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A B S T R A C T

The wavelength dependence of the laser-induced photoacoustic signal amplitude has been measured for

water dispersions of 10, 61, and 93 nm diameter gold nanospheres. The whole region of the localized

surface plasmon resonance has been covered. This ‘‘photoacoustic excitation profile’’ can be overlayed

with the extinction spectrum between 450 nm and 600 nm in the case of the smallest nanoparticles. At

variance, the larger-sized nanoparticles display a progressive deviation from the extinction spectrum at

longer wavelength, where the photoacoustic signal becomes relatively smaller. Considering that

photoacoustics is intrinsically insensitive to light scattering, at least for optically thin samples, the

results are in agreement with previous theoretical work predicting (i) an increasing contribution of

scattering to extinction when the nanoparticle size increases and (ii) a larger scattering component at

longer wavelengths. Therefore, the method has a general validity and can be applied to selectively

determine light absorption by plasmonic systems.

� 2014 The Authors. Published by Elsevier GmbH. All rights reserved.
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1. Introduction

Photoacoustic methods are increasingly taking advantage of
plasmonic systems, such as gold and silver nanoparticles of various
size and shape [1,2]. One of the reasons for this growing interest is
the flexibility with which plasmon resonances can be optimized to
tune and enhance the optical response [3–8]. This, in turn, can give
rise to heat conversion – and to the subsequent pressure wave
generating the photoacoustic signal – with an especially high
efficiency, due to the large absorption cross section of metal
nanoparticles and to their negligible radiative relaxation. These
optothermal properties have been the basis for the development of
metal nanoparticles as contrast agents for photoacoustic imaging
[9–19] and photoacoustic tomography [20–24].

There is a particular aspect of the relationships between optical
and thermal properties of nanoparticles which deserves special
attention. The excitation wavelength giving rise to the photo-
acoustic effect must lie within an extinction band, which, for metal
nanoparticles, is normally the localized surface plasmon resonance
band. In the case of small-sized nanoparticles (<40 nm diameter
for gold), absorption and extinction are practically coincident, so
that the wavelength dependence of the photoacoustic amplitude
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will strictly follow the extinction band. This will not be observed,
instead, when the nanoparticles size becomes progressively larger,
as the scattering contribution to extinction increases [3,5,25]. In
fact, scattering of the excitation light does not generate acoustic
waves, because it does not involve a transfer of energy from the
light field to the nanoparticles; therefore, photoacoustics is
intrinsically insensitive to light scattering. This property is not
only an advantage when detecting nanoparticles in turbid media
[26–28], but it can also be exploited to separate the absorption
contribution to extinction within a plasmon resonance band. This
idea was already clearly expressed in a classical textbook on the
optical properties of small particles [29], together with the
proposal to employ traditional chopped-light photoacoustics to
resolve absorption from scattering. Similar results can be obtained
by all-optical photothermal methods [30,31]. Compared to
traditional photoacoustic spectrometry, laser-induced optoacous-
tic spectroscopy offers an improvement in sensitivity. It requires,
on the other hand, the availability of a laser source which can be
tuned in a wide wavelength range, completely spanning the
relatively broad surface plasmon resonance band. In the present
work, we have applied laser-induced photoacoustics to model
plasmonic systems, namely, water-dispersed gold nanospheres
with 10, 61, and 93 nm diameter, measuring the photoacoustic
signal amplitude as a function of the laser excitation wavelength
between 440 and 610 nm. We term this measurement a
photoacoustic excitation profile. We have also contrasted this
excitation profile with that of a dilute chromophore solution,
which displays a negligible scattering, and with simulations based
on Mie’s theory.
 rights reserved.
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Fig. 1. (a) Photoacoustic signal amplitude vs. incident laser energy for the potassium

permanganate reference solution and for both D10 and D93 nanospheres samples

with 532 nm excitation wavelength at T = 20.6 8C. The amplitudes are normalized

with respect to small extinction differences of the samples at 532 nm. A linear fit

(dashed line) is superimposed on the potassium permanganate data. The inset

shows the same measurement for D61 nanospheres. (b) Laser-induced

photoacoustic signals of KMnO4 and D10 in water at T = 20.6 8C. S indicates the

signal amplitude, which is plotted in Fig. 1a. The excitation wavelength was

532 nm. The incident laser power was 14 mJ/pulse. The abscissa represents the

signal delay with respect to the trigger which is synchronous with the laser pulse.

