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Abstract

This study develops a lumped cardiovascular-respiratory system-level model that incorporates

patient-specific data to predict cardiorespiratory response to hyper-capnia (increased CO2 partial

pressure) for a patient with congestive heart failure (CHF). In particular, the study focuses on

predicting cerebral CO2 reactivity, which can be defined as the ability of vessels in the cerebral

vasculature to expand or contract in response CO2 induced challenges. It is difficult to characterize

cerebral CO2 reactivity directly from measurements, since no methods exist to dynamically

measure vasomotion of vessels in the cerebral vasculature. In this study we show how

mathematical modeling can be combined with available data to predict cerebral CO2 reactivity via

dynamic predictions of cerebral vascular resistance, which can be directly related to vasomotion of

vessels in the cerebral vasculature. To this end we have developed a coupled cardiovascular and

respiratory model that predicts blood pressure, flow, and concentration of gasses (CO2 and O2) in

the systemic, cerebral, and pulmonary arteries and veins. Cerebral vascular resistance is

incorporated via a model parameter separating cerebral arteries and veins. The model was adapted

to a specific patient using parameter estimation combined with sensitivity analysis and subset

selection. These techniques allowed estimation of cerebral vascular resistance along with other

cardiovascular and respiratory parameters. Parameter estimation was carried out during eucapnia

(breathing room air), first for the cardiovascular model and then for the respiratory model. Then,

hypercapnia was introduced by increasing inspired CO2 partial pressure. During eucapnia, 7

cardiovascular parameters and 4 respiratory parameters was be identified and estimated, including

cerebral and systemic resistance. During the transition from eucapnia to hypercapnia, the model

predicted a drop in cerebral vascular resistance consistent with cerebral vasodilation.
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1. Introduction

Regulation of breathing and cardiovascular dynamics as well as their interactions are

essential for healthy physiological responses to CO2 challenges. It has been shown that

certain mechanisms within the cardio-respiratory regulatory system are compromised in

patients suffering from congestive heart failure (CHF) and sleep apnea [1, 2, 3, 4, 5, 6], in

particular, it is believed that cerebral CO2 reactivity is muted in these patients. Moreover, a

compromised cerebral CO2 reactivity may affect the stability of breathing causing

ventilatory overshooting during hypercapnia and undershooting during hypocapnia

(decreased CO2 partial pressure) [5, 6]. In the clinic, cerebral CO2 reactivity is studied by

challenging the respiratory system, e.g., by inducing hyper- or hypocapnia. The response to

hypercapnia is cerebral vasodilation yielding an increase in cerebral blood flow velocity,

while hypocapnia elicits opposite effects. Non-invasive measurements used to assess

cerebral CO2 reactivity include inspired volumetric airflow, expiratory CO2 partial pressure,

heart rate, ejection fraction, arterial blood pressure, and cerebral blood flow velocity. These

quantities can be measured dynamically at a high temporal resolution, but they have to be

interpreted to assess cerebral vasomotion. One way to combine the available measurements

for prediction of cerebral vasomotion is using mathematical modeling.

Several recent studies have provided insight into the mechanisms that govern respiratory

function, respiratory system interaction with cardiovascular control, and mutual regulation

between ventilation and cerebral blood flow (CBF) and arterial CO2 partial pressure.

Mathematical models that address aspects of the above topics include work by Dong and

Langford [7], who developed a model to study factors affecting stable behavior of the

cardiovascular-respiratory system in CHF and Lu et al. [8, 9] who applied a combined

cardiovascular-respiratory model to study the Valsalva maneuver and factors affecting

cerebral blood flow. Relevant experimental studies include work investigating the

differential role of CO2 partial pressures and sympathetic response on vasoconstriction [10],

and the role of cerebral reactivity to CO2 [6]. In addition to understanding basic mechanisms

associated with ”healthy” cardio-respiratory interactions, many studies focus on

investigating mechanisms associated with pathological cardio-respiratory dynamics. Among

the most studied group of patients are those suffering from CHF and sleep apnea (about half

the patients with CHF have episodes of sleep apnea).

For CHF patients, an influence of cerebral reactivity on respiratory function could develop

as follows. CHF patients can have an elevated brain tissue CO2 partial pressure after being

subjected to a hypercapnic challenge, with this elevation possibly resulting from a muted

cerebral CO2 reactivity. Elevated brain tissue CO2 resulting from muted or impaired

cerebral reactivity can lead to increased respiratory chemosensor stimulation and artificially

raised ventilatory drive. Such changes which influence respiratory control responses may

contribute to unstable breathing patterns when normal breathing is disturbed by events such

as apnea-related asphyxia often observed in CHF patients [11] (arousal-related hyperpnia

can have analogous effects). More detailed knowledge of cerebral vascular reactivity and

related mechanisms can potentially be obtained with mathematical models that couple

ventilatory and cardiovascular system dynamics and control functions combined with

appropriate parameter estimation techniques.
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To provide adequate physiological insights and allow prediction of specific quantities, the

model must include a fair degree of complexity, yet to be able to use the model for analysis

of given data, the model should be able to provide reliable model predictions. One way to

render a model patient-specific is to use nonlinear optimization to predict a set of model

parameters and initial conditions that minimize the least squares error between computed

states and the patient-specific data. This process involves solving an inverse problem:

predicting the model parameters given the model and the model output. Inverse problems

are typically ill-posed and thus difficult to solve reliably. Generally, as the number of

measured system quantities increases, the inverse problem becomes easier to solve, yet to

minimize patient discomfort and risks, experiments are often limited to a few non-invasive

quantities. At the same time, the mathematical models developed to study the system

dynamics have to be fairly complex to capture necessary details of the system.

Consequently, a relatively large set of parameters are associated with models where only

limited data are available. Thus, it may only be possible to estimate a small subset of model

parameters. Two techniques are typically employed to identify a small subset of parameters:

sensitivity analysis, which predicts how sensitive the model output is to changes in

parameter values, and parameter identification or subset selection, which predicts potential

correlations among model parameters. If a set of parameters are correlated, only one or a

given combination of the parameters can be estimated uniquely.

This study describes a comprehensive method for estimating parameters in a complex

physiological model predicting the cardiovascular-respiratory response to hypercapnia in a

patient with CHF. To do so, we developed a coupled cardiovascular and respiratory systems

model that predicts pulsatile blood pressure, flow, and concentration of gasses (CO2 and O2)

in the systemic, cerebral, and pulmonary arteries and veins for the patient studied. The

model was applied to two respiratory conditions. First, we analyzed dynamics during 5 min

of eucapnic breathing, followed by analysis of the transition to hypercapnic breathing. For

each experimental condition, parameter sensitivity analysis was used to rank model

parameters from the most to the least sensitive, and parameter identification was used to

predict a subset of parameters that could be estimated given available data. Section 2

describes efforts needed to develop the cardiovascular (section 2.1) and respiratory (section

2.2) models as well as efforts needed to predict nominal parameters used for these models

(section 2.3). Section 3 describes data used for this study, and section 4 describes efforts

involved with parameter estimation. Section 5 presents our results during eucapnia (section

5.1) and hypercapnia (section 5.2), section 6 discusses our results, and section 7 summarizes

our study.

2. Mathematical modeling

The cardiovascular-respiratory model depicted in Fig. 1 represents a lumped parameter

compartmental model designed to predict patient-specific dynamics of cerebral CO2

reactivity during hypercapnic breathing in a CHF patient. The model consists of two parts: a

cardiovascular model that predicts the main quantity of interest cerebral vascular resistance

RB [mmHg s/ml], as well as systemic arterial blood pressure pSa [mmHg], middle cerebral

blood flow velocity νMCA [ml/s], and left ventricular ejection fraction EF. The

cardiovascular model is coupled to a respiratory model that predicts expiratory CO2 partial
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pressure pexp,CO2 [mmHg]. These quantities are predicted as a function of heart rate H

[beats/s], airflow velocity VİE [ml/s], and concentration of inspired CO2 [mlstpd/ml]. The

model is designed to predict these quantities for a patient resting in semi-recumbent

position. The test protocol involves two stages. The patient first breathes in normal air

(approximately zero % CO2) for 5 min after which a switch to hypercapnic air containing

5% CO2 is made. This switch in CO2 concentration is modeled by dynamically changing the

concentration of inspired CO2. The inducement of hypercapnia elicits autonomic and

autoregulatory control responses. Autonomic responses to the CO2 challenge include

changes in heart rate, breathing depth and frequency, and minor changes in cardiac

contractility and systemic vascular caliber. Effects on the first two quantities (heart rate and

airflow) are directly incorporated as model inputs, while the autonomic control quantities

(contractility and systemic vascular resistance) are not included in the model. The main

autoregulatory response to the CO2 challenge is regulation of the vessel caliber in the

cerebral vasculature. This key response is modeled via prediction of dynamic changes of the

cerebral vascular resistance and represents a measure of cerebral CO2 reactivity. Below, we

describe the basic cardiovascular and respiratory models, as well as nominal parameter

values. All model quantities are defined in cgs units (cm, grams, and seconds), with the

exception of pressure, which is computed in mmHg, standard for the physiology literature.

