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Abstract

Exposure to pleasant and rewarding visual stimuli can bias people’s choices towards either immediate or delayed
gratification. We hypothesised that this phenomenon might be based on carry-over effects from a fast, unconscious
assessment of the abstract ‘time reference’ of a stimuli, i.e. how the stimulus relates to one’s personal understanding and
connotation of time. Here we investigated whether participants’ post-experiment ratings of task-irrelevant, positive
background visual stimuli for the dimensions ‘arousal’ (used as a control condition) and ‘time reference’ were related to
differences in single-channel event-related potentials (ERPs) and whether they could be predicted from spatio-temporal
patterns of ERPs. Participants performed a demanding foreground choice-reaction task while on each trial one task-
irrelevant image (depicting objects, people and scenes) was presented in the background. Conventional ERP analyses as
well as multivariate support vector regression (SVR) analyses were conducted to predict participants’ subsequent ratings.
We found that only SVR allowed both ‘arousal’ and ‘time reference’ ratings to be predicted during the first 200 ms post-
stimulus. This demonstrates an early, automatic semantic stimulus analysis, which might be related to the high relevance of
‘time reference’ to everyday decision-making and preference formation.
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Introduction

What information is automatically extracted during exposure to

stimuli in our environment? This question is important considering

that humans can, seemingly effortlessly, make fast decisions based

on sometimes even very abstract stimulus information. For

example, one fundamental type of everyday decision involves

choosing between rewards that are available right now, satisfying

an immediate desire, and alternative, subjectively equally valuable

rewards that only become available in the future, requiring the

decision-maker to be patient. For example, a delicious meal in a

fancy restaurant and a wedding party might both be equally

rewarding to the decision-maker in today’s terms, but they might

be available at different points in time – the former immediately,

and the latter only in a few months or even years. It has been

shown that the mere exposure to rewarding stimuli can prime

people to change their choice behaviour in favour of either an

immediate reward or a delayed reward in delay discounting tasks

in which participants make intertemporal choices between smaller-

but-sooner and larger-but-later monetary rewards [1–3]. Interest-

ingly, this is true even for priming stimuli that are seemingly

unrelated to the decisions. Priming towards immediate gratifica-

tion in delay discounting tasks has been demonstrated using erotic

images, food items, status symbols (such as cars), computer brand

logos and fast food logos as primes [4–8]. Priming towards delayed

gratification, on the other hand, has been shown by means of

creating vivid mental images of positive future life events [9,10].

One explanation for the effect of rewarding stimuli on

subsequent intertemporal decisions is that decision-makers might

have fast access to the semantic attributes of stimuli by means of a

rapid, automatic semantic analysis during perceptual processing.

Such a semantic analysis would also involve extracting the stimuli’s

reference to time, i.e. whether they are subjectively more strongly

related to the present or to the future (henceforth termed time
reference). For example, a delicious food item might activate

present-related thinking, while an elderly happy couple at a lake

might be subjectively related to the concept of the future. Thus, a

precursor to understanding the described priming effects is to

assess first whether an immediate semantic analysis takes place

during perceptual processing of stimuli. Such an analysis might not

even require awareness of the relevance of different semantic

dimensions.

We reasoned that, if an automatic semantic analysis of the time
reference takes place, brain activity immediately following stimulus

exposure will contain information about the outcome of this

cognitive process. Recent studies have successfully used functional

magnetic resonance imaging (fMRI) to investigate brain activity

associated with, or predictive of, automatic processing of stimulus

attributes. For example, brain activity has been shown to be

associated with attractiveness ratings for faces even though the

experimental task was to judge gender [11]. It has further been

shown that brain activity reflected processing of unattended stimuli

on a category level [12], as well as personal preferences for

complex semantic stimuli when attention was withdrawn from
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preference-relevant dimensions [13,14]. One shortcoming of

fMRI, however, is its rather poor temporal resolution, which does

not allow for the investigation of the time course of fast

information processes of an abstract semantic dimension on a

millisecond time scale. Importantly, no study to date has

investigated the processing of the abstract semantic dimension of

time reference, which has been shown to be highly relevant for

everyday temporal decision making. In the present study, we

aimed to examine whether neural activity patterns point towards

semantic analysis of stimuli already shortly after the initial

perceptual processing within the first few hundreds of milliseconds,

and whether this analysis can take place without explicit attention

to specific stimulus dimensions. Such a finding would also provide

a foundation and theoretical basis for the explanation and further

investigation of time-related decision biases in intertemporal

choice.

In order to address this question, the present study used

electroencephalography (EEG). Specifically, we investigated

whether the subjective evaluation of the abstract dimension time
reference of rewarding images was predictable from brain activity,

measured with high temporal resolution during the first several

hundred milliseconds following stimulus onset. We presented our

participants with invariably positive-valence images in the

background, taken from different categories (food, money, status

symbols, happy aging, family, romance, erotic) as recent studies

have shown that these stimuli influence intertemporal choice

[4,5,7–10]. To render the images task-irrelevant, as it was the case

for most choice priming studies, participants were asked to

perform an attention-demanding foreground task while ignoring

the images in the background [13]. This manipulation further had

the effect of directing attention away from the stimuli while still

allowing for their full perceptual encoding [15]. Following the

experiment, participants were asked to rate a) how arousing/

exciting they found each stimulus to be (arousal), and b) the extent

to which each stimulus was present-related or future-related (time
reference). Arousal was included as a control dimension as it

constitutes a fundamental, more concrete stimulus dimension that,

unlike time reference, is likely to involve additional emotional and

physiological responses, thus making it plausible that different

arousal levels would be reflected in differences in brain activity

[16,17] in an early processing period. Furthermore, this allowed us

to control for the possibility that prediction of the time reference of
the images was confounded by differences in arousal. Importantly,

participants were not informed before the EEG experiment that

they would be asked to rate the stimuli later on, nor were they

aware of the relevance of these particular stimulus dimensions.