The position of the signal depends on the speed of sound in water and on the

distance between the laser beam and the transducer.
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2. Experimental methods

Gold nanospheres with 10 nm diameter and potassium
permanganate were purchased from Sigma–Aldrich. Gold nano-
spheres with 61 and 93 nm diameter were synthesized according
to Turkevich’s method [32]. The nanoparticle dimensions were
evaluated by dynamic light scattering measurements (see
Supplementary Data). Extinction spectra were measured with a
Varian Cary 5 spectrophotometer. Photoacoustic signals were
detected with a 1 MHz bandpass Panametrics V103-RM piezoelec-
tric transducer clamped to a standard quartz cuvette for
spectrophotometry. The signals were amplified with a Panametrics
5660 B amplifier and averaged with a Tektronix TDS-3054B
digitizing oscilloscope. The minimum number of signals was 512
for each average. The sample temperature was kept constant
within 0.1 8C with a Lauda Eco RE 415 cryostat and monitored by a
thermocouple placed inside the cuvette. The excitation source was
a GWU – Lasertechnik GmbH optical parametric oscillator pumped
by the third harmonic of a Quanta System Nd:Yag laser for all the
measurements but for those presented in Fig. 4, which were
obtained with Quanta System Nd:Yag laser-pumped dye lasers.
The pulse duration was 10 ns and the repetition rate 10 Hz. The
excitation wavelength was measured with a Mut Tristan fiber optic
spectrophotometer. The incident laser energy was measured in
front of the sample cuvette by a pyroelectric head energy meter
before each measurement. The incident laser beam was shaped by
a rectangular slit with 1 mm � 10 mm size without focussing in
the sample. The fluence was therefore on the order of 0.1 mJ cm�2.
Convolution analysis, performed with commercial software
(Sound Analysis, Quantum Northwest Inc.), showed that the
temporal profile was the same for a calorimetric reference solution
(see below) and for the nanosphere samples, without any
detectable delayed component [33]. Therefore, we have simply
considered the difference between the first maximum and the first
minimum of the signal as the photoacoustic signal amplitude S (see
Fig. 1b). Sample integrity was checked by comparing the extinction
spectra taken before and after each measurement. Mie theory
calculations were performed with the program MiePlot version
4.2.09 by Philip Laven. Size and polydispersity were set according
to the parameters obtained by the dynamic light scattering
measurements shown in Supplementary Data.

3. Results

3.1. Measurements at a single excitation wavelength

The first step in constructing the photoacoustic excitation
profile is to ascertain which physical processes are contributing to
the photoacoustic signal amplitude in our experimental condi-
tions. To this end, we first compared the signals from three
aqueous dispersions of nanospheres, with 10 nm diameter (D10),
61 nm diameter (D61), and 93 nm diameter (D93), and from a
reference compound, at the single excitation wavelength of
532 nm. Theory and practice of laser-induced optoacoustic
spectroscopy methods have been previously reviewed [34–36]
and we therefore do not describe them in the present article. A
common aspect of many photoacoustic measurements is the need
to compare the signals of a given sample with those of a so-called
calorimetric reference. This is a substance which instantaneously
(relative to the time scale of the experiment, i.e., 20 ns in our case)
releases all the energy absorbed from the excitation laser as heat.
This implies that the calorimetric reference does not photochemi-
cally react and that it is not fluorescent. The reference we chose
was a potassium permanganate aqueous solution [35].