2.1. Cardiovascular model

The cardiovascular system (see Fig. 1) is represented by a closed circuit with 3 arterial

compartments, 3 venous compartments, and 2 ventricular compartments. Vascular

compartments represent systemic arteries and veins in the body and the brain, as well as

pulmonary arteries and veins. Each compartment lumps related vessels yielding a

representative transmural pressure p(t) [mmHg], volume V(t) [ml], compliance C [ml/

mmHg] (constant). Compartments are separated by resistors R [mmHg s/ml], analogous to

an RC-circuit. The physiological analogy of compliance is vascular tone, while resistances

can be predicted from vascular caliber through Poiseuille's law for flow in a cylinder, where

resistance R is inversely proportional to the radius r to the fourth power, R = k/r4. It should

be noted that each compartment lumps many vessels together, thus a direct computation

relating radius to resistance is not feasible.

For each compartment i, the stressed volume Vi,str(t) [ml] is given by

(1)

where Vi(t) [ml] is the time-dependent total volume and Vi,unstr [ml] (constant) is the

unstressed volume, at zero transmural pressure.

Flows between adjacent compartments are characterized by a constant resistance R [mmHg

s/ml] and volumetric flow rate q(t) [ml/s]. Incorporating Ohm's law, the net change in

volume for each compartment is given by

(2)
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The subscripts i − 1 and i + 1 refer to upstream and downstream compartments in relation to

compartment i, respectively. A system of differential equations is obtained by differentiating

(1) and equating with (2) to give

(3)

An equation of this form is associated with each vascular compartment.

The heart is represented by the left and right ventricles, modeled to generate the driving

pressures for the systemic and pulmonary systems, respectively. This is realized by

imposing a time-varying pressure as a function of ventricular volume. Thus, for the

ventricular compartments Viν we obtain a differential equation by imposing volume

conservation, as

(4)

where the flows q(t) [ml/s] are determined similarly to (2). We use a time-varying elastance

model to compute ventricular pressures piν(t) [mmHg] [12, 13, 14, 15],

(5)

where Vid [ml] denotes the volume at zero end-systolic pressure [12, 16] and Eiν(t)

[mmHg/ml] denotes the time-varying elastance. In the above equations subscript i denotes

the left or right ventricle, respectively. For each ventricle, time-varying elastance E(t)

[mmHg/ml] is modeled using a piecewise sinusoidal function of the form

(6)

where TM and TR [s] denote the time for end-systolic (maximum) elastance (TM) and the

remaining time to relaxation (TR). To account for varying heart rate, we express these times

as fractions of the heart period T = 1/H[s], i.e., TM,f = TM/T and TR,f = TR/T. We assume that

maximum elastance occurs at the same time for both left and right ventricles, thus the values

of the two parameters TM and TR [s] remain the same for the two sides of the heart. ED and

ES [mmHg/ml] denote the end-diastolic and end-systolic elastance of each ventricle. The

elastances differ significantly between the right and the left ventricle, in particular for the

CHF patient studied in this manuscript. Thus we include four elastance parameters ED,l,ED,r

and ES,l,ES,r [mmHg/ml] and two timing parameters TM and TR [s].

Similar to previous studies [17, 18, 19], the cardiac valves (mitral mν, aortic aν, tricuspid tν,

and pulmonary pν) are modeled using time-varying resistances Rmν(t), Raν(t),Rtν(t),Rpν(t)

[mmHg s ml] defined as a function of the pressure drop across the valves. A small baseline

resistance is used to define an “open” valve (subscript “o”) and a resistance that is several

orders of magnitude larger is used to define the “closed” valve (subscript “c”). An
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exponential function is applied to describe the degree of openness as a function of the

pressure gradient. Thus the effective resistance of a valve is defined by

(7)

The parameter Rvalve,o [mmHg s/ml] is the small resistance allowing flow out of the

ventricle, k describes the speed of the transition from open to closed, and Rvalve,c [mmHg

s/ml] is a value large enough to effectively shut off the flow through the valve. Since this

function is non-smooth at the junctions of the exponential and Rvalve,c, a smoothing

function [20] was used. A smooth minimum can be computed as

(8)

where 0 < ε < 1 denotes the degree of smoothness (in this study we used ε = 0.5) and x

denotes the vector to be minimized. Similarly, a smooth maximum could be computed as

maxe(x) = –minε(–x).

Cerebral autoregulation, activated during the switch from eucapnic to hyper-capnic

breathing, causes cerebral vasodilation, i.e., the caliber and consequently the resistance of

vessels in the cerebral vasculature decreases. This decrease in cerebral vascular resistance

causes an increase in cerebral blood flow velocity as observed in measurements of

associated data (see Fig. 6). Similar to previous studies [17], we included cerebral

autoregulation by modeling peripheral vascular resistance in the brain as a piecewise linear

function in time of the form

(9)

where the unknown function values at nodes γi are model parameters.

The input to the cardiovascular model is the period of the cardiac cycle T = 1/H, which is

obtained from data (see Fig. 2). Note, that this period is not constant but varies with each

cardiac cycle. Four quantities constitute the model output, the first being the cerebral

vascular resistance (the resistance in the brain, RB) as described above. Three additional

output quantities are compared with the model data. Systemic arterial blood pressure pSa is

found from the solution of the differential equation (28). Blood flow velocity in the middle

cerebral artery νMCA is related to the total flow to the brain by

where κ is a scaling factor relating volumetric blood flow in the brain to blood flow velocity

measured in the middle cerebral artery. We assume that this factor is constant, implying that
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no active changes in vessel properties (diameter and vascular tone) occur at the level of the

major cerebral arteries. The final output is the ejection fraction

where Vlν,max and Vlν,min are the maximum and minimum volume of the left ventricle,

respectively. Note, since the ventricular volume is a dynamic quantity, the maximum and

minimum volumes change over each cardiac cycle. To ensure differentiability, these

quantities are computed as smooth minimums and maximums from Vlν (one of the state

variables) using the smoothing function (8).

All equations for the cardiovascular model are given in Appendix A.1, and parameterization

is discussed in the beginning of Section 2.3.

2.2. Respiratory model

The respiratory system (also depicted in Fig. 1) contains tissue and lung com partments.

Metabolism, defined here as the consumption of O2 and production of CO2, occurs in all

tissue and organs. We lump tissue and organs in the same compartment, but divide the mass

into two regions: brain tissue B and systemic tissue S. These two regions are each divided

into two compartments: a tissue compartment tis where metabolic activity resides and an

interfacing capillary compartment cap where gas exchange between tissue and blood occurs,

see e.g., [21]. The lungs, where O2 and CO2 are exchanged with the environment, are

described by an alveolar compartment and three dead space compartments. Standard

material balance equations describe the exchange of gases within each compartment and

between the tissue compartments and interfacing capillaries.

Tissue equations—The following symbol convention will be used: c represents

concentration [mlgas/mlblood], subscript T represents a generic tissue compartment which

can be chosen to be systemic S or brain B tissue, generic gas quantities (O2 or CO2) are

denoted by g and the gas fractional amount by F. Venous flow [ml/s] is denoted by ν and

arterial flow [ml/s] by a. Following this symbol convention, and as mentioned above, we

distinguish between two tissue-related compartments: the actual tissue regions Ttis denoted

as Stis and Btis, and the capillary blood compartments Tcap denoted as Scap and Bcap. The

latter compartments serve as an interface between the tissue compartments and the blood

stream. The two tissue compartments are marked in yellow on Fig. 1, while the systemic and

brain capillary compartments are indicated as expansions where arteries and veins intersect.

Let the general quantity of a gas g (O2 or CO2) in a tissue region T (B or S) be written as

AT,g, then, the total amount of a gas in a tissue region AT,g [ml] can be found as

(10)

This equation describes AT,g [ml] as the product of the effective tissue volume V [ml]

(constant) available for the gas and the concentration c [mlgas/mlvolume] of the gas in the

volume.
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The change in the amount of gas g in the tissue compartment depends on the amount of gas

produced or consumed by metabolism MT,g [ml/s] and the amount added or removed by

exchange through diffusion with the capillary compartment. Similarly, the change in the

amount of gas in the capillary compartment depends on the removal of gas by the

bloodstream qT [ml/s] and diffusion of gas into or out of the tissue compartment, i.e., by

differentiating (10) we obtain

In the above equations, DT,g denotes the diffusion capacity for a gas in a given tissue

(depending on partial pressure or concentration of the gas). VTtis,g is the effective tissue

volume for a gas, VTcap,g is the effective capillary blood volume for a gas (approximately

1% of VTtis,g), and qT,g is the blood flow through the capillary compartment. The

concentration in the arteries traveling to both the systemic circulation and the brain are the

same since no metabolic effects are introduced until exchanges occur between capillary and

tissue compartments. Hence we denote the arterial concentration for both regions as ca,g

[mlgas/mlblood].

