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Abstract

Compensation of target motion during the delivery of radiotherapy has the potential to improve

treatment accuracy, dose conformity and sparing of healthy tissue. We implement an online image

guided therapy system based on soft tissue localization (STiL) of the target from electronic portal

images and treatment aperture adaptation with a dynamic multi-leaf collimator (DMLC). The

treatment aperture is moved synchronously and in real-time with the tumor during the entire

breathing cycle.

The system is implemented and tested on a Varian TX clinical linear accelerator featuring an

AS-1000 electronic portal imaging device (EPID) acquiring images at a frame rate of 12.86 Hz

throughout the treatment. A position update cycle for the treatment aperture consists of 4 steps: in

the first step at time t = t0 a frame is grabbed, in the second step the frame is processed with the

STiL algorithm to get the tumor position at t = t0, in a third step the tumor position at t = t + δt is

predicted to overcome system latencies and in the fourth step, the DMLC control software

calculates the required leaf motions and applies them at time t = t + δt. The prediction model is

trained before the start of the treatment with data representing the tumor motion. We analyze the

system latency with a dynamic chest phantom (4D motion phantom, Washington University). We

estimate the average planar position deviation between target and treatment aperture in a clinical

setting by driving the phantom with several lung tumor trajectories (recorded from fiducial

tracking during radiotherapy delivery to the lung).

DMLC tracking for lung SBRT without fiducial markers was successfully demonstrated. The

inherent system latency is found to be δt = (230 ± 11) ms for a MV portal image acquisition frame

rate of 12.86 Hz. The root mean square deviation between tumor and aperture position is smaller

than 1 mm.

We demonstrate the feasibility of real-time markerless DMLC tracking with a standard LINAC-

mounted (EPID).
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1. Introduction

Thoracic and abdominal tumors often exhibit large respiratory motion ranges (Ekberg et al.

[5], Seppenwoolde et al. [25], Keall et al. [11]). Intrafractional target motion causes a

blurring of the target dose distribution which necessitates the irradiation of additional

normal tissue surrounding the tumor volume to achieve full dose coverage of the target.

Stereotactic body radiation therapy (SBRT) for non-small cell lung cancers (NSCLC) has

been found to be a promising alternative treatment option to surgery (Fakiris et al. [7],

Nagata et al. [17]), particularly for early stage NSCLC and inoperable cases. However,

radiation toxicity can be a concern (Timmerman et al. [28]). The grade of toxicity has been

linked to the irradiated volume and the integrated dose to sensitive structures (e.g. chest

wall) (Andolino et al. [1], Matsuo et al. [16]).

Beam tracking (Keall et al. [10]), can effectively “freeze” the tumor motion in the beam

reference frame by following it with the treatment beam and can therefore potentially reduce

the size of the irradiated volume and/or the maximal dose delivered to critical structures.

The procedure may be divided into two separate steps:

i. A method for real-time target motion estimation.

ii. A device to shift the radiation beam synchronized to the target position.

The main challenge for step (ii) is to develop a system with acceptable technical

specifications concerning leaf position accuracy, velocity and response time. There are

currently two research platforms (Tacke et al. [27], Sawant et al. [24]) that provide real-time

adjustment of the treatment aperture in response to the signal of a motion capture device.

Other publications have utilized fiducial marker tracking for step (i). Both, the use of

electromagnetically excitable markers (Calypso) as well as marker segmentation from x-ray

fluoroscopy images have been tested (Sawant et al. [23], Krauss, Nill, Tacke and Oelfke

[14]). Using the MV-EPID with soft tissue localization can avoid the patient’s discomfort

and any risks associated with fiducial marker placement (including pneumothorax

2. Materials and Methods

2.1. System implementation on Varian platform

A system is presented integrating fast image acquisition, real-time markerless image-based

target position estimation (Rottmann et al. [21]), a linear predictor and a DMLC tracking

system developed for the Varian platform (Sawant et al. [24]). In Figure 1 a flowchart of this

system is shown. In the following a brief overview of the components is given.

2.1.1. Image acquisition—A frame grabber was provided courtesy of Varian Medical

Systems, Inc. along with an application programming interface (API) allowing direct
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random access memory (RAM) buffer access to images grabbed from the LINAC-integrated

image acquisition system. When compared to saving the images first on disk (cf. Fledelius et

al. [8], Poulsen et al. [19]), this can reduce the time ΔTaq needed for image acquisition and

allows the seamless integration of the image acquisition process with the other components.