Fig. 1a shows the photoacoustic amplitude of the nanoparticle
samples, and of the potassium permanganate solution, as a
function of the incident laser energy. This measurement series
allowed us to proof the correctness of the experimental conditions
we were employing. Firstly, we could verify the linearity of the
relation between signal amplitude and laser energy. A linear fit
could be superimposed on the potassium permanganate data,
showing the absence of deviations from linearity up to 70 mJ/pulse.
The same behavior was displayed by D10 and D61. Small
deviations from linearity were only observed at relatively high
energy for D93. For this reason, the photoacoustic excitation
profiles of all samples were measured keeping the incident laser
energy at �10 mJ/pulse. Secondly, we could assess the absence of
contributions to the signal from photoinduced processes. In fact, in
those cases where a photochemical reaction occurs, both reaction
enthalpy and reaction volume can change the photoacoustic signal
amplitude, adding to, or subtracting from, the signal generated by
the heat released following light absorption [35]. Fig. 1b shows
representative photoacoustic signals of D10 and of potassium
permanganate. We repeated this measurement at various tem-
peratures – for D10 as well as for D93 – always observing a
coincidence of the signal amplitudes for the nanoparticles and for
the reference solution at each temperature (data not shown). This
confirms the absence of contributions from photoinduced pro-
cesses, and is consistent with previous results obtained for gold
nanoshells [37]. We finally note that these results rule out the
occurrence of thermal nonlinearities [38,39] and the formation of



Fig. 2. Absorption spectrum (continuous line) of a 1.8 � 10�5 M solution of

potassium permanganate in water at T = 22 8C. Photoacoustic excitation profile

(squares) of the same sample. Both profiles are rescaled at 532 nm.

Fig. 3. (a) Extinction spectrum (continuous line) of D10 nanospheres in water at

T = 22 8C. Photoacoustic excitation profile (stars) of the same sample. Both profiles

are rescaled at 532 nm. (b) Extinction (sE) and absorption (sA) cross sections

calculated from Mie theory. The two cross sections are coincident.

Fig. 4. (a) Extinction spectrum (continuous line) of D61 nanospheres in water at

T = 22 8C. Photoacoustic excitation profile (diamonds) of the same sample. Every

single point of the latter profile is rescaled to the extinction spectrum by comparing

the photoacoustic signal amplitude for D61 and potassium permanganate, as in the

inset of Fig. 1a, at each wavelength. (b) Extinction (sE), absorption (sA), and

scattering (sS) cross sections calculated from Mie theory.

A. Feis et al. / Photoacoustics 2 (2014) 47–53 49
laser-induced bubbles, which would contribute with an enhanced
photoacoustic signal [40,41].

3.2. Wavelength dependence of the reference solution

We first tested our method measuring the photoacoustic
excitation profile of the reference potassium permanganate
solution. As shown in Fig. 2, the photoacoustic excitation profile
corresponds rather closely to the extinction profile. This is what
can be expected from a solution of a diluted chromophore which
(i) has the characteristic properties of a calorimetric reference and
(ii) does not scatter the excitation light appreciably. In fact, owing
to the very low scattering by the reference solution, we could
neglect the scattering contribution (sS) to the extinction cross
section (sE) in the equation:

sE ¼ sA þ sS (1)

where sA is the absorption cross section. sE in turn was obtained by
applying the relationship between cross sections and absorption
coefficients m [42,43]:

mE ¼ sE N (2)

N, the number density of molecules, was calculated from the
reported molar extinction coefficient (2.2 � 103 M�1 cm�1 at
525 nm) [44]. We chose to rescale the photoacoustic excitation
profile and the extinction spectrum at 532 nm, as the fluence-
dependent measurements shown in Fig. 1b were performed at this
wavelength.