We investigated whether participants’ subjective post-experi-

ment ratings were predictable from early components of the event-

related potential (ERP), including the N1, the N2, the early

posterior negativity (EPN) and the P3, which can typically be

observed during the first few hundred milliseconds following

stimulus onset, and might also be related to the processing of

abstract stimulus features. These components have been discussed

to reflect a variety of aspects of visual stimulus processing which

were probably involved in our task, including the early allocation

of attention (N1 [18–20]), semantic stimulus categorisation (N2, P3

[21]), emotional evaluation and attention (N1, N2, P3 [22,23]),

establishing internal stimulus representations (P3 [24]), duration of

evaluation of stimuli (P3 latency, for review see [25]), differences in

valence and arousal (N2, P3 [17]), context updating/closure (P3

[26,27]), arousal levels (EPN, P3 [28,29], for review on the P3 see

[30]), and perceptual decision-making (P3 [31]).

However, taking into account that our stimuli were semantically

rather complex, we anticipated the involvement of multiple brain

regions in the semantic time reference analysis, which, in turn,

might lead to a more diffuse distribution of signals, diminishing

clear differences at single electrodes. To account for the possibility

that the entire pattern of brain activity rather than specific

components measured at single channels predicted the ratings, we

used highly sensitive multivariate pattern analyses for ERPs [32–

37]. As we wanted to test whether rather subtle information about

time reference is processed in an early time period (which would

explain the above-mentioned priming effects), this more sensitive

technique might be better suited to investigate the time course of

information processing compared to traditional ERP techniques.

A previous study showed that physical stimulus features can be

extracted from EEG signals while attention to the stimulus was

systematically manipulated [38]. Here, we extended this approach

and investigated whether abstract cognitive dimensions of stimuli

can be predicted from patterns of EEG signals while attention was

withdrawn from the stimuli. Specifically, a novel support vector

regression analysis (SVR) approach for EEG was used to predict

the ratings from distributed spatio-temporal patterns of ERPs for a

series of consecutive time windows after stimulus onset. We

hypothesised that if a fast and automatic evaluation of the time
reference dimension takes place during the early stages of visual

processing, this should be reflected in predictive differences

between patterns of ERPs, reliably related to the post-experimen-

tal ratings.

Materials and Methods

Participants
Twenty right-handed participants, mostly students of the

University of Melbourne, Australia, with normal or corrected-to-

normal visual acuity, gave written informed consent to participate

in the study and were compensated with AUD 20 for their time.

Four data sets had to be discarded due to excessive blinking and

muscle artefacts, and for another two data sets, one rating

dimension each (time reference for one participant, arousal for the
other one) had to be excluded because participants made use of

only extreme ratings, eliminating the required variability in the

data. The final sample consisted of 16 participants (10 female,

mean age = 22.2 years, range 18–31).

Ethics statement
The experiment was approved by the ethics committee of the

University of Melbourne (No. 1033349.3) and was conducted

according to the Declaration of Helsinki.

Stimuli and procedures
Stimuli were positive-valence images from different categories

from the International Affective Picture System (IAPS [39]). All

images were chosen such that they were only positive on the

valence dimension, with norm-ratings.5 (from 1= low to 9=

high; M=6.98, SE =0.12; range 5.22–7.77) (for norms see [40]).

This was done in order to eliminate strong differences in

preference between stimuli, as well as to rule out automatic

negative emotional reactions. Images were preselected based on

ratings by an independent sample of 57 participants (39 female,

mean age = 21.6 years, range 18–34) on the time reference
dimension using a scale from 1= ‘‘strongly associated with the

present’’ to 9 = ‘‘strongly associated with the future’’. Twenty-four

images (of originally 46) that optimally covered the entire scale

were selected for the EEG experiment (for IAPS image codes see

Table 1), which was conducted using a different sample of

participants (see above), who had not been exposed to the stimuli

before. Each image was 5126384 pixels in size (11.568.5 cm on
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the screen). During the EEG experiment, participants were seated

with their chins resting comfortably on a chin rest at 50 cm

distance from the screen, such that stimuli subtended

13.12u69.72u visual angle.
On each trial (Figure 1) in the EEG study, one image was

presented in the background for 3.2 s while participants engaged

in an attention-demanding foreground task. Participants’ only task

was to monitor a box, which opened randomly to the left or right

(alternating between periods of 400 ms closed and 400 ms open,

always starting with a closed box; 0.560.5 cm; visual angle 0.57u)
overlaid on the centre of the image, and to respond immediately to

the side of each opening with a left or right button press on a

response box, using the left and right index finger respectively.

Due to its pace, the task was highly demanding, as has been

demonstrated before [13,15]. As in previous studies, the task was

used to focus attention away from the images, allowing for

automatic stimulus processing rather than conscious reflection on

their meaning. Engagement with the task did not prevent stimulus

processing in general, but it was intended to prevent uneven

allocation of attentional resources to different stimuli. The image

presentation/task phase was followed by a jittered delay of 3, 4, or

5 s, during which a white fixation cross was shown. Each image

was presented 3 times per block (total of 72 trials per block) in six

blocks (total of 432 trials) with an individually randomised order of

images for each participant and each block.

After the EEG experiment, participants performed a computer-

based rating task on the same images that were shown in the EEG

part, presented twice in a new individually randomised order.