Assuming dVT,g/dt = 0, the above equations reduce to generic equations predicting exchange

between the tissue compartment and capillary blood combined with metabolism

(11)

and exchange between capillary blood and the tissue compartment combined with transport

via the bloodstream

(12)

Assume that tissue compartments can be considered well-mixed and gas concentrations are

equilibrated with exiting venous concentrations. Then the gas concentration cν,g [mlgas/

mlblood] in the systemic venous return can be calculated as a mixture of the concentrations

from the incoming systemic stream qS [ml/s] and cerebral venous stream qBv [ml/s] as

where cS,g and cB,g [mlgas/mlblood] are the systemic and cerebral concentrations of each gas

exiting the capillary compartments.
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Lung equations—The lungs (also depicted on Fig. 1) are modeled using five

compartments including pulmonary capillaries, the alveolar space, and three dead space

compartments representing the bronchial airways. The compartment representing the

alveolar space has a dynamic volume VA,g, in which O2 and CO2 are exchanged between the

lungs and the pulmonary capillaries. Let A denote the alveolar compartment; then the

amount of alveolar gas is given by

the product of alveolar volume VA [ml] and gas fraction FA,g. The change in quantity of

alveolar gas is represented by a mass balance relation parallel to the one developed for the

tissue compartment, taking into account a time-varying alveolar volume. Gas transport is via

blood flowing to and from the lungs through pulmonary capillaries, and gas exchange with

the environment is carried out via inspiration and expiration. A separation into lung tissue

and lung capillary compartments is not included given the rapid and complete loading and

unloading of blood gases between the alveoli and the the blood flow through the capillaries

surrounding each alveolus. Note that the systemic venous return concentration cν,g will be

the same as the pulmonary arterial concentration and systemic arterial concentration ca,g will

be the same as pulmonary venous return. Thus, cν,g and ca,g are used to denote the

pulmonary arterial and venous concentrations, respectively.

The bronchial airways have been modeled using a rigid anatomical dead space connecting

the alveolar space with the atmosphere. This space is divided into three equal-volume

compartments which each account for some of the effects of the pulmonary branching. We

assume that the compartment marked D1 is located closest to the mouth with the

compartment marked by D3 closest to the alveolar space. Gas concentrations and partial

pressures are predicted in all compartments.

Following these considerations, the mass balance equation for the alveolar compartment can

be written as

In the above equation, subscript p marks the pulmonary compartment and Fi,g marks the

fraction of gas in the air that is either being inspired into or expired from the alveolar

compartment. Hence, i = D3 during inspiration since inspired air is coming from the adjacent

dead space region and i = A during expiration since air leaving the alveoli is alveolar air

equilibrated with the pulmonary capillaries. Rearranging to express the rate of change of

alveolar gas fraction gives
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To convert gas fractions to partial pressures (in mmHg) and maintain consistency of units

we use the the relationship

(13)

where pamb is the ambient air pressure of 760 mmHg and water vapor partial pressure pwater

equals 47 mmHg at body temperature of 37 °C. Because blood gas concentrations are

reported in [mlstpd/ml] (”standard temperature pressure dry”), but alveolar volumes are in

btps (”body temperature pressure saturated”), we convert tissue concentrations to btps. One

assumption included here is that incoming air is immediately humidified once it enters the

nasal passages [22, 23] and that expired air is a composition of alveolar air and dead space

air at btps, therefore terms with those quantities are not converted.

Additional modeling considerations concern the relationship between the pulmonary

capillaries and the systemic arteries. First, the effective amount of blood in contact with

alveolar air is reduced by blood bypassing alveoli and can also be reduced by under-

ventilated alveoli. A 2% anatomical shunt is assumed for blood bypassing the alveoli,

appropriate for an adult with no known anatomical abnormalities [22, 23]. As a

consequence, only 98% of the cardiac output becomes oxygenated, and we alter the alveolar

equations accordingly. We note that physiologically, the amount of blood not in effective

content with alveolar air can range from 2-5% [22, 23], with the lower end of the range for

healthy subjects and the higher end indicating a pathological condition, such as collapsed or

obstructed lungs and congenital cardiovascular conditions. Since the subject analyzed here

has no known pulmonary or congenital cardiovascular disease associated with CHF, using a

2% shunt is justified. This appears in (14) as the factor 0.98.

Second, we note that the thin alveolar wall allows for almost immediate equilibration of

gases between the alveoli denoted by A and the pulmonary capillaries; thus we assume that

the concentrations of blood gases are the same in the pulmonary capillaries and in the

systemic arteries. Thus, in terms of partial pressures we have pA,g = pa,g as an auxiliary

equation. Intermediate equations taking into account the modeling considerations and unit

conversions discussed above are presented previously in Ellwein [24], with the final alveolar

equations given as

(14)

Each of the three compartments making up the anatomical dead space is considered to be

well-mixed with units Vbtps, in ml. Material balance equations for the dead space

compartments reflect changes in gas levels due to airflow, with opposite directions of flow

for inspiration versus expiration. The relation (13) holds and equation units are all in btps.

Thus following the derivation of (14),
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(15)

(16)

In the above equations, pressure pI,g [mmHg] denotes the partial pressure of the gas in the

inspired air.

O2 and CO2 have different affinities for hemoglobin, and therefore behave differently as

gases in the air versus dissolved in blood. Gas dissociation laws are used as auxiliary

equations to convert alveolar gas pressures to blood gas concentrations. In this study we use

equations presented in Batzel et al. [1],

The linear law for CO2 and the exponential law for O2 are empirical relationships reflecting

the general behavior of each gas, but do not explicitly model gas interdependencies or

factors such as pH and temperature.

Inputs for the respiratory model include heart rate and flows predicted by the cardiovascular

model as well as inspired volumetric airflow V̇
IE [ml/s] measured during experimentation.

Note, V̇
IE is equivalent to the rate of change of alveolar volume dVT,g/dt [ml/s]. Thus, the

alveolar volume can be predicted as

(17)

The integration constant is chosen such that the minimum alveolar volume matches the

functional residual capacity (FRC) [ml] estimated as a function of height h [cm] and weight

w [kg] [25], i.e.,

Note that dVA/dt [ml/s] is positive during inspiration and negative during expiration.

The second input to the respiratory model is the partial pressure of inspired CO2 (pinsp, CO2)

determined by estimating a smooth curve through the minima of the expired CO2 values

from experimental data as shown on Fig. 2. The minimum CO2 level occurs during

inspiration, both for inspired normal air and for inspired air with elevated CO2. In both cases

expired air includes the inspired CO2 plus the quantity of higher-concentration CO2

generated from metabolism and transferred to alveolar air through the alveolar-capillary
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exchange. Note, the data automatically includes the switch from eucapnic to hypercapnic

breathing.

Only one model output is predicted from the respiratory model, namely, expiratory CO2

partial pressure (pexpCO2), which is computed as

Expiratory partial pressures are assumed to be nearly equivalent to the dead space pressure

in D1 closest to the mouth, with a slight mixing of alveolar gas. Thus the factor falν is

introduced to represent the fraction of alveolar gas convected into the expired mixture. For

model comparison, pexp,CO2 is compared to the data for expiratory CO2 partial pressure. All

respiratory equations are listed in Appendix A.2, while parameterization is discussed

beginning in Section 2.3.

2.3. Parameterization

2.3.1. Nominal cardiovascular parameters—Nominal parameter values and initial

conditions for the cardiovascular model were calculated from data, literature, and using the

subject's anthropometric measurements. Parameter values used to predict time-varying

elastance include endsystolic and end-diastolic elastance of the left ventricle (ES,i,ED,i, i =

l,r) [mmHg/ml], as well as fractions denoting the timing of the cardiac cycle (TM,f ,TR,f ).

Values for the end-diastolic elastance are obtained from estimated diastolic ventricular

pressure pdia, end-diastolic volume EDV, and zero pressure volume Vd [ml] as

(18)

where the diastolic ventricular pressures are set using literature values [26]. The subject

studied has CHF and is thus expected to have an enlarged left ventricle, while the size of the

right ventricle is closer to normal. We estimate these volumes using results for CHF patients

without sleep apnea reported by Tkacova et al. [27].

End-systolic elastances are estimated using a similar relation, but as a function of systolic

ventricular pressure psys [mmHg], end-systolic volume ESV [ml], and zero pressure volume

Vd [ml]. Systolic ventricular pressure is obtained from the maximum measured arterial

pressure. End systolic volume ESV [ml] is obtained by subtracting stroke volume (SV [ml

beat]) from the end-diastolic volume (EDV), while the stroke volume is estimated from end

left ventricular diastolic volume and ejection fraction (EF, measured 26% for the subject

studied):

(19)

The timing fractions TM,f and TR,f were estimated from literature values suggested by

Ottesen and Danielsen [28] and Heldt [29]. We assume that the ejection of the left and the

right sides of the heart are synchronous, thus we use the same values for both ventricles.
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Total blood volume (ml) was computed using Baker's formula [30] as a function of body

surface area (BSA (m2), estimated from Mosteller's formula [31]) again as a function of

height h [cm] and weight w [kg]:

(20)

Distributions of volume and unstressed volumes were obtained using values from Beneken

and DeWitt [32].