3.2.1. Photoacoustic excitation profiles of gold nanoparticles

As stated in Section 1, it is expected that the photoacoustic
excitation profile and the extinction spectrum may not coincide
for gold nanoparticles dispersions when the scattering contribu-
tion to extinction is remarkable. We intended to add an
experimental proof to this prediction by performing a comparison
between the photoacoustic excitation profile of D10 and those of
D61 and D93.

Fig. 3a presents the photoacoustic excitation profile of D10
nanospheres together with the extinction spectrum of the same
sample. Similarly to Fig. 2, the ordinate scale is the extinction cross
section sE, which, owing to the relatively low dimensions of the
nanoparticles, practically coincides with the absorption cross
section sA in the examined wavelength range. sE was obtained
from Eq. (2), but in this case N was calculated from the Au content
of the dispersion, by means of the available density data,
considering the nanoparticles as spherical and monodisperse.
The photoacoustic excitation profile was rescaled to the cross
section at 532 nm on the basis of the same considerations made for
the potassium permanganate solution. The localized surface
plasmon resonance band has an extinction maximum at 516 nm.
The photoacoustic excitation profile strictly follows the extinction
profile between this maximum and the longer wavelength edge.
Its apparent maximum, which can be estimated to lie between
500 and 520 nm, is very close to the extinction maximum, as
expected if the scattering contribution is negligible.
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Fig. 3b displays the results of a calculation performed on the
basis of Mie theory for monodisperse nanospheres with 10 nm
diameter. The calculation confirms that sA and sE are practically
coincident for D10, and shows that the wavelength dependence of
the cross sections – in particular, the extinction maximum – is
very similar to the experimental one. The absolute cross section
values are a factor of two higher than our experimental values.
There are many possible reasons for this discrepancy. One of them
is that the simple physical model considered in the Mie
calculation does not fully represent the complexity of the real
nanoparticles ensemble, in particular, the nonspherical shape.
Moreover, there are significant uncertainties both in the physical
constants employed in the Mie calculation of sE, and in the
experimental determinations of mE and N (in particular, the latter
relies on the gold content of the sample and on the nanoparticle
sphericity as well). This discrepancy is not uncommon: for
instance, the experimental and simulated cross sections in the
Supplementary Information of Ref. [45] are different by one order
of magnitude.

The photoacoustic signal rise at wavelengths shorter than
460 nm is unexpected on the basis of the extinction cross section.
In the absence of data below 440 nm, which we could not obtain
with our current experimental setup, this increase cannot be
presently interpreted. We exclude nonlinear effects because of the
linear dependence of the signal on the incident laser power at 443
and at 453 nm (data not shown). Moreover, the transmission of the
laser excitation light after crossing the sample follows the
extinction spectrum measured by the spectrophotometer (see
Supplementary data). This control measurement rules out that the
photoacoustic profile deviation is due to a change of the optical
properties induced by laser irradiation itself.

Fig. 4a compares the extinction spectrum and the photoacoustic
excitation profile of D61 nanospheres. At variance with the results
obtained for D10, the D61 photoacoustic profile lies constantly
below the extinction profile. A maximum is observed at �535 nm,
and the displacement from the extinction profile increases at
Fig. 5. (a) Extinction spectrum (continuous line) of D93 nanospheres in water at

T = 22 8C. Photoacoustic excitation profile (circles) of the same sample. Both profiles

are rescaled at 532 nm. (b) Extinction (sE), absorption (sA), and scattering (sS) cross

sections calculated from Mie theory.
longer wavelength. Fig. 4b shows the calculated cross sections for
gold nanospheres with 61 nm diameter. Polydispersity was
included in the calculation to take into account the results of
the dynamic light scattering analysis (see Supplementary Data).
The extinction cross section now receives appreciable contribu-
tions from both sS and sA, with a prevalent weight of the latter at
shorter wavelengths. This prediction can explain the experimen-
tally observed displacement of the photoacoustic profile from the
extinction.