Participants were asked to rate each image on a nine-point scale,

once with respect to how arousing the image was and another time

with respect to the time reference dimension, as described above.

The exact ratings were converted off-line into rating increments

(1–3 ‘‘low arousal’’/‘‘present’’; 4–5 ‘‘medium arousal’’/‘‘interme-

diate time’’; 6–9 ‘‘high arousal’’/‘‘future’’) in order to have a

roughly equal numbers of rating increments for the following

analyses. Participants were not aware of the subsequent rating task

when participating in the EEG experiment, and they indicated not

having been aware of the importance of the stimuli’s time reference
and arousal dimensions when asked.

Low-level image features
To control for the effect of immanent low-level features of the

images on the ratings, eleven low-level image feature parameters

were determined separately for each of the 24 images: three values

of the RGB colour space (R, G, B), three RGB value ratios (R/G,

R/B, G/B), the mean RGB colour value, the mean, median and

standard deviation of the images’ luminance, as well as the mean

spatial frequency. Mean spatial frequency was extracted using a

Fourier transformation on each grey scaled image. The set of low-

level image features was chosen based on previous studies using

these features insofar as they were applicable to our type of stimuli

[41,42]. Correlations were used to assess relationships between

these values and mean rating scores (i.e. rating scores averaged

across all participants), as well as with the individual rating scores

(averaged across all participants after Fisher-Z-Transformation of

individual correlations), for arousal and time reference separately.
Furthermore, multiple regression analyses were used to predict the

post-experiment ratings for arousal and time reference separately

from the combination of all low-level image feature values.

EEG data recording, pre-processing and analysis
The electroencephalogram (EEG) was recorded from 64 scalp

electrodes (Fp1, Fpz, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3,

F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4,

FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3,

CP1, CPz, CP2, CP4, CP6, TP8, P9, P7, P5, P3, P1, Pz, P2, P4,

P6, P8, P10, PO7, PO3, POz, PO4, PO8, O1, Oz, O2, Iz). The

active Ag/AgCl electrodes (interfacing a BioSemi Active Two

system, using ActiView acquisition software) used an implicit

reference during recording and were re-referenced offline against

the average of both mastoids. The vertical and horizontal

electrooculogram (vEOG/hEOG) were recorded from electrodes

infraorbital and next to the left eye. The EEG was continuously

recorded at a sampling rate of 512 Hz, applying an online 0.1 to

70 Hz band-pass filter. The EEG was analysed time-locked to the

onset of picture presentation using a baseline period of 100 ms

before and 700 ms after the stimulus onset (covering the most

important components of the event-related potentials). A standard

50 Hz notch filter was applied to remove electrical noise from the

data. All data were first screened for technical artefacts

(6500 mV). The cleaned data set was then subjected to an

independent components analysis (ICA) as implemented in the

EEGlab-Toolbox [43] to identify and remove components related

to eye movements and eye-blink artefacts. Subsequently, an

additional, stricter artefact screening was performed in which

contaminated trials with max/min amplitudes exceeding

6200 mV were rejected. A standard current source density

(CSD) analysis of the ERP was performed for each of the 64

electrode sites. The CSD signals were computed for each electrode

site by taking the second derivative of the distribution of the

voltage over the scalp and accounted for the curvature of the head

using a spline algorithm [44–46]. CSD analysis has the advantage

Figure 1. Paradigm. On each trial, one of 24 IAPS images was presented in the background for 3.2 s while participants engaged in an attention-
demanding foreground task. They continuously monitored the random opening of a box (alternating between 400 ms closed, 400 ms opened) and
responded to the side of each opening with a left or right button press using the left and right index finger. This task phase was followed by a jittered
delay of 3 s (25%), 4 s (50%) or 5 s (25%) in which only a white fixation cross was shown. Each image was shown 3 times per block (total of 72 trials
per block), and participants finished 6 blocks (total of 432 trials) with an individually randomised order of images for each participant and each block.
doi:10.1371/journal.pone.0109070.g001
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of achieving higher independence of the location of the reference

electrode from other electrodes and higher topographical accuracy

of the CSD signals [47]. Note that CSD analysis is a standard

procedure in the ERP literature (e.g., for N1 and P3 see [48,49];

for review see [50]).

Average CSD-ERP waveforms were computed separately for

each participant and for each rating increment (arousal: high/
medium/low; time reference: present/intermediate/future). A 30-

Hz low-pass filter was applied for the analysis of the following

components of the event-related potentials involved in early

stimulus processing. The selection of electrodes for the ERP

analyses was based on the local maximum of each component and

corresponded to the typical electrode sides described in the

literature: CSD-N1 at FCz (determined as the most negative

amplitude in the range from 50 ms to 150 ms separately for each

condition and each participant), CSD-N2 at Pz (from 150 ms to

300 ms) and CSD-P3 at Pz (the most positive amplitude in the

range from 300 ms to 700 ms [30]). The early posterior negativity

(EPN) was calculated as the mean voltage within the interval from

280 to 320 milliseconds following stimulus onset, collapsed

separately across left and right occipital and parieto-occipital

electrodes O1, P9, PO7 and O2, PO8, P10 [29]. All components

were analysed with repeated-measures ANOVA including within-

subjects factors of rating increment condition (low/medium/high

arousal, or present/intermediate/future time reference, as relevant)
and laterality (left, right). Greenhouse-Geisser correction was

applied for violations of the assumption of sphericity where

relevant.