Mean flows were scaled to cardiac output, which was computed from stroke volume SV and

mean heart rate H̄ [beats/s] [26], i.e.,

(21)

where the mean heart rate was obtained from the measurements. Flows in the circuit were

distributed to reflect a 20% cardiac output distribution to the brain, while 80% was directed

to the systemic arteries [23, 26].

Mean pressures were obtained from literature values [26, 23] and scaled using available

data. Scaling was done such that left ventricular systolic pressure was set to the maximum

measured arterial pressure, while the mean systemic arterial pressure were predicted by

calculating the mean over the part of the time-series representing eucapnic breathing. We

assumed a negligible drop in arterial pressure (1%) between arterial pressure in the aorta and

the main arteries in the cerebral vasculature, i.e., pBa = 0.99pSa.

Resistors were determined using Ohm's law (2) while values for compliances were obtained

from a pressure volume relation (1). Both were predicted using mean values for pressure,

flow, and volume, i.e.,

(22)

where stressed volumes for each compartment were determined using values given in the

study by Beneken and DeWitt [32].

Finally, the scaling factor κ = νMCA/qB relating the model output to the volu-metric flow

rate computed by the model is predicted from literature values of diameters of the major

cerebral arteries [33]. It should be noted that νMCA represents the velocity of the left middle

cerebral artery, while qB represents the volumetric flow to the entire brain, i.e., through all

cerebral arteries. Assuming that the major cerebral arteries do not change their diameter or

vascular tone, the scaling factor will be constant.

Initial conditions for blood pressures and ventricular volumes used for the differential

equations were obtained partly from the data and partly from literature estimates. Initial

conditions for arterial pressures were scaled relative to the mean of the measured arterial

pressure (as discussed above) assuming that the pressure drop over the larger arteries is
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small, while initial conditions for venous pressures and the ventricular volumes were were

set using standard literature estimates [23, 26].

In summary, the cardiovascular model contains 24 parameters including 9 resistances R =

{RS,RB,RBa,RBν,RP,Rmν,o,Raν,o,Rtν,o,Rpν,o}, 6 compliances C = {CSa,CSν,CBa,CBν,CPa, Cpν},

8 heart parameters θheart = {Vdl, Vdr,ED,l,ED,r,ES,l, ES,r,TM,f ,TR,f}, and the scaling factor κ.

Nominal parameters and initial conditions for the differential equations are specified in the

Appendix, Table 3.

2.3.2. Nominal respiratory parameters—Nominal respiratory parameters and initial

conditions are obtained primarily from literature values scaled to the subject's weight and

gender. As is standard practice, all tissue gas volumes and blood gas concentrations are

given in stpd, thus units are consistent. Metabolic rates were set using standard allometric

scaling proportional to body mass by the power of 3/4 [34, 35] using values in the

Appendix, Table 4. We used the lumped metabolic rates for the systemic tissue given in [1,

36, 37] (scaled to the subject's weight and gender) for CO2 (MS,CO2) and O2 (MS,O2). These

studies also report a lumped CO2 metabolic rate for brain tissue (MB,CO2). To get a

metabolic rate for O2 in the brain, we used the assumption suggested by Grodins et al. [37]

that the brain O2 metabolic rate is approximately equal to the metabolic rate for CO2, i.e.,

we let MB,O2 = MB,CO2. For the gas diffusion constants DT,g, we used values given by

Conrad et al. [21]. This study does not report differentiated values between brain and

systemic tissue, thus we used the same constant for both organs and both blood gases and in

addition the same volume ratio between tissue and capillary compartments for both CO2 and

O2 systemic and brain compartments with capillary volume 1% of tissue volume.

Compartment volumes of the various gases were based on values in Batzel [1, 36, 37].

Alveolar volume is a dynamic quantity as shown in (17). Dead space volume was set

proportional to the body weight, and the coefficients of the dissociation equations are

assumed to be independent of the size of the subject.

Initial conditions for the differential equations were also obtained from literature values. For

the alveolar and dead space space compartments initial conditions are given for partial

pressures of CO2 and O2, respectively. Assuming that the first dead space compartment D1

is closest to the mouth we assumed that the O2 concentration in this compartment should be

close to that of room air. Assuming a slight decrease in O2 partial pressure as air is

transported through the lungs we let pD2,O2 = 158 mmHg and pD3,O2 = 157 mmHg. The CO2

partial pressure in inspired air is small. Using an average value extracted from the mean of

inspired CO2 data shown in Fig. 2, we chose initial conditions for partial pressures as

increasing along the dead space using a similar logic as for oxygen (all initial values

summarized in the Appendix, Table 4). These values also agree with those used by Grodins

et al. and Khoo et al. [37, 38].

Partial pressure in the alveolar compartments were obtained from values suggested by [39,

40]. These values reflect magnitudes that are between values in inspired air and standard

values reported in the lung. For systemic and brain tissue we used initial conditions reported
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in [40, 37, 38]. Finally, to obtain initial conditions for the capillary compartments we

assumed that the system was in steady state, thus we let

(23)

In summary, the respiratory portion of the model contains 20 parameters, including 4

metabolic rates M = {MS,CO2, MS,O2,MB,CO2,MB,O2}, 4 gas tissue volumes V =

{VStis,CO2,VStis,O2,VBtis,CO2,VBtis,O2} and 4 gas capillary volumes V = {VScap,CO2,

VScap,O2,VBcap,CO2,VBcapO2}, the lung dead space volume VD, 4 dissociation constants K =

{KO2,kO2, KCO2,kCO2,}, two diffusion constants DT,CO2 and DT,O2, a parameter allowing us

to predict gas volume in the capillary compartment fV,cap, and a fraction falν indicating

alveolar air in the exiting air stream. Nominal parameter values and initial conditions for the

differential equations are specified in the Appendix, Table 4.

3. Experimental methods

The data analyzed in this study include continuous measurements (sampled at 128 Hz) of

heart rate H [beats/min], systemic arterial blood pressure (pSa [mmHg]), cerebral blood flow

velocity νMCA [cm/s] measured from the middle cerebral artery (MCA), inspired volumetric

airflow V̇
IE [ml/s], and expired partial pressure of CO2 [mmHg]. In addition we have a

measure for left ventricular ejection fraction (EF), as well as anthropometric measurements

of height, weight, and gender. These data are obtained from the Pulmonary Physiology

Laboratory, Middleton Veterans Hospital, Madison WI. Detailed descriptions of the

experimental protocol can be found in [6] but are also summarized below.

Time series data were analyzed from one subject diagnosed with CHF and no sleep apnea

syndromes. This subject is a 55 years old male, height 178 cm, weight 82.3 kg with an

ejection fraction of 26%. Two breathing protocols were analyzed 1: Eucapnia, denoting the

state that the subject breathes room air at room temperature, and 2: Hypercapnia, denoting

the state that the subject breathes a constant mixture of air containing 5% CO2. Under both

breathing protocols, the subject was resting in a semi-recumbent position with the head still

and eyes open. When steady state signals were observed, eucapnic data were recorded for

250 s. At this point, the CO2 challenge was initiated and another 250 s of data were recorded

during hypercapnia.

To obtain data, the subject was instrumented with a 2-MHz pulsed Doppler ultrasound

system (Neurovision 500 M; Multigon Industries, Yonkers, NY) used to continuously

measure cerebral blood flow velocity in the proximal segment of the middle cerebral artery

(MCA). The MCA was insonated through the right temporal bone window using search

techniques described in Otis and Ringelstein [41]. After detection and optimization of the

Doppler signal, the probe was mechanically secured using a headband device and probe

holder to provide a fixed angle of insonation for the duration of the experiment. The subject

was asked to keep his head still and eyes open throughout the experiment. Heart rate was

obtained from the electrocardiogram, and arterial pressure (pSa [mmHg]) was measured beat

by beat in the middle finger of the left hand by photoelectric plethysmography (Finapres,

Ohmeda, Louisville CO). Inspired volumetric airflow was measured with a
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pneumotachograph Model 3700, Hans Rudolph, Kansas City, MO) that was attached to a

leak-free nasal mask. Expiratory CO2 partial pressure (pexp,CO2 [mmHg]) was sampled from

the mask and measured by gas analyzers (#S-3A/I & CD-3; Ametek, Pittsburgh PA). Left

ventricular ejection fraction was measured using two-dimensional echocardiography with a

Hewlett-Packard echocardiography device (SONOS model 5000).