Fig. 5a displays the extinction spectrum and the photoacoustic
excitation profile for the D93 sample. The photoacoustic signal
amplitude cannot be overlayed with the extinction spectrum.
The latter presents a very broad maximum at �545 nm, whereas
the photoacoustic signals increase from the longer wavelengths,
reaching a plateau around 500 nm, where, in contrast, the
extinction is relatively low. The absence of a well-defined
maximum in the photoacoustic excitation profile, which is
observed for the smaller particles instead, can be due to the
steep increase at excitation wavelengths shorter than 460 nm.
Fig. 5b shows the calculated cross sections for gold nanospheres
with 93 nm diameter. Polydispersity was included in the
calculation in this case too. The scattering cross section sS gives
an increased contribution to the extinction cross section, as
expected for larger-sized nanoparticles. Moreover, the maxima
of sS and sA are well separated. We note that the wavelength
dependence of the calculated extinction profile is in qualitative
agreement with the measured one, whereas the ordinate scale
differs by about one order of magnitude. Another discrepancy
between the calculated profiles and the experimental findings
is the prediction that the scattering contribution at 532 nm
should not be negligible, in contrast with the measurements in
Fig. 1a which showed the absence of any signal loss due to
scattering. In other words, the calculated scattering profile
appears more red-shifted than the experimental one. The same
considerations about the incomplete coincidence of experimental
and calculated parameters, expressed for the case of D10
nanospheres, may be applied here.

4. Discussion

Our experimental results are in overall agreement with
numerous theoretical predictions which have appeared in the
literature in the last years. Absorption and scattering efficiencies
have been calculated according to various models and methods.
Mie’s scattering theory [3,25] yields exact results for spherical
metal particles under some assumptions, the most important one
being that the sphere diameter is much smaller than the light
wavelength. Modified methods, like Mie–Gans calculations, have
been developed to take into account the nonspherical shape of
nanoparticles in real systems [46]. The necessity of performing
calculations for any particle shape has led to numerical methods
generally labelled as the ‘‘discrete dipole approximation’’ [47,48].
Independently of the calculation method employed, two main
features have been generally observed. The first one is that the
ratio between scattering and absorption efficiencies increases with
the nanoparticle size. For example, the scattering efficiency
becomes appreciable for gold nanospheres in the visible wave-
length range when the diameter is >40 nm. The second feature is
that the wavelength dependence of scattering presents a maxi-
mum which is always red-shifted with respect to the absorption
maximum. Both characteristics are displayed in the calculated
profiles shown in Figs. 3–5b.

Experimental evidence of these predicted optical properties has
been shown in previous articles. A photoacoustic imaging setup
has been employed to measure the absorption cross sections of
various nanostructures at the single wavelength of 638 nm [43]. In
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fact, accurate sA values at this wavelength have been obtained for
gold nanorods and mixed-metal nanocages, while scattering cross
sections have been obtained by subtracting sA from the sE values
obtained spectrophotometrically. The photoacoustic signal ampli-
tude has been compared to the extinction properties of variously
sized and shaped gold nanoparticles at four excitation wavelengths
from 650 to 905 nm [49]. The combination of dark-field scattering
and photothermal imaging has allowed Link’s group [50] to obtain
both sS and sA at the single-nanoparticle level. Size-dependent
effects were clearly exposed by the variation of the cross-sections
at 532 nm in gold nanospheres with diameter ranging from 43 to
274 nm. At variance with these approaches, we chose to focus on
three model nanostructures and to measure the wavelength
dependence of sA in an extended range.