Additionally, a linear support-vector regression (SVR) analysis

was performed on the data without applying the 30-Hz low-pass

filter. For this, each participant’s trials were again sorted into

rating increments, separately for both post-experiment rating

items. A balanced number of exemplars (trials) for each participant

were randomly selected for each rating increment and each

condition, in order to avoid sample-size biases. The classifier then

analysed the first 400 ms after onset of stimulus presentation (i.e.

before the first box opening event that required a motor response)

in time steps of 40 ms, starting at stimulus onset, with an analysis

time window which moved through the 400 ms post-stimulus data

in steps of 20 ms (i.e., 0–40 ms, 20–60 ms, etc.). The data of all 64

channels within each window were transformed into vectors (each

of the 20 data-points within this time window for each of the 64

channels served as individual features), representing the spatio-

temporal patterns associated with the ratings. The SVR was

performed using LIBSVM ([51]; parameter S= 3 and C=0.1).

The outcome of each multivariate regression analysis was a

correlation of the predicted label/rating and the true label/rating,

thereby quantifying how well the ratings could be regressed from

distributed patterns of CSD-ERPs within a given time window.

First, in order to estimate the regression function, data from all

trials were randomly divided into 10 equally-sized bins. Of those,

90% were randomly drawn and used for training the model, and

the remaining 10% of the data were used for testing. A ten-fold

cross-validation procedure was applied for which each 10%

proportion of the data was used for testing once while the other

90% of the data were used for training. Subsequently, to avoid

drawing biases, the entire analysis was repeated ten times with

newly drawn 10% data proportions, resulting in a total of 100

analyses. The correlation coefficients derived from each analysis

were Fisher-Z-transformed, and results were averaged across all

analyses. A significant correlation means that brain activity

patterns were predictive for the subsequent ratings. The same

analysis was conducted using randomly shuffled labels for each

participant and each analysis time window in order to obtain an

empirical distribution of regression results under the null

hypothesis for each analysis step. Group level statistical analyses

(T-tests using a threshold of P,.05) compared the empirical results

with the shuffled labels SVR results for each time window, in order

to test whether the respective activity patterns could be used to

regress the true individual ratings for all stimuli.

Finally, we asked how well the ratings could be predictive from

each channel separately during the time periods that allowed for

significant multi-channel prediction. In order to achieve high

comparability between rating conditions, we restricted our analysis

to the series of consecutive time bins that showed the first

significant peaks for both rating dimensions (time reference:
combined bins 100 ms and 120 ms; combined bins 160 ms,

180 ms, and 200 ms; arousal: combined bins 180 ms and 200 ms).

For each of these temporal decoding analyses, new pattern vectors

were constructed for each channel separately, based on all

temporal information (one data point per 2 ms) within these time

periods. The same multivariate SVR was then performed on these

vectors to regress the ratings, again separately for each rating

dimension. As for the spatio-temporal analysis, data from all trials

were again randomly divided into 10 equally-sized bins and 90%

were randomly drawn and used for training the model, while the

remaining 10% of the data were used for testing. This again

resulted in a ten-fold cross-validation procedure. Note that this

analysis cannot reveal the origin of predictive information from the

multi-channel SVR; it was only used to illustrate how well ratings

could be predicted from single channels in the respective time

periods.

Results

Attentional foreground task
For the analysis of the foreground attention task, two

participants’ data had to be excluded because of technical

problems during recording of button presses. Participants

responded accurately to the box opening with M=71.6% (SE
=3.93) correct responses within the 400 ms time-window,

demonstrating that they were highly engaged in the task, as

instructed. Performance accuracy was highly similar for all

background images (ranging from 67.4% to 76.2% in individual

participants). The average response time across participants for the

fixation task was 316 ms (SD =20 ms; range 291–355 ms).

Importantly, none of the individual post-hoc ratings were

significantly correlated with the accuracy in the foreground task

for any image (all P..10; average rarousal = .18; average rtime

= .18). This analysis cannot unequivocally establish that attention

was constantly focussed on the centre, especially since the box was

always closed during the first 400 ms of image presentation.

However, given that the fixation task was continuous and fast-

paced, it is unlikely that differences in allocation of attentional

resources during the experiment can account for differences in

ratings or for predictive brain activity.

Image rating task
Next, the rating data were analysed for all 24 images. The

images showed substantial variability on both ratings dimensions.

The correlations between arousal ratings and time reference
ratings across participants for all images except one (image 12, r=
2.56; P= .02) were non-significant (all other P..05, uncorrected;

average correlation across all images: rall = .04; P..05; for all

results see Table 1). We further correlated arousal and time
reference ratings across all images for each participant separately.

On average, the ratings were uncorrelated (average r= .08), and

only two participants showed significant positive correlations

ERP Patterns Predict Abstract Stimulus Attributes
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between rating dimensions (participant 9: r= .43; participant 15:

r= .64; both P,.05; all others P..05). These results confirm that

both dimensions were at least to a great extent independent of

each other. Note that excluding these two participants from the

multivariate regression analysis did not change any results.

Low-level image features
Correlations were assessed between low-level features (colour,

luminance, spatial frequency) of all 24 images and average rating

scores across participants. No significant correlations were found

for any dimension (for details see Table 2). Furthermore, none of

the individual participants’ ratings correlated with any of the

image feature parameters (all Fishers-Z-transformed r,.20, rcrit
= .55; see Table 2 for averaged results). Multiple regression

analyses predicting arousal ratings (corrected Rcor2 = .04, F(9,
14) = 1.12, P= .41) and time reference ratings (Rcor2 = .031, F(9,
14) = 1.08, P= .43) were not significant. Note that the use of

multivariate regression was precluded by the small number of

images and features (N= 24) used here. Taken together, none of

the results provided any evidence for a significant relation between

ratings and any of the low-level visual features of the images.