4. Patient-specific model adaptation

In order to render the model patient-specific, model parameters are estimated to minimize

the least squares error between computed and measured values of arterial pressure pSa,

cerebral blood flow velocity νMCA, left ventricular ejection fraction EF, and expiratory CO2

partial pressure. Similar to previous studies [19, 24] we note that to accurately reproduce

cardiovascular dynamics it is important to account for both instantaneous as well as systolic

and diastolic values of arterial pressure and cerebral blood flow velocity. The quantities

(pressure, velocity, partial pressure of CO2) are observed at N equally spaced times ti,

according to the frequency of data collection (128 Hz). Similarly, for arterial pressure and

cerebral blood flow velocity we have one observation of systolic and diastolic pressure for

each of M cardiac cycles. In addition, we have an average value for ejection fraction EF

during eucpania.

Each of the predicted model outcomes has an associated data vector, which we denote a

superscript (d). Consequently, the data vectors are , , , , ,

, EFd and . To calculate the least squares error, we define two residual

vectors Rcar and Rresp, containing quantities relevant for the cardiovascular and respiratory

models, respectively:

(24)

where each component is scaled to account for the number of elements in the vector and

relative to the data, i.e.,

with i = pSa,vMCA, pSa,sys, pSa,dia,..., pexp,CO2, and κ = N,M, respectively.

The vector Rcar has 2N + 5M entries, while Rresp has N entries. For each of the residual

vectors Rj, the least squares cost J is defined by

(25)

Actual parameter estimates were predicted using nonlinear optimization, performed using

log-scaled parameters to facilitate convergence:
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where .

Before solving the least squares problem we used sensitivity analysis and subset selection to

identify parameter sensitivity and correlations among model parameters. The two models are

coupled loosely: the cardiovascular model does not depend on the respiratory model, but the

respiratory model depends on flows predicted by the cardiovascular model. During

eucapnia, the flows do not change significantly, consequently mean flows were computed

and input to the respiratory model. During hypercapnia, the flows change in response to the

CO2 challenge and thus the fully coupled model were solved at this stage. The process used

for model simulations is illustrated in Fig. 3.

4.1. Eucapnia

During eucapnia the subject is resting in semi-recumbent position thus autonomic and

cerebral autoregulation has limited effect. As a result, the cardiovascular and the respiratory

models can be treated as two separate entities. The cardiovascular model is given heart rate

as an input and via solution of Eqs. (27-28) model output is computed. The respiratory

model depends on blood flow through the pulmonary, systemic and brain tissue regions.

Moreover, respiratory oscillations are about 4-5 times slower than cardiovascular

oscillations due to the cardiac cycle [26]. As a result the respiratory dynamics are not

expected to change significantly. Consequently, mean values can be computed from the

cardiovascular model and input to the respiratory model.

Simulations done under eucapnia are set up to reflect dynamics of a resting subject. Data

were collected after the subject had rested for a period of time until stable signals were

obtained. The cardiovascular model has fast dynamics, consequently, impact of

approximated initial conditions will die out quickly and the model will settle oscillating

around steady state. However, the volume of the systemic tissue compartment is large, and

as discussed by Farhi [42] it can take more than an hour for the systemic tissue CO2 to be in

steady state. To account for the tissue gas time scale being an order of magnitude longer

than the 250 s of eucapnic data, we performed model analysis of steady state dynamics with

the last 250 s segment of an extended data set created by replicating the eucapnic data 40

times. Figure 4 shows dynamics of the cardiovascular and respiratory data as a function of

time, with the cardiovascular system reaching steady state oscillations within a few seconds,

while the respiratory system takes more than an hour to reach steady state.

4.1.1. Sensitivity analysis—Sensitivity analysis gives a measure of how much the output

of a model is affected by changes in the model parameters [18]. For the system discussed

here, sensitivities were computed during eucapnia analyzing how sensitive the model output

(arterial blood pressure, pSa, cerebral blood flow velocity νMCA, ejection fraction EF, and

expiratory CO2 partial pressure pexp,CO) are to the model parameters. Sensitivities were

computed for the cardiovascular and the respiratory models separately. Since a number of
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physiological quantities at several scales were included, sensitivities were computed from

the Jacobian defined by

(26)

where n denotes the number of parameters. Note that the Jacobian is calculated with respect

to the log-scaled parameters , limiting the effect of varying parameter scales, but the

differential equations are evaluated at nominal parameter values θ0. Sensitivities are local in

the model parameters, i.e., if parameter values θ0 are changed so will the sensitivities. Since

the model is nonlinear, the impact of each parameter may change as the values of the model

parameters θ0 change. In the absence of an analysis of this large parameter space, not

feasible within the scope of this study, we assume that for well-chosen nominal parameters

θ0 the local sensitivity predictions will persist over a reasonable range of parameter values.

Given that the model states are time-series, the sensitivities will be time-varying as well.

However, during eucapnia, we expect both the solution and the sensitivities to oscillate

around steady state values. Thus it it reasonable to use ranked sensitivities for comparing the

impact of model parameters to the model output. To obtain ranked sensitivities we used the

standard 2-norm scaled with the largest sensitivity, i.e.,

4.1.2. Subset selection—Solving the inverse problem uniquely is not feasible using the

complex model combined with available data, since several combinations of parameters

likely give rise to the same solution. To achieve a simpler inverse problem, we limit the set

of parameters identified using subset selection to obtain a set of uncorrelated parameters.

Numerous methods exist for estimating identifiable parameters as discussed in recent studies

[43, 44]. In this study, we used a method based on QR factorization as outlined below.

Further details of this method can be found in [19, 45].

Recall that  is the vector of n log-scaled model parameters and R is the model residual

defined in (24). The subset selection method analyzes the Jacobian, R′ predicted using (26)

to find a subset of columns that are “maximally independent”. Singular value decomposition

is used to decompose the Jacobian R′ = UΣVT , such that Σ is a diagonal matrix containing

the singular values σ1 ≥ σ2 ≥ ...σn and V is an orthogonal matrix of corresponding right

singular vectors. The number of identifiable parameter values is predicted by the numerical

rank ρ of R′, the largest value ensuring that σρ/σ1 > ε. For our study , where εS is the

relative tolerance used to solve the differential equations. Using ρ, the matrix of

eigenvectors VT can be partitioned as [Vρ Vn–ρ]T. The parameters associated with the ρ

highest singular values are then found using QR-decomposition with column pivoting. We

first determine a permutation matrix P by , where Q is an orthogonal matrix, and

the first ρ elements of R form an upper triangular matrix with diagonal elements in

decreasing order. Then P is used to reorder the parameter vector θ0, ρ = PT θ0. This gives the
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partition θ0 = {θ0, ρ, θ0, n–ρ}, where θ0, ρ contains the ρ identifiable parameters.

Unidentifiable parameters the vector θ0, n–ρ were kept at their nominal parameter values

during the parameter estimation. It should be noted that estimating only identifiable

parameters does introduce bias in the computations, but reduces the variance and makes the

estimation algorithm more robust [46, 47]. Furthermore, it should be noted that the QR

decomposition is not unique but depends on the concrete implementation of the algorithm;

however, the algorithm will return a set of identifiable parameters for a given ρ.

4.1.3. Parameter estimation—To estimate the subset of model parameters we used the

Levenberg-Marquardt method, a trust-region variant of the gradient based Gauss-Newton

optimization method. Parameter estimation involves minimizing the least squares cost J

defined in (25). Gauss-Newton is an iterative method [48] that at each iteration uses a

solution based on a local linear approximation to compute the next iterate. The theory

supporting our method predicts convergence even when the initial parameter estimates are

far from the solution, and rapid convergence near the solution.

4.2. Eucapnia followed by hypercapnia

As discussed above great effort was put into achieving a set of model parameters that

allowed prediction of steady state dynamics (during eucapnia). As described in the

beginning of Section 3, hypercapnia was introduced by changing inspired concentration of

CO2. The response to this change involves activation of the autonomic and cerebral

autoregulatory control systems. The autonomic control system acts to increase heart rate and

breathing depth and frequency. These changes are included via inputs to the model. Cerebral

autoregulation responds via vasodilation decreasing cerebral vascular resistance. This

change in cerebral vascular resistance was modeled by redefining the parameter RB using the

piece wise linear function defined in (9), where parameters are defined as the function

values at nodes. These parameters were estimated in a second simulation with the

cardiovascular model, minimizing the least squares error between predicted and measured

values of cerebral blood flow velocity. Using the optimized values for RB, we re-estimated

the identifiable respiratory parameters minimizing the least squares error between computed

and measured values of expiratory CO2 partial pressure. It was necessary for the latter

simulation to use the coupled model, since equations predicting respiratory dynamics

depend on predicted flows which are no longer constant but change in response to cerebral

autoregulation. Note that for simulations done during hypercapnia, subset selection was not

repeated.

5. Results

The cardiovascular-respiratory model analyzed in this study is derived in Section 2 (see also

Fig. 1). This model uses heart rate, air flow, and inspired CO2 data as system inputs and

predicts pulsatile responses including cerebral vascular resistance, arterial and venous

pressures in the systemic and pulmonary systems, partial pressures of CO2 and O2 in the

lungs, as well as concentrations of these gases in the cerebral and systemic tissues.