Our experimental results are in overall agreement with both
previous simulations and our ones, moreover, they clearly display
the expected differences related to the size of the nanoparticles.
D10 nanospheres, owing to a negligible scattering contribution to
the extinction, have a relatively narrow plasmon resonance which
is superimposable with the photoacoustic excitation profile to a
large extent. Similar results have been recently obtained for gold
nanospheres with D = 15 nm [51]. At variance, the photoacoustic
excitation profiles of D61 and D93 nanospheres cannot be
superimposed with the extinction profile. We propose that the
observed difference between the photoacoustic excitation profile
and the extinction profile is related to the scattering contribution
to extinction. This is in agreement with the view, proposed
theoretically [52] and verified experimentally [53], that light
scattering does not contribute to the generation of the photo-
acoustic signal, nor does it influence the photoacoustic amplitude,
at least for optically thin samples. It would be interesting to
compare a photoacoustic excitation profile and a resonance light
scattering profile performed on the same nanospheres sample: the
former should give sA (l), whereas the latter should yield sS (l),
with their sum yielding sE (l) as predicted by Eq. (1). Resonance
light scattering profiles, without the photoacoustic counterpart,
have been measured for 40 nm gold particles [54] and for silver
nanospheres ranging from 29 to 136 nm [42]. In the latter case,
particular care was taken in the evaluation of the nanoparticles
concentrations, thus allowing to improve the accuracy in
determining sS. Quantitative results have also been obtained by
applying differential pathlength spectroscopy to 40, 50, and 60 nm
gold nanospheres and to 47.8 nm � 23.3 nm gold nanorods [55].
The experimentally determined scattering coefficients appeared to
be superimposable to those calculated by a discrete dipole
approximation method.

The unexpected results at wavelength <460 nm deserve some
final comments. Metal nanoparticles can be reshaped by pulsed
laser irradiation, with a consequent change of the extinction
spectrum. Silver nanoparticles are reduced in size upon 355 nm
laser excitation with 60 mJ cm�2 fluence [56]. Gold nanoparticles
– if larger than 14 nm – are reshaped when irradiated at 532 nm
with 160 mJ cm�2 fluence [57]. Besides melting, metal ionization
can be involved in the reshaping mechanism [58]. Moreover, gold
nanoparticles reshaping depends on the excitation wavelength
[45]. We note that the laser fluence in our experiment was
<0.1 mJ cm�2, several orders of magnitude lower than the fluence
level leading to nanoparticle breakdown by melting. Following
the calculation performed in Ref. [57], a moderate laser-induced
temperature rise of 4 K is estimated for our samples. As explained
in the Results section and shown in the Supplementary data, laser-
induced optical changes are absent at our irradiation level.

Apparently, laser excitation at wavelengths shorter than
460 nm gives rise to a heat release larger than it would be
expected on the basis of the extinction spectrum. On the other
hand, energy balance dictates that the released heat cannot
exceed that of the calorimetric reference when the excitation

conditions are identical. One of the differences between excitation
wavelengths below or above 460 nm is that interband or
intraband transitions, respectively, are excited. This difference
has been recognized as the origin of distinct effects of laser
excitation at 266, 355, or 532 nm, on laser-induced nanoparticles
reshaping in the above-cited Ref. [45]. In that case, the
interpretation invoked a reduction of the nanoparticle heat
capacity upon interband excitation. Assessing whether this is
related to our experimental observations goes far beyond the aim
of the present article, and we are therefore planning further
experimental and theoretical work to investigate this intriguing
aspect of photoacoustic excitation profiles.

5. Conclusions

We have demonstrated that laser-induced photoacoustic
spectroscopy can effectively display the wavelength dependence
of the absorption and scattering contributions to the extinction in
metal nanoparticles by measuring photoacoustic excitation
profiles in the localized surface plasmon resonance band. The
absorption contribution is obtained directly, comparing the
photoacoustic signal to that of a reference compound, whereas
the scattering contribution can be evaluated by the difference
between extinction and absorption. We have applied the method
to gold nanospheres with 10, 61, and 93 nm diameter as model
plasmonic systems, for which Mie theory calculations are
straightforward, and found a fair correspondence with the
expected wavelength dependence in the 450–600 nm range.
Possibly the method can be advantageously exploited when the
absorption cross sections of new plasmonic systems with
uncommon size and composition is to be determined, especially
if only the extinction spectra are available and calculations have
not been obtained.
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