CSD-ERPs
The classical CSD-ERP components associated with stimulus

processing were analysed at their typical channels where they were

also found to be maximal (see Figure 2). These were the CSD-N1

at channel FCz, and the CSD-N2 and the CSD-P3 at channel Pz.

For the CSD-EPN electrodes P9, PO7, O1, as well as P10, PO8,

O2 were collapsed. For both dimensions, participants showed

clear components for all rating increments. The distribution of

number of trials for each rating increment used for the ERP

analyses were as follows: arousal-high: mean =175.7; min = 66,

max = 305; arousal-medium: mean = 130.3; min = 41, max

= 273; arousal-low: mean = 70.1; min = 16, max = 168; time-

present: mean =74.0; min = 38, max = 152; time-intermediate:

mean =109.7; min = 43, max =175; time-future: mean = 192.5;

min = 80, max = 295 (note that the SVR analyses were always

performed using a balanced number of trials per rating increment

condition).

Arousal. Repeated-measures ANOVA for peak amplitudes

and latencies revealed no significant difference between rating

increment conditions for the CSD-N1, the CSD-N2 and the CSD-

P3 (for all details and statistics see Table 3 and Figure 3). For the

CSD-EPN, repeated-measures ANOVA for mean amplitudes

revealed no significant difference between rating increment

conditions, and no condition-by-laterality interaction, but there

was a significant effect of laterality (F(1, 14) = 9.75, P,.01),

indicating that EPN amplitudes were on average larger in the right

than the left hemisphere (see Table 3).

Time reference. A similar profile of results was found for the

time reference dimension. Repeated-measures ANOVA likewise

showed no significant differences between rating increment

condition peak amplitudes as well as latencies for the CSD-N1,

the CSD-N2 and the CSD-P3. The CSD-EPN repeated-measures

ANOVA revealed no significant difference between conditions,

and no condition-by-laterality interaction. There was a significant

effect of laterality (F(1, 14) = 9.19, P,.01), indicating that EPN

amplitudes were on average larger in the right than the left

hemisphere (see Table 4 and Figure 3 for all details and statistics).

We further performed the same set of analyses on the same data

without applying CSD analyses. The results were the same: we did

not find any significant differences between any conditions for the

N1, N2, P3 and the EPN, for either arousal or time reference (data
not shown).

Multivariate SVR
While the deviations in single CSD-ERPs were not significantly

different between rating increments at the channels, which showed

the local maxima for these components, small differences in these

and other channels, as reflected in the overall pattern of activity,

were nonetheless predictive of the ratings. A linear SVR analysis

showed that in the time period from 180 ms to 200 ms after

stimulus presentation, the arousal ratings could be regressed

significantly above chance, followed by a second period with

highest accuracies at 380 ms (Figure 4A). The same analysis was

then repeated for the post-experimental time reference ratings and
showed that in the period from 100 ms to 120 ms and 160 ms to

200 ms after stimulus presentation, time reference rating incre-

ments could be predicted significantly above chance, followed by

significant periods at 280 ms and 420 ms (Figure 5A). These

results demonstrate that differences in the subjective judgements of

time reference, independent of general differences in arousal

triggered by the stimuli, were reflected in the distributed patterns

of CSD-ERP waveforms, even though these differences were not

detectable in selected single-channel grand-average CSD-ERPs.

While both rating dimensions were mostly de-correlated on a

behavioural level as demonstrated above, the rating information

were decoded from the same early post-stimulus interval (approx.,

100 to 400 ms after onset), pointing to a similar time period of

processing.

These results were obtained by testing each analysis time-step

against an empirical chance distribution of prediction results by

repeating each SVR cross-validation and repetition step for each

participant with randomly shuffled labels, providing a statistical

test for each analysis time window separately. However, as single

analysis time windows could not be regarded as independent (and

might be based on the same underlying latent components), we

also conducted additional, more general tests for the entire time

period (first 400 ms), and for each half of this time period (20 to

200 ms, and 220 to 400 ms) by averaging across the respective

prediction accuracies from each analysis time window (we

acknowledge that these test do not speak to when information

becomes available during the respective time periods, and that

their definition is rather arbitrary). On average, analyses during

the entire time period significantly predicted arousal ratings

(P= .04), as well as time reference ratings (P=0.008). Arousal
ratings prediction was not significant when averaging across all

tests in the first half (P= .1), but was significant for the second half

(P= .02). Time reference prediction was significant after averaging

for the first half (P= .02) as well as for the second half (P= .02) of

the tests.

The results of the temporal decoding analysis are shown in

Figure 4B for arousal and Figure 5B for time reference. For both
arousal and time reference, high prediction accuracy was achieved

mainly from occipital, occipito-parietal and parietal channels

during these early significant time periods, while some fronto-

central and frontal channels had moderate prediction accuracy.

Note that this analysis did not take into account distributed

information across channels that might have contributed to the

spatio-temporal SVR results.

Discussion

Our results showed that the stimulus dimension of arousal as
well as the abstract dimension of time reference – the degree to

which participants subjectively rated positive images to be related

to the present or to the future after the experiment – could be

predicted from brain activity recorded during passive visual

stimulation. Differences in individual ratings were not strongly

ERP Patterns Predict Abstract Stimulus Attributes
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reflected in the classical early components of the CSD-ERP during

the first several hundred milliseconds, which reflect different

aspects of stimulus processing (e.g. [17–31]). Using a multivariate

SVR analysis, however, ratings could be predicted from patterns

of CSD-ERPs during this time period. Our results suggest that the

initial perceptual stimulus analysis was accompanied (or quickly

followed) by a fast, automatic semantic analysis that included time
reference, without requiring the deliberate direction of attention

towards this semantic dimension.