Parameter estimation is carried out to match data available from cerebral blood flow

velocity, expired CO2, and arterial pressure.
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5.1. Eucapnia

5.1.1. Sensitivity analysis—For each of the cardiovascular and respiratory models, we

computed and ranked relative sensitivities as described in Section 4.1.1. Results of this

analysis (see Fig. 5) showed that both the cardiovascular and respiratory models contain

sensitive and insensitive parameters, but that no clear break separates the two groups of

parameters. Therefore, we separated parameters using an estimate based on the numerical

integration accuracy. Numerical integration was done with accuracy 10−6, and sensitivities

were computed using finite difference Jacobians accurate to the order 10−3. Thus, we

included parameters with sensitivities greater than 10−3 in the subset selection analysis,

while rejecting the remaining parameters. The model depends on both sensitive and

insensitive parameters, thus the insensitive parameters cannot be taken out of the model.

Instead, we kept these parameters fixed at their nominal parameter values. This cutoff choice

allowed us to exclude the four valve parameters xcar,insens = {Rtν,o,Rmν,o,Raν,o,Rpν,o} and 7

respiratory parameters xresp,insens = {KO2,kO2, fν,tis,VB,O2,VT,O2, falv}.

Note, for the respiratory model, the set of sensitive parameters did not include any

parameters related to O2. This is reasonable given that we had no measurements of partial

pressure of O2. In conclusion, parameters included in the set of sensitive parameters serve as

candidates for subset selection as described in detail below.

5.1.2. Subset selection—For each model, we investigated correlations between

parameters using subset selection as described in section 4.1.2. For the cardiovascular

model, subset selection allowed us to extract six uncorrelated parameters from the set of

sensitive parameters including xcar,sub = {RB,RS,CSa,TM,f ,ES,l,ED,l}. These results were

obtained assuming that κ can be kept constant at its nominal parameter value. Including κ in

subset selection result in a subset with κ instead of RB (indicating that κ and RB are

correlated). However, since κ is a scaling factor, while RB is the model parameter of interest,

we chose to keep κ constant allowing identification of RB. This observation is similar to

results reported in previous studies [19, 24].

Nonlinear least squares estimation of the six cardiovascular parameters chosen by subset

selection did not allow us to accurately reproduce the dynamics displayed by the data. An

analysis of the remaining parameters (not picked by subset selection) revealed that including

a seventh parameter, cerebral arterial compliance CBa, allowed us to better reproduce the

dynamics displayed by the data. Since the objective is to analyze data from a patient with

CHF it is reasonable that this parameter should be included. Also typical of CHF is an

increased blood volume, which would induce an increased compliance in order to maintain a

normal arterial pressure. Note that the systemic arterial compliance was already included in

the subset, but that neither of the venous compliances were included. The latter may again

be related to the fact that we have no data on the venous side. We remind the reader that

subset selection was based on initial parameter values. Therefore, we repeated subset

selection with the optimized parameter values, and at this stage CBa was included in the

subset. Results from subset selection with the respiratory model revealed that we can

identify 4 of the sensitive parameters including xresp,sub = {VD,MS,CO2, MB,CO2,VB,CO2}.
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Note, the CO2 dissociation constants were set at literature values and thus

not[notdef]included in the subset selection.

In summary, with subset selection we identified 11 parameters (7 cardiovascular and 4

respiratory) that can be estimated reliably given the data available for this study. This is a

significant reduction from the total of 43 model parameters. However, it should be noted

that model prediction does depend on the value of all 43 parameters, thus care must be taken

to use realistic patient-specific physiological values for the parameters that are not included

in the subset.

5.1.3. Parameter estimation—As described in Section 4.1 and shown on Fig. 3

nonlinear estimation was done in two steps. First we estimated the subset of parameters

identified for the cardiovascular model, then we estimated the respiratory parameters. For

both models, parameters were estimated using the Levenberg-Marquardt variant of the

Gauss-Newton optimization method as described in Section 4.1.3. Optimized parameters are

given in Table 1 for both the cardiovascular and respiratory models. All data were

subsampled at 64 Hz to speed up computations and as discussed in Section 4.1 to allow the

respiratory model to reach steady state, computations were done on a data-set repeated 40

times. Though the least squares error between computed and measured values of partial

pressure of CO2 was done only using the last repeat of the respiratory data as discussed. To

verify that 40 repetitions of respiratory data was sufficient for achieving steady state, we

compared results with those obtained with 60 and 80 repetitions. Parameter estimates with

40 repetitions varied less than 5% from those obtained with 80 repetitions, while the

difference in estimates using 60 and 80 repetitions were less than 2%. Moreover, using 80

repetitions almost doubles the computation time, thus we decided that the 5% difference was

acceptable. Results showing that with optimized parameters, our model is able to predict

observed data are shown in Figs. 6 and 7. Note the model nicely predicts systolic and

diastolic values, while the waveform is not reproduced exactly, this is due to the fact, that

the circuit model used in this study does not account for wave-propagation, i.e., it is not able

to predict the actual waveforms with an incoming and reflected wave. This can be seen from

the large scale plots given in the right column of Fig. 9. Moreover, for ejection fraction EF,

we only have one measurement given an overall ejection fraction of 26%. There will be

variation over steady state, also shown in Fig. 9. On the other hand, respiratory data does not

include major phenomena not accounted for by the model, thus the better fit to data as

shown in Fig. 7.

5.2. Eucapnia followed by hypercapnia

Hypercapnia was induced by increasing inspired CO2. To predict the effect of cerebral

autoregulation, we used nonlinear optimization to estimate parameters representing the

cerebral vascular resistance (RB) under hypercapnic conditions. It should be noted that the

cardiovascular model does not depend on the respiratory model, consequently parameters

used for prediction of RB were estimated using the cardiovascular model by minimizing the

least squares error between computed and measured values of cerebral blood flow velocity

νMCA. The predicted time course of the cerebral vascular resistance is shown in Fig. 8, and

the associated blood flow velocity in the middle cerebral artery is shown in the top left panel
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of Fig. 9. Subsequently, we used the coupled model to estimate the subset of respiratory

parameters identified during eucapnia. This was done by minimizing the least squares error

between measured and computed values of expiratory CO2 partial pressure. Results of this

computation are shown in the remaining panels of Fig. 9. As for the steady state simulations,

the model is able to predict the overall dynamics displayed by the data. Systolic and

diastolic values were predicted accurately (R2 = 0.88 and 0.84, respectively), with R2 = 0.72

accounting for the entire waveform. The lower value is obtained because the model cannot

predict secondary oscillations due to the lack of its ability to reflect wave propagation.

Finally, respiratory dynamics were estimated accurately (R2 = 0.96), reflecting that the

model closely resembles dynamics observed in data.

6. Discussion

Results from the cardiovascular and respiratory models (Figs. 6 and 7) showed that the

approach used in this study allowed prediction of cerebral CO2 reactivity, via prediction of

cerebral vascular resistance RB, which can be directly related to cerebral vasodilation.

Additionally, the models were able to predict observed data including cerebral blood flow

velocity, arterial blood pressure, ejection fraction, and expiratory CO2 partial pressure.

Below we first discuss implications of the results obtained during eucapnia, and then we

discuss results obtained during the transition from eucapnia to hypercapnia. We note that the

subject studied was chosen since he displayed normal cerebral CO2 reactivity and aside from

CHF did not display other cardiovascular diseases.

Results from the cardiovascular and respiratory models (Figs. 6 and 7) showed that the

approach used in this study allowed prediction of cerebral CO2 reactivity, via prediction of

cerebral vascular resistance RB, which can be directly related to cerebral vasodilation.

Additionally, the models were able to predict observed data including cerebral blood flow

velocity, arterial blood pressure, ejection fraction, and expiratory CO2 partial pressure.

Below we first discuss implications of the results obtained during eucapnia, and then we

discuss results obtained during the transition from eucapnia to hypercapnia. Finally, we note

that the subject studied was chosen since he displayed normal cerebral CO2 reactivity and

aside from CHF did not display other cardiovascular diseases.

6.1. Eucapnia

During eucapnia, the cardiovascular model does not depend on any quantities computed by

the respiratory model, while the respiratory model depends on blood flows predicted by the

cardiovascular model. Since blood flow oscillate around a steady state during eucapnia and

respiratory oscillations are significantly slower, it was sufficient to compute average blood

flow values over the entire steady state interval and use these as inputs to the respiratory

model. We checked results from the two step approach by computing the full dynamics

using the coupled cardiovascular-respiratory model. We found that these predictions were

indistinguishable from those obtained from sequential solution of the two models. A

consequence of this observation is that accounting for pulsatile blood flow (as is done by the

coupled model) does not significantly impact respiratory model dynamics.
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In addition to computing model outcomes, we also computed all internal states and these

were all within physiological bounds. This is important to verify because the nonlinear least

squares optimization technique used for parameter estimation does not guarantee that

internal states cannot deviate from physiological values, even if predicted values for the

parameters optimized are within physiological bounds. Importantly, we compare internal

states particular to CHF, characterized in this patient by a severely enlarged left ventricle

and reduced ejection fraction at 26%. Optimized parameters revealed that the maximum left

ventricular volume was approximately 411 ml and minimum ventricular volume was

approximately 309 ml. These values yielding a stroke volume of 102 ml, with an average

heart rate of 62.7 beats per minute, this gives an approximate CO of 6.4 L/min (see

Appendix Table 3). This number corresponds to the cardiac output obtained from calculating

the mean flow in the systemic or pulmonary circulations.

