after the 2006/07 RVF outbreak in Tanzania, showed a linear

increase in seroprevalence in the post-epidemic annual cohorts

implying a constant exposure and presence of active foci

transmission [10]. Figure 3 (d) and (f) demonstrate this behaviour

which is shown to come in cycles of 5 to 7 years approximately, as

well as fluctuations in the total number of infected from reasonable

small peaks (describing RVF post-epidemic activities) to very low

values. During these periods of low troughs for the total number of

infected, the virus survive through vertical transmission in Aedes
species and among wild animals as reservoirs [49]. Note that, this

recurrent low level RVF virus activity during inter-epidemic

periods, in East African region in particular, infects 1{3% of

livestock herds annually [50]. Generally, these infections pass

undetected where there is no regular active surveillance in the

livestock and human populations [10]. This suggests that RVF

outbreaks partly result from build up RVF inter-epidemic activities

for it has been observed that optimum climatic conditions

(temperature and rainfall) only and presence of mosquitoes can

not completely explain the RVF outbreaks [51].

Simulation of the interaction between the two populations

densities of Aedes and Culex by varying the magnitudes of external

Figure 8. In (a) we display the maximal LE function of d1 and d3. The colorbar shows the value of the maximal LE. In (b) we display the number
of points in the Poincaré map (the colorbar) according to the set of parameters (d1 , d3).
doi:10.1371/journal.pone.0108172.g008
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forcing d1 and d 3of the oviposition rates b 1 3 have opened a

new window of research on the potential of Aedes species to initiate

RVF outbreaks and sustain low endemic levels of the disease

during inter-epidemic periods. This result concurs with the Chitnis

et al. [9] suggestion that vertical transmission is required for inter-

epidemic persistence.

One of the main objectives of this study was to investigate the

possibility of prediction of RVF outbreaks with the aim of

controlling RVF incidence. We have shown that seasonality may

induce irregular behaviour on the disease dynamics. It has been

shown that the interaction between oviposition rates of Aedes and

Culex mosquitoes makes prediction more complex. In fact, higher

irregularity are naturally expected in the higher seasonality

forcing. However, our proposed model has shown that the

complexity occurs even for a relatively low level of the magnitude

of seasonal forces. We have also found that seasonal Aedes
oviposition rate is most likely to generate uncontrollable behaviour

than Culex seasonal oviposition rate. This study is of great

epidemiological significance as it highlights a high uncertainty in

RVF outbreak prediction by a simple theoretical mathematical

model including seasonal influence in mosquito populations. In

addition, the model including external seasonal forcing on

mosquito oviposition rates shows ability to mimic the linear

increase in livestock seroprevalence as reported in Sumaye et al.

[10], with first post-epidemic peak around the second year, a

following peak larger than the previous one around the fifth year

(see Fig.3 (d) and (f)).

Currently, two types of RVF vaccine for animals exist: a live

vaccine and inactivated vaccine. However, the current live vaccine

can not be used for prevention and prevention using the

inactivated vaccine is almost impossible to sustain in RVF affected

countries for economic reasons [6,21,52]. Then, the possible

alternative of controlling RVF transmission remains in keeping the

vector population at the lowest levels. Therefore we argue that

locations that may serve as RVF virus reservoirs should be

eliminated or kept under control to prevent multi-periodic

outbreaks and consequent chains of infections. We also recom-

mend a systematic surveillance in the livestock or human

population in order to monitor inter-epidemic RVF activities.

This study is not exhaustive and can be extend to include

humans not just as dead ends [18] but also as disease amplifiers

since it has been demonstrated that humans have potential to

transmit the virus, particularly to Aedes mosquito species [8]. Also,

including ticks on the model may help to explain and gain more

insights on the understanding of disease dynamics and enhance

control strategies, since ticks have been reported to play a role on

disease transmission [51]. For mathematical convenience and

tractability of the model, we made several assumptions, thus our

results are driven by the model formulation and structure. A step

toward a more quantitative and qualitative study is viable by

relaxing some of the assumptions made and incorporating more

epidemiological features of the disease as well as the use of a

double periodic function and inclusion of stochasticity in order to

capture the dynamic of the two rainfall seasons in East Africa (long

and short rainy seasons), where the disease is likely to be more

predominant. Further studies are needed to enhance the

understanding of RVF epidemic and inter-epidemic activities in

order to provide further insights in assessing the current and future

control strategies.

Supporting Information

Appendix S1 A1. Computation of the basic reproduction
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