We found that ratings for both the arousal dimension and the

time reference dimension could be regressed from distributed

patterns of brain activity. Arousal was included as a control

dimension, representing an aspect of the stimuli that can be

accessed immediately and is strongly related to emotional and

physiological responses [52,53]. Emotional processing appears to

be fast and automatic and takes place in the first few hundred

milliseconds after stimulus presentation (e.g. [54,55]). Arousal was
therefore hypothesised to be likely to produce systematic

differences in brain activity (e.g. [16,17]). However, we did not

observe strong arousal-related differences in single CSD-ERP

components. The absence of strong ERP effects for arousal might

have resulted from the distractor task, which could have prevented

deeper emotional processing [55]. It could further be explained by

the fact that, unlike other studies [17], ours did not include

negative stimuli, leading to a restriction of possible emotional

responses and a reduced spectrum of arousal ratings. Further-

more, we regressed individual arousal ratings for a rather small set

of images as opposed to the norm ratings for a larger image set

[17]. This means that after being exposed to our small stimulus set

during the experiment, participants might have subjectively

realigned their arousal ratings relative to the given twenty-four

images. One might speculate that differences in arousal to other

image stimuli not included in the present study might be more

pronounced and, in turn, could potentially be associated with

stronger differences in brain activity. Nonetheless, our more

sensitive pattern regression analysis revealed that fine differences

in arousal ratings were reflected in the overall patterns of ERPs

during the early time period of visual processing.

We also showed that time reference ratings could be predicted

from brain activity using multivariate pattern regression analysis.

This dimension is more abstract than arousal, and was not

expected to be associated with any specific emotional or

physiological responses per se. In line with our findings, others

have demonstrated that not all processing of stimulus dimensions

requires deliberate attention to the respective features – or even to

the stimuli in general – in order to be associated with brain

activity. For example, it has been shown that post-experiment

subjective ratings of attractiveness of faces was reflected in brain

activity as measured with fMRI, even though during the

experiment participants were only asked to judge their gender

[11]. As in our study, participants were not aware of the post-

experiment rating task later on. However, attractiveness ratings

are likely to be based on pre-existing preferences [56] and might

therefore result from the integration of other abstract semantic

dimensions. In another study, brain activity reflected the

processing of unattended images of scenes on a category level

while participants attended to different images [12]. The

categories of the unattended images in this study, however, were

Figure 2. CSD-ERP results. Grand-average event-related potentials time-locked to stimulus onset, after current source density analysis (CSD-ERPs)
sorted by rating increments for A) Arousal and B) Time reference. The classical CSD-ERP components were tested for significant differences between
post-experimental rating increments at their typical sites: the CSD-N1 at FCz, the CSD-N2, the CSD-P3 at Pz, and the CSD-EPN as an average of P9, P10,
PO7, PO8, O1, O2. None of the differences in amplitudes and latencies was significant for any comparison (see text for statistics).
doi:10.1371/journal.pone.0109070.g002
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the same as were relevant for the attended images. Our study

extends upon these results by demonstrating that brain activity can

also reflect category information for unattended stimuli when

participants are not aware of the category of interest. By making

use of the excellent temporal resolution of EEG, we further

showed that this information could be found within the first half-

second after stimulus onset, pointing towards a fast and immediate

process, rather than a subsequent re-evaluation. Note that we were

Figure 3. Scalp distributions of differences in CSD-ERPs. The left column displays scalp maps for the average distribution of voltage for the N1
(50 to 150 ms), the N2 (150–250 ms), the EPN (280 to 320 ms) and the P3 (300 to 700 ms) time windows. The middle column visualises the difference
maps for arousal (high minus low), and the right column displays the difference maps for time reference (future minus present) for the same ERP
components.
doi:10.1371/journal.pone.0109070.g003
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not able to address whether this information would persist (or re-

occur) during later stages of the stimulus exposure phase because

the box opening started after four hundred milliseconds, which

produced strong ERPs masking our signals of interest. The initial

fast process that we observed might be driven by an automatic

semantic analysis that extracts stimulus information that is likely to

be important for everyday decisions, and might relate it to

personal preferences. Such an early automatic evaluation mech-

anism would provide the decision-maker with a valuable shortcut

for making fast decisions that involve rather complex choice

options.

It might be argued that the dimensions arousal and time
reference were confounded in our study. This explanation,

however, is unlikely because the correlation analyses show that

the two rating dimensions were mostly de-correlated on a

behavioural level, and only two participants showed residual

correlations. Another possibility is that only images with either

reference to the present or to the future were perceived as positive,

and our regression analysis predicted a valence-driven preference

judgement rather than time reference. However, this is unlikely

since all images were chosen such that they were invariably

positive, i.e. they had a high positive valence score according to the

norms [40]. In the present study, we deliberately aimed to exclude

strong differences in valence-driven preference which might

underlie differences in brain activity, a variable that might be

related to predictive brain activity [13,57]. In support of our

argument that prediction of time reference was not related to

differences in valence-driven preference, earlier studies found

preference (as measured by interest ratings and viewing times) to

be directly related to arousal [53], which, as argued above, was

independent to time reference in our study. Our approach also

more closely resembles delay discounting studies that focussed on

positive, rewarding stimuli [4–8]. This leaves the possibility that

other unknown factors related to the categories we chose might

have confounded our regression results, which we cannot

completely rule out. Notably, the IAPS stimuli [39] all depict

semantically complex scenes or objects in colour and are not

explicitly controlled for visual complexity or imbalance in other

semantic categories. However, it is unlikely that visual complexity

or colour perception were strongly associated specifically with time
reference, as would be required to explain our findings. This is

confirmed by our control analyses demonstrating that neither of

the rating dimensions simply reflected low-level visual features of

the images. Further arguments against this possibility are the

variance in rating for individual images across participants and the

absence of correlations between image features and ratings. Future

studies should nonetheless assess a greater variety of rating

dimensions to map out the space of subjective semantic

judgements that can be predicted from stimuli with differing

complexity under passive viewing conditions. We also did not

explicitly control for eye position, which means that we cannot

fully rule out that sometimes participants might have broken

fixation and explored the background images. There is the

possibility that this could have led to an uneven allocation of

attention. This scenario, however, is not very likely given the

demanding nature of the continuous foreground task. We also did

not observe any strong or systematic eye movement artefacts in the

EEG that would result from shifting gaze to the background

images. It could also be argued that an uneven allocation of

attentional resources to the background images could potentially

also occur for peripheral vision. However, individual ratings were

not significantly correlated with the accuracy in the foreground

task for any image, speaking against this possibility. Most

importantly, in any case, participants were unaware of the

Figure 4. SVR results for arousal ratings. A) Spatio-temporal decoding: Multivariate support vector regression (SVR) was used to regress arousal
ratings (in increments: low/medium/high) from distributed patterns of CSD-ERPs within analysis time windows of 40 ms that were moved through
the first 500 ms of each trial in steps of 20 ms. Ratings could be regressed significantly above chance between 180–200 ms (denoting the central
time points of the analysis windows) and again around 380 ms after stimulus presentation (black line). Additionally shown are the results of the same
SVR analysis using shuffled labels to obtain an empirical chance distribution for statistical testing (grey line). B) Temporal decoding: Multivariate SVR
was used for each channel separately to regress arousal ratings (in increments: low/medium/high) from purely temporal patterns of CSD-ERPs within
the first significant time period of the spatio-temporal analysis (combined time bins 180 ms and 200 ms). The heat map illustrates predictive
channels, with electrodes P9 (t(14) = 2.59*), PO3 (t(14) = 2.24*), O1 (t(14) = 2.46*), P6 (t(14) = 2.46*), PO4 (t(14) = 2.87*) reaching significance. *P,.05;
**P,.01 (uncorrected); error bars = standard errors.
doi:10.1371/journal.pone.0109070.g004
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upcoming rating task and the images were completely irrelevant

for the fixation task. This supports the conclusion that the

processing of specific image dimensions took place without

deliberate attention.

Showing that abstract stimulus dimensions can be predicted

using multivariate techniques further demonstrates the validity of

our method, which can detect subtle information in distributed

patterns of ERPs that would otherwise be overlooked [32]. For

example, differences in ERPs might not be reflected in strong and

statistically significant differences in single electrodes (e.g. because

of the involvement of deeper sources, or a multitude of brain

regions) but in the distributed spatial and temporal pattern of

ERPs across several channels. Note that classical ERP analysis, as

we performed here, usually focuses on single channels that are

known to clearly reflect interpretable ERP components [58].

While this remains the preferred approach for many research

questions, multivariate analysis, on the other hand, is a more data-

driven approach that facilitates the detection of systematic

differences in activity patterns. As such, it is well-suited for

exploratory investigations such as the present study. Furthermore,

unlike earlier studies (e.g. [32,33]), here we used a multivariate

regression approach, which allowed us to establish a closer link

between brain activity and the degree of subjective ratings, rather

than just between different classes.

We conclude that our analysis was successful in predicting post-

experimental time reference ratings from brain activity recorded

during passive stimulus viewing, providing evidence that this

specific stimulus dimension might be processed automatically,

without deliberately directing attention. These findings are in line

with reports that the ‘gist’ or general meaning of a scene can be

extracted rapidly, as early as 70 ms after exposure to a stimulus

[59,60]. Moreover, we could predict directly from brain activity

the extent to which individuals experienced some very abstract

attributes of the stimuli that were not part of the explicitly depicted

elements of the image (e.g. time reference). This automatic

semantic analysis for the specific dimension of time reference
might arise because of its importance for everyday decision-

making. Specifically, many decisions that humans are confronted

with involve choice options with outcomes that are available at

different points in time. Thus, automatically extracting the

relevance, or relation, of a stimulus to temporal aspects of reward

might beneficially guide decision-making. Often, a positive

stimulus itself might be a choice option (or, a reward), and its

time reference could match or mismatch the current goal state of

the decision-maker. However, sometimes there might simply be an

overlap in semantic context (e.g. time reference) with other decision

problems, for example financial decisions in which equally

rewarding monetary choice options are available at different

points in time [1,2]. Being exposed to stimuli with a particular time
reference could then activate the semantic concept of the present

or the future, explaining why some stimuli can prime people to be

more impulsive [4–8], or more patient [9,10] in delay discounting

tasks. Note that our study cannot decide whether the priming

effects observed in other studies is due to the proposed mechanism

Figure 5. SVR results for time reference ratings. A) Spatio-temporal decoding: Multivariate support vector regression (SVR) was used to regress
time reference ratings (in increments: present/intermediate/future) from distributed patterns of CSD-ERPs within analysis time windows of 40 ms that
were moved through the first 500 ms of each trial in steps of 20 ms. Ratings could be regressed significantly above chance between 100–120 ms,
160–200 ms (denoting the central time points of the analysis windows) and again around 280 ms and 420 ms after stimulus presentation (black line).
Additionally shown are the results of the same SVR analysis using shuffled labels to obtain an empirical chance distribution for statistical testing (grey
line). B) Temporal decoding: SVR was used for each channel separately to regress time reference ratings (in increments: present/intermediate/future)
from purely temporal patterns of CSD-ERPs within the first significant time periods of the spatio-temporal analysis (top panel: combined time bins
100 ms, 120ms; bottom panel: combined time bins 160 ms, 180 ms, 200 ms). Top panel: The heat map illustrates predictive channels, with electrodes
FC5 (t(14) = 2.60*), CP5 (t(14) = 2.22*), Oz (t(14) = 2.63*), F4 (t(14) = 2.86*), O3 (t(14) = 3.97**) reaching significance. Bottom panel: Prediction reached
significance for electrodes P9 (t(14) = 2.66*), PO7 (t(14) = 3.08**), CP2 (t(14) = 2.23*), PO4 (t(14) = 2.27*), O2 (t(14) = 3.46**); *P,.05, **P,.01
(uncorrected); error bars = standard errors.
doi:10.1371/journal.pone.0109070.g005
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as we speculate here, and the explicit link between our neural

prediction findings and priming has to be investigated in future

studies. However, our study provides evidence for the existence of

neural signals that reflect the automatic extraction of time reference
information from visual stimuli, thus making the explanation more

likely.

Our results might also be relevant to explain findings from

recent studies showing that even complex decisions, e.g. whether

to buy a car or not, can be guided by cognitive evaluation

processes which occur outside the decision-makers’ awareness

[61]. Such unconscious evaluation processes might be explained

by an automatic processing of decision-related semantic informa-

tion; these, in turn, would first require the automatic extraction of

decision-related semantic information from relevant stimuli, as

observed in our study. For example, it has been demonstrated that

hypothetical purchase decisions for cars can be predicted from

brain activity in medial prefrontal cortex and the anterior insula

before participants were informed of having to make such a

decision, during performance of a similar distractor task as used

here [13]. Decision-relevant information about the cars could have

been automatically extracted during passive exposure to the

stimuli, as found in our study. Similarly, others asked their

participants to make decisions about the quality of different

apartments and prevented conscious deliberation using a de-

manding distractor task [62]. These authors have shown decision-

related activation during the distractor task period in several brain

regions, including visual cortices and lateral prefrontal cortex [62].

The preparation of such complex decisions would not only require

an automatic re-processing of semantic decision-related informa-

tion during a later decision phase, but most likely an early,

automatic extraction of decision-relevant aspects from the stimuli

during initial exposure, similar to what we observed for our

positive images. Although our study did not address the transfer to

decisions, it investigated its precondition and provided evidence

that specific semantic stimulus information can indeed be rapidly

and automatically extracted from the stimulus. This interpretation

is further in line with recent findings demonstrating that abstract

category information can be processed even when participants are

not aware of the stimuli [63].

Time reference as an abstract stimulus dimension might be only

one example of what can be processed automatically. Note that we

preselected the stimuli with respect to whether they covered the

present-future dimension in a pre-test. Indeed, many images (or

scenarios in everyday life) might not be strongly related to any time

period and therefore not trigger an automatic processing of this

dimension. They might, however, be related to other core

dimensions, which are relevant for typical everyday decisions that

were not covered in our study. Future studies could further extend

our findings by mapping out the semantic space that is reflected in

brain activity during passive processing, and by investigating

which brain regions code for semantic stimulus information. It

would also be of interest to investigate whether the degree of

information extractable from brain activity might be modulated by

the context of the decision. Conversely, the degree of information

about a specific stimulus dimension reflected in brain activity

might also predict the automatic activation of decision goals

[64,65], or the formation of preferences when confronted with

initially neutral stimuli [66].
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42. Naber M, Hilger M, Einhäuser W (2012). Animal detection and identification in

natural scenes: Image statistics and emotional valence. J Vis 12: e1.

43. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of

single-trial EEG dynamics. J Neurosci Methods 134: 9–21.

44. Pernier J, Perrin F, Bertrand O (1988) Scalp current density fields: concepts and

properties. Electroencephalogr Clin Neurophysiol 69: 385–389.

45. Perrin F, Bertrand O, Pernier J (1987) Scalp current density mapping: value and

estimation from potential data. IEEE Trans Biomed Eng 34: 283–288.

46. Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp

potential and current density mapping. Electroencephalogr Clin Neurophysiol

72: 184–187.

47. Gevins A (1989) Dynamic functional topography of cognitive tasks. Brain

Topogr 2: 37–56.
48. Cohen HL, Ji J, Chorlian DB, Begleiter H, Porjesz B (2002) Alcohol-related

ERP changes recorded from different modalities: A topographic analysis.

Alcohol Clin Exp Res 26(3): 303–317.
49. Gaeta H, Friedman D, Hunt G (2003) Stimulus characteristics and task category

dissociate the anterior and posterior aspects of the novelty P3. Psychophysiol
40(2): 198–208.

50. Luck SJ, Kappenman ES (2012) The Oxford Handbook of Event-Related

Potential Components. Oxford University Press.
51. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines.

ACM Trans Intell Syst Technol 2: 1–27.
52. Sabatinelli D, Lang PJ, Keil A, Bradley MM (2006) Emotional perception:

Correlation of functional MRI and event-related potentials. Cereb Cortex 17(5):
1085–1091.

53. Lang PJ, Greenwald MK, Bradley MM, Hamm AO (1993) Looking at pictures:

Affective, facial, visceral, and behavioural reactions. Psychophysiol 30: 261–273.
54. Vuilleumier P (2005) How brains beware: neural mechanisms of emotional

attention. Trends Cogn Sci 9(12): 585–94.
55. Schupp HT, Stockburger J, Bublatzky F, Junghöfer M, Weike AI, et al. (2007b)
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