CHF implies reduced heart function however cardiac output can stay near normal levels in

the early stages of CHF as the ventricle remodels and other controls work to keep cardiac

output normal. In the end, these changes cause damage that reduces cardiac output (see

presentation in [49]). For this patient, with left heart failure (but no sleep apnea) left

ventricular end diastolic volume (LVEDV) is derived to be (double normal values but

physiological for CHF patients without sleep apnea (left heart failure patients with sleep

apnea have significantly larger LVEDV [50]). Given that the heart rate is normal and

ejection fraction is 26% that implies such a very high LVEDV if cardiac output is to be

normal. The fact that heart rate is normal and no other symptoms are present suggests a

normal cardiac output (cardiac output data is not available). When cardiac output starts to

reduce, as it will eventually in CHF, heart rate can possibly increase to compensate for a

while. Thus in this patient it will likely take a very low ejection fraction to cause the kind of

reduced cardiac output seen in CHF as the disease progresses.

Moreover, systemic venous pressure, pulmonary arterial pressure, and pulmonary venous

pressure were approximately 3.6 mmHg, 27 mmHg, and 6.3 mmHg respectively, all with the

range of expected values for a patient with CHF (see Table 2). The total resistance RTot =

(1/TBTot + 1/RS)−1 = 0.70, where RBTot = RBa + RB + RBν is fairly low, but again expected

for CHF. The low resistance may be an indicator of poor circulation in the lower extremities.

Finally, we noted that during eucapnia approximately 25% of cardiac output was utilized as

cerebral blood flow. This is a bit high, however, cerebral blood flow velocity measured for

this subject was significantly larger than mean velocities reported in the literature [59]. This

could be due to poor circulation in the lower body or exceptionally high values from the

transcranial Doppler measurements. However, it could also be a result of the simplified

modeling of the cerebral arteries. The blood flow velocity is measured in the middle cerebral

arteries, and this has then been scaled (assuming constant area of the major cerebral arteries)

to compute a total flow to the brain. Without information about anatomical quantities for the

size of the cerebral arteries, this scaling factor is only as accurate as our estimates of patient

anatomy. The magnitude of the scaling factor κ would impact the optimized values for the

cerebral vascular resistance RB since these two parameters are correlated as stated earlier.

However, if the area of all major cerebral vessels (PCA, MCA and ACA) were measured,

then this scaling parameter could be computed explicitly from the data.
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For the respiratory quantities, values for dead space pD,CO2 and pD,O2, arterial values pa,CO2

and pa,O2, and systemic values pS,CO2 and pS,O2 (the latter calculated from concentrations

and dissociation laws) are reasonable (compare [37, 38, 36]). Dead space values of CO2 for

normal inspired air oscillate between zero (inhaled air) and end-expiratory air approximately

the same as alveolar air. Oxygen values follow similar reasonable patterns. It should be

noted that brain partial pressures pB,CO2 and pB,O2 did not match typical values as well in the

optimized case. The value for pB,CO2 was approximately 44 mmHg (too low) and pB,O2

approximately 50 mmHg (too high). There are likely several reasons for this. First, the data

for cerebral blood velocity for this subject was higher than expected, which would tend to

depress brain pB,CO2 and raise pB,O2. Second, we did not have data on O2 which might

impact the results. Further, research indicates that cerebral metabolism may be abnormal in

patients with CHF, leading to possible metabolic imbalance [60]. In addition, given the

complex effects induced by CHF in regards to the relation between heart rate and

contractility [61] and the fact that the modeled CO2 challenge induces only a 10% change in

heart rate, we omitted a heart rate dependent change in contractility reflecting a Bowditch

effect. The elastance parameters reflecting contractility were optimized for the steady state

using subject specific data. We also recognize that the value estimated from literature for the

FRC is only valid for individuals with no respiratory conditions, thus an extension of this

model to CHF patients co-presenting with respiratory dysfunction would require a modified

FRC estimate.

6.2. Eucapnia followed by hypercapnia

As discussed above, our model produced good predictions of behavior during eucapnia. In

this section we discuss impact of the transition from eucapnia to hypercapnia. When the

body is exposed to air with a high concentration of CO2, it responds by activating control

mechanisms to eliminate excess CO2. The autonomic regulatory system increases heart rate

and breathing depth and frequency while the cerebral autoregulatory system dilates vessels

in the brain to allow faster washout of CO2. The autonomic responses are incorporated in the

model via model inputs, and thus, will not be discussed further here. Vasodilation enforced

by cerebral autoregulation was modeled via dynamic regulation of cerebral vascular

resistance. In physiological terms, the concentration of CO2 should mediate changes in

cerebral vascular resistance. As a first step towards elucidating the dynamics of this

physiological connection, we used an empirical model predicting dynamics of cerebral

vascular resistance directly by estimating nodes in a piecewise linear spline based on

cerebral blood flow. This approach allowed prediction of cardiovascular dynamics

independent of the respiratory model. Results showed the expected response behavior that

cerebral vascular resistance decreased leading to an associated increase in cerebral blood

flow velocity.

To ensure that the respiratory model was able to accurately predict expiratory CO2 partial

pressure, a final simulation was performed re-estimating the subset of respiratory

parameters. This simulation did not move respiratory parameters significantly, since the

majority of the dynamics were already identified during the steady state simulation.

Ellwein et al. Page 24

Math Biosci. Author manuscript; available in PMC 2014 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Another detail which could improve patient-specific results involves adjusting the

integration constant arising in (17) which is currently taken as the functional residual

capacity (FRC) [ml] (as estimated as a function of height h [cm] and weight w [kg] [25]).

This integration constant could be increased to reflect a higher effective basic CO2 volume

due to its higher ability to diffuse into tissues compared to O2 (see e.g. [38]). Since we were

estimating FRC from a general formula we did not include such a correction. When fitting

the data to specific patients one could seek to acquire more information to adjust the

integration constant to reflect this.

In future work, we plan to incorporate a model predicting RB(cB,CO2,t), that is, changes in RB

dependent on cerebral CO2 level. The current model provides a way to estimate cerebral

CO2 via a model and parameter estimation from data for measured expired CO2. At this

point, RB is estimated from cerebral blood flow velocity. The link will be complete once a

model that connects RB and cerebral CO2 is developed. Once this is done, it will be possible

to estimate cerebral CO2 reactivity using non-invasive measurements from CO2 breathing

tests.

7. Conclusion

The results discussed here indicate that the proposed methodology and model can be used

for numerically efficient estimation of parameters for any subject with CHF and hence can

be also used for quantitatively studying variations between subjects with CHF and subjects

who suffer from CHF and central sleep apnea [3, 2, 4, 1], periodic breathing [62, 63],

compromised breathing stability [64], greater central and peripheral reactivity to CO2 [65,

66], and attenuated cerebral vascular reactivity resulting from brain hypoperfusion [66, 67,

68, 6]. Understanding how the control systems are compromised has potential to provide

more insight into these diseases. Future studies could include an extension of the proposed

method to a cohort of similar patients, to both analyze differences in parameter values across

the group at a particular time point and understand the progression of disease progression in

time. However, to use this model to compare quantities from a larger population it should be

emphasized that the model should be used with care. First, a physiology-based model as a

function of tissue CO2 could improve prediction of cerebral vascular resistance dynamics.

One could also expand the complexity of the interactions influencing the dynamics affecting

expiratory CO2. Second, more effort could be put into developing faster methods for

parameter estimation.

Moreover, it is important that nominal parameters reflect known characteristics from a

subject with CHF, in particular since only a subset of the parameters will be estimated.

Therefore, conclusions based on analysis of parameters obtained from several subjects

should all be interpreted related to the nominal parameter values used. Furthermore,

additional measurements would increase predictability of the model parameters, in particular

it would be beneficial to include measurements of cardiac output and estimation of

diameters of major cerebral vessels. Knowing these quantities would allow better prediction

of systemic and arterial flow as well as help to get better estimation of the scaling factor

needed, which would help in prediction of the scaling factor relating flow and velocity in the

middle cerebral artery. Finally, it should be noted that parameter estimates predicted here are
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found using a local method. Thus, there is no guarantee that the predicted values are truly

optimal. However, since nominal values were assumed close to the physiological values for

the specific subject, estimated values are physiologically relevant. Another use of the subset

selection methods applied here, is for model reduction. If the model output is insensitive to a

given group of parameters it may be possible to use this information to reduce the model.