2.1.2. Soft Tissue Localization (STiL)—The STiL algorithm has been described in

previous publications (Rottmann et al. [21]) and is embedded in a Matlab® GUI to have

real-time visual feedback for the user. The GUI has an interface accepting incoming frame

buffers from the frame grabber API. Figure 2 (right) shows the GUI during tracking of the

phantom used in this study. The resulting target positions p(ti) (red arrow in the figure) are

fed into a linear predictor that uses the first Nt positions for training. The forward predicted

position p̂(ti+δts) is sent to the DMLC component which calculates and then requests the

new leaf-positions by communication with the MLC controller.

2.1.3. Predictor—For any system attempting to compensate tumor motion by image

guided target tracking there is an inherent implementation specific time interval that is

needed for the process of image acquisition, position calculation and hardware adjustment.

In the context of dynamic aperture adaptation we define the system latency δts to be the time

interval needed for the aperture position to reach a given target position. The aperture will

therefore reach the target position p(ti), calculated from an image acquired at time ti, at time

t = ti + δts introducing a geometric error. The magnitude of this error naturally depends on

δts and the target velocity.

To reduce the latency induced geometric error, we need to estimate for each target position

p(ti) a future target position p̂(ti + τp). The underlying assumption in finding this estimate is

that the target location at time (ti+τp) may be expressed as a function of the Np previous

target positions {p(tj) | j = (i − Np), …, i}, i.e. we need to define an adequate prediction

function

(1)

Several techniques for constructing fp have been proposed and compared in the literature:

Sharp et al. [26] compared linear prediction (LP) with an artificial neural network (ANN)

and a Kalman filter (KF) using patient data traces as simulation input. Considering imaging

frequencies of 1–30 Hz and latencies from 33–1000 ms they found ANN and LP to give

similar results and consistently outperform KF. Ernst and Schweikard [6] proposed the use

of support vector regression (SVR) and Ruan [22] proposed a kernel density (KD) based

prediction algorithm. Krauss, Nill and Oelfke [13] implemented and compared LP, ANN,

SVR and KD including extensive model parameter optimization on the same data set used

by Sharp et al. [26] and Krauss, Nill and Oelfke [13]. They found the ANN algorithm to

work best, closely followed by SVR and LP and all algorithms performing far better than

KD.

Rottmann et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2014 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Comparing the complexities of the algorithms, we have found linear (ridge) regression to be

a rather fast and simple, yet still appropriate method for construction of fp (cf. Krauss, Nill

and Oelfke [13]). In this case the prediction function fp can be explicitly written as

(2)

if we define xi := (p(ti−Np), …, p(ti)). For practical purposes the constant term α0 can be

omitted if we pre-process all input data to have a mean value of zero. Additionally we can

neglect any kind of scaling differences between training data and testing data‡ if all input

data is normalized to have a standard deviation of unity. The transformation is applied to

each position p(ti) in the form of a sliding window operation using the Np previous positions

to calculate the standard deviation σi and the mean value mi

(3)

if we use

(4)

Considering a set of Nt value pairs of training data: {(x̃i, ỹi) | i = 1, …, Nt} with normalized

predicted positions ỹi = p̃(ti + τp) that may be calculated by linear interpolation, the weight

vector α can be written as an analytic expression:

(5)

Here X = (x̃1, …, x̃Nt)
T ∈ (  × ) is a matrix containing in each row a training vector xi,

Y = (ỹ1, …, ỹNp)T is a column vector containing the interpolated target positions at times

(ti+τp) and λ is the Tikhonov regularization parameter, which helps to keep the matrix

inversion numerically stable for the cases of a poorly conditioned X. There is one free model

parameter (λ). Krauss, Nill and Oelfke [13] have found that a patient independent tuning of

prediction model parameters is generally adequate, so we follow this approach and tune this

parameter with traces that are not later used for prediction.

2.1.4. Dynamic MLC control—The updated aperture position is processed by dynamic

multi-leaf collimator (DMLC) tracking software developed for the Varian platform. It has

been described in detail by Sawant et al. [24].

‡This is particularly convenient if other sources of input are used in a complementary way as for instance external surrogate data for
training the model.
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2.2. Experimental demonstration with a dynamic motion phantom

We characterized the performance of the integrated system with dynamic phantom studies.

For this we employed the Washington University’s 4D phantom, which consists of three

orthogonally mounted translation stages that can be programmed to move a platform in an

arbitrary 3 D trajectory (cf. Figure 2left). For the target we used a lung tumor model made

by rapid prototyping from a resin and placed it on the phantom tray. The tumor model was

modeled after a patient’s CT using the GTV outline (cf. Court et al. [4]). The phantom was

mounted on the treatment couch of a Varian TX linear accelerator holding the target roughly

at an isocentric position (SAD = 100). A circular treatment aperture covering the target

completely was chosen and the EPID (AS-1000) was set up at SID = 180 cm, recording at

12.86 Hz with a pixel resolution of (0.43 × 0.43) mm in the isocenter plane.

2.2.1. System latency and its measurement—To determine the look-ahead time, the

system latency is measured without the predictor. The dynamic phantom is programmed to

drive in a sinusoidal motion with a cycle time of T = 4.5 s and a peak-to-peak amplitude of

A = 20 mm in the superior-inferior direction, i.e. in the motion direction of the MLC leaves.

With respect to motion range and cycle time, this scenario is a sufficiently realistic

simulation of respiratory motion observed clinically during radiotherapy delivery (cf.

Berbeco et al. [3]). Running the system without a prediction algorithm in place results in a

shift between target position and aperture position of the MV beam that can be easily

analyzed from the acquired portal images. Calculating the phase shift Δϕ between a

sinusoidal fit to the target positions pgtv(ti) and a sinusoidal fit to the treatment aperture

position pmlc(ti) yields then an estimate for the system latency:

(6)

2.2.2. Geometric Accuracy with realistic phantom data—To quantify the geometric

accuracy of the integrated tracking system (cf. Figure 1 ) three patient lung tumor

trajectories were utilized (Berbeco et al. [3]). The trajectories were chosen from a data set of

17 patients that had underwent fiducial marker implantation before being treated for non-

small cell lung cancer (NSCLC). The selection criterion was large tumor motion range and

(for trajectory 1 and 3) irregularity because we expect these conditions to be the most

challenging for MLC leaf travel velocity and predictor performance, respectively. The

dynamic motion phantom was programmed with the superior-inferior component of the

breathing trajectory. The predictor model was trained in a separate session before the

radiation delivery to the phantom. The predictor look-ahead time was set equal to the

previously measured system latency (τp = δts). An overview of all relevant predictor

parameters is given in Table 1. For the phantom experiments, the first 100 data points were

not latency corrected by the predictor because the prediction vector was chosen to be of this

size (Np = 100). This length of time was chosen to have a sizable sample of points providing

results with and without prediction. The timing requirements and alternate schemes are

presented in the Discussion section (Section 4).
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We use the root mean square error (RMSE) as a measure for the deviation between tumor

phantom location and treatment aperture location.

3. Results

3.1. System latency

We observed a system latency of δts = (230 ± 11) ms (see Eq. (6)) at an imaging frequency

of 12.86 Hz for our experimental implementation. The MLC leaves were positioned in

parallel to the dynamic phantom motion. The sinusoidal fits to target and treatment aperture

position are shown in Figure 3.

3.2. Deviation between target and aperture position

The STiL algorithm operates in real-time and provides target positions to the predictor that

allow the treatment aperture to follow the target motion, keeping the aperture centered on

the target. The three sample breathing traces used in this study (for driving the dynamic

phantom) are shown in Figure 4 with their respective histograms of geometric deviation

between tumor and aperture position. It is apparent that the system latency can be effectively

compensated. The observed deviations are in line with the geometric accuracy of the

markerless soft tissue localization (STiL) algorithm. The overall geometric accuracy is

found to be sub-millimeter for all three patient tumor motions. In our previous study, the

STiL algorithm provided sub-millimeter localization (without DMLC motion). The

histogram also clearly shows a shifts towards smaller deviations once the predictor has

started operation. The results are summarized in Table 2. For the investigated traces it is

shown that DMLC tracking with a linear predictor can substantially reduce the residual

tumor motion.

4. Discussion

In this paper we demonstrate the feasibility of using MV markerless lung tumor tracking in

combination with a linear prediction filter to drive real-time dynamic multi-leaf collimator

(DMLC) adaptation on a clinical linear accelerator. The presented system employs a

previously published DMLC tracking code (Sawant et al. [24]) which we have combined

with a markerless soft tissue localization (STiL) algorithm optimized for real-time operation.

Furthermore we show that a linear prediction filter can substantially reduce geometric errors

caused by the system’s inherent latency.

Using the same DMLC tracking code and similar equipment (Varian Trilogy) but no frame

grabber Poulsen et al. [19] reported a system latency of about δts = (380±9) ms with a single

marker segmentation algorithm. Krauss, Nill, Tacke and Oelfke [14] reported a system

latency of 500 ms for their DMLC tracking implementation on the Siemens platform. We

attribute our smaller system latency (230 ± 11) ms to the use of the frame grabber and our

optimized motion estimation algorithm.

A linear prediction filter was implemented to further reduce the geometric error caused by

the system latency. While linear prediction is known to perform less well with irregular

breathing patterns, our small latency renders these differences insignificant (Krauss, Nill and
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Oelfke [13]). For the three lung tumor trajectories (recorded from patients during SBRT

deliveries), we saw a reduction in geometric deviation by about 50% with the predictor.

Due to the use of MV-EPID images we can only calculate 2D motion information. However,

the neglected direction (depth) has a very shallow dose falloff compared to the other two

directions (Nill et al. [18]). Additionally, using the EPID does not give additional imaging

dose to a patient (Kilby and Savage [12]). Other publications have suggested using the MV-

EPID for lung tumor motion analysis (Richter et al. [20], Rottmann et al. [21], Arimura et al.

[2]) and reported accuracy in retrospective user-dependent image analysis scenarios. The

algorithm employed in this publication, however, operates fully automatic, i.e. finding

landmarks and following these in real-time without prior knowledge or human interaction.

The accuracy of the tracking algorithm is of the same range as reported in [21], i.e. better

than 1 mm for a dynamic motion phantom.

The accuracy of any real-time tracking of tumors will depend on the fidelity of the

localization algorithm. For our method, patient-specific and treatment-specific factors will

have some influence on real-time localization due to the visibility of the tumor in MV

images. The clinical effect of these factors will be investigated in a separate study of a large

patient cohort. The purpose of the current study is to demonstrate the integration of EPID

imaging, tumor localization, prediction and DMLC motion on a clinical linear accelerator in

a real-time implementation. Prior to clinical application with patients, several challenges

will be addressed, including quality assurance, treatment planning and methods for

improving the MV imaging capabilities.

While the phantom employed in this demonstration is not anthropomorphic, the tumor

model itself is, to our knowledge, more realistic than any other that has been used for this

purpose. While the size of the tumor model used in this study is somewhat larger than most

tumors that are treated with SBRT, tumor model size will not affect the results in this

phantom study.

A pre-treatment training data set can be derived prior to the tracking session. External

surrogate data from 4DCT acquisition or tumor motion estimation from pre-treatment cone-

beam CT (CBCT) can be used for this purpose [15]. Phase lags between external surrogate

motion and tumor motion [9] do not affect the training of the predictor as only the motion

pattern information is needed. At the beginning of the tracking session, a period of at least

one breathing cycle is required for establishing the tumor trajectory history vector. As SBRT

treatments have 4–6 minutes of beam-on time, we don’t see this as a substantial limitation.

5. Conclusions

We have demonstrated fully automatic, real-time, markerless DMLC tracking on a clinical

LINAC. Furthermore, we have shown that a linear prediction algorithm can eliminate the

system latency, resulting in sub-millimeter accuracy.
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Figure 1.
(left) Typical patient setup for continuous MV EPID imaging during lung SBRT delivery.

(right) Information flow for the integration of frame grabber, STiL algorithm and DMLC

tracker on the clinical platform. All non-clinically approved tools are bundled on a separate

computer that receives image data as input through a high density connector cable and

provides output in the form of leaf position requests to the MLC controller.
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Figure 2.
(left) Experimental setup with the Washington University 4D Phantom and a clinical

LINAC. The resin tumor model rests on a solid water slab that is mounted to the motion

stages of the phantom. The treatment field light is on to show the outline of the radiation

field. (right) Screenshot of the Graphical user interface (GUI) for real-time visual feedback

during tracking operation. Each green arrow corresponds to a landmark, the red arrow to the

average landmark position (which is fed to the predictor). The window/level of the image

was adjusted to enhance the display contrast for the tumor model.
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Figure 3.
Measurement of system latency at a frame of 12.86 Hz with a dynamic phantom driving a

sinusoidal motion in the superior-inferior direction. The motion range was set to 20 mm and

the breathing cycle period to T = 4.5 s. (left) Sinusoidal fits to tumor position (red) and

aperture position (blue). The latency was found to be δts = (230 ± 11) ms (cf. Eq. (6)).

(right) A sample EPID image from the latency measurement showing the circular fit to the

segmented aperture position (blue) and the target position (red).
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Figure 4.
Experimental results of the physical phantom study (cf Table 2 ). Each row refers to the

delivery of one lung tumor trajectory. The target position (red) and the aperture position

(blue) are plotted over time. The black/green dotted line denotes the start of prediction.

(right column) Error histograms for each trace before prediction is in place (blue) and after

(red). The histogram is normalized to unity integral counts.
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Table 2

Experimental results of DMLC tracking phantom studies. Three different patient’s lung tumor trajectories

were used to drive a dynamic chest phantom with a realistic lung tumor model. The deviation between

estimated tumor position and beam aperture position is given as root mean square error (RMSE).

trace static beam
RMSE [mm]

DMLC
RMSE [mm]

DMLC + LP
RMSE [mm]

1 3.4 ± 3.8 1.9 ± 1.9 0.9 ± 0.9

2 3.2 ± 3.2 1.4 ± 1.4 0.6 ± 0.6

3 2.4 ± 2.4 1.8 ± 1.8 0.7 ± 0.7
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