Finally, we mention that the analysis of the correlation between parameters using the above

methods might potentially suggest new links between systems and hence suggest new

physiological information as long as the correlation is not introduced simply as a

consequence of the model reduction or model structure.
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Appendix

A.1. Cardiovascular model

The following give equations for blood pressures and ventricular volumes. The main

symbols are p, V, and C for pressure, volume, and compliance, respectively. Subscript

symbols P, S, and B denote pulmonary, systemic, and brain regions, respectively. Subscripts

a and ν in vascular pressure equations denote generally arterial and venous, respectively,

except for the resistances entering and leaving the heart. In that case Rmν, Rtν, Raν, and Rpν

denote mitral valve, tricuspid valve, aortic valve, and pulmonary valve resistances while lv

and rv denote left and right ventricle, respectively, in the ventricular equations.

Blood pressures, ventricular volumes, and intrathoracic pressure

(27)
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Heart valves

Ventricular pressures

where

Note, the timing parameters TM and TR are the same for both the left and right ventricles.

Input to this model is heart rate H. Outcomes from the model is arterial blood pressure

pSa(t), cerebral blood flow velocity νMCA = qB/k, and ejection fraction EF. Initial values for

the differential equations as well as nominal and optimal parameter values are listed in the

Appendix, Table 3.

A.2. Respiratory model

The following give equations for partial pressures and concentrations in the respiratory

system. The main symbols are p and c for partial pressure and concentration. Subscript

symbols S and B refer to the systemic arteries and the brain, subscripts CO2 and O2 refer to

the two main gases. Metabolic rates are denoted by M and diffusion coefficients by D.

Finally, the respiratory model depends on flows qi predicted by the cardiovascular model.
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Systemic tissue

Brain tissue

In the above equations, DT is the diffusion capacity for a gas, VTtis,g is the effective tissue

volume for a gas, VTcap is the effective systemic capillary blood volume for blood flow

through a tissue for a gas (approximately 1% of VT).

Inspiration
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Expiration

Note, instantaneous airflow is obtained from integrating the air flow velocity data as

described in equation (17). Inputs to the respiratory model include airflow velocity, average

systemic, pulmonary, and cerebral blood flow obtained by solving the cardiovascular model.

For the coupled model, these flows are computed at any instant in time. Initial values, and

nominal and optimized parameter values for the respiratory model are given in the

Appendix, Table 4.
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Figure 1.
Compartmental model of the cardiovascular and respiratory circulations. Systemic (subscript

S), brain (subscript B), and pulmonary (subscript P) arteries (subscript a) and veins

(subscript ν); Vessels carrying oxygenated blood (systemic arteries and pulmonary veins)

are red, while vessels carrying deoxygenated blood (systemic veins and pulmonary arteries)

are blue. All vascular compartments represent a group of vessels with similar pressure p

[mmHg]. Each vascular compartment is characterized by its volume V [ml] and compliance

C [ml/mmHg]. The left (red, subscript lν) and right (blue, subscript rν) ventricles generate

pulsatile pressure plν, prν [mmHg]. These two compartments are defined using time-varying

elastance E [mmHg/ml]. Flow q [ml/s] between compartments are opposed by constant

resistances [mmHg s/ml]. Gases diffuse from major arteries into the capillaries at a rate D.

Tissue compartments (yellow) account for exchange of gases (O2 and CO2) with capillaries.

Each vascular bed is characterized by a metabolic rate M [mlstpd/s], and the gas

concentrations in the tissues and capillaries are denoted by c [mlstpd/ml]. The lungs are

represented by three dead space compartments each predicting the partial pressure of the

gases pDi,g [mmHg]. The partial pressure of the gases in the inspired air pI,g, and the CO2

expiratory partial pressure pexp,CO2 are marked separately.
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Figure 2.
Input to the model from experimental data. Top row: Heart rate (left panel) and inspired

partial pressure of CO2 (marked with a red line on the right panel). These values are

obtained by fitting a smooth spline through minimum values of expiratory CO2 partial

pressures. Bottom row: Inspired airflow (left panel) and alveolar volume (right panel).
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Figure 3.
Model analysis flow chart.
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Figure 4.
Dynamics of arterial blood pressure pSa (left) and tissue concentration of CO2 (right) during

Eucapnia. Note, the cardiovasculatory model settles at steady state oscillations within the

first 10 seconds, while the respiratory model takes more than an hour to equilibrate.
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Figure 5.
Ranked sensitivities for the cardiovascular and respiratory models. The top graph shows

ranking for the cardiovascular model and bottom graph shows ranking for the respiratory

model. For both graphs, blue stars denote sensitivities computed using the initial (nominal)

parameter values, and the red stars denote sensitivities computed using the optimized

parameters. Note, that the y-axis is a log scale.
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Figure 6.
Steady state simulation results from the cardiovascular model. Graphs show arterial pressure

and cerebral blood flow velocity for the full dataset, and a zoom for 50 ≤t ≤ 60 seconds. The

bottom panel shows computed and expected ejection fraction EF (set at 26%).
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Figure 7.
Steady state simulation results from the respiratory model. The graphs show expiratory CO2

partial pressure as a function of time. The left graph shows results over the complete time-

series, while the right graph show a zoom for 50 ≤ t ≤ 100 seconds.
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Figure 8.
Autoregulation of cerebral vascular resistance RB. The red horizontal line shows the value

obtained during eucapnia, while the time-varying blue line shows dynamics obtained during

hypercapnia.
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Figure 9.
Simulation results from the coupled model with controls. Panels A and B show the entire

time-series predicting cerebral blood flow velocity and expiratory CO2 partial pressure.

Panels C-F show zoomed snapshots of cerebral blood flow velocity during normal breathing

C, during the transition D and E, and during hypercapnia F. Panels G-I show zoomed

snapshots of expiratory CO2. G shows dynamics during normal breathing, H during the

transition, I during hypercapnia. For all graphs the blue line denotes computed results, while

the red line mark the associated experimental data.
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Table 1

Nominal and optimal parameter values for the cardiovascular model (top) and the respiratory model (bottom).

Parameter Physiologic description Nominal value Optimal value

TM,f Time to end-systole 0.35 0.137

ED,r [mmHg/ml] Right ventricular diastolic elastance 0.0667 0.0167

ES,l [mmHg/ml] Left ventricular systemic elastance 0.849 0.507

RS [mmHg s/ml] Systemic resistance 1.08 0.934

RB [mmHg s/ml] Cerebral resistance 4.25 2.69

CSa [ml/mmHg] Systemic arterial compliance 2.40 0.989

CBa [ml/mmHg] Cerebral arterial compliance 0.358 3.18

MCO2 [mlstpd/s] Body CO2 tissue metabolism 4.22 4.89

MB,CO2 [mlstpd/s] Brain CO2 tissue metabolism 1.04 1.24

VBtis,O2 [mlstpd] Cerebral tissue CO2 volume 900 855

VD [mlbtps] Total dead space volume 181 201
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Table 2

Typical (from literature) state changes in CHF for patient with an enlarged left ventricle.

State Value Source

Mean pPa [mmHg] increase [51]

Mean pPv [mmHg] increase [52, 53]

Mean pSa [mmHg] decrease or stable [54]

Mean pSv [mmHg] increase [53]

Mean plv [mmHg] steady to increase [55]

Mean pla [mmHg] increase [54]

Left ventricular end-diastolic pressure [mmHg] increase [55]

Left ventricular end-systolic pressure [mmHg] steady or increase [55]

Left ventricular end-diastolic volume [ml] increase [56, 54]

Left ventricular end-systolic volume [ml] increase [56, 54]

Left ventricular EF [ml] decrease [56, 57]

CO [mlmin] decrease [54]

SV [ml] decrease [54]

H [beat/min] increase [54, 57]

Systemic resistance [mmHg · s /ml] increase [53]

Fluid retention [ml] increase [53, 58]
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Table 3

Nominal parameters and initial conditions for the cardiovascular model. Top: auxiliary parameters, center:

model parametersl, bottom: initial values for ODE's.

Parameter Physiologic description Nominal value Reference

EDVl [ml] End-diastolic volume (left ventricle) 312 [27]

EDVr [ml] End-diastolic volume (right ventricle) 100 [23, 26]

EF Ejection fraction 0.26 meas

N SV [ml] Stroke volume EF · EDVl = 81.1 (19) [23, 26]

ESVl End-systolic volume (left ventricle) EDVl – SV = 231 (19) [23, 26]

ESVr End-systolic volume (right ventricle) EDVr – SV = 18.9 (19) [23, 26]

H̄ [bpm] Mean heart rate mean (Hd) = 62.5 meas

CO [l/min] Cardiac output SV · H̄ = 5.07 (21) [23, 26]

pl,sys [mmHg] Systemic left ventricular pressure max(psa
d ) = 120 meas

pr,sys [mmHg] Systemic right ventricular pressure 30 [23, 26]

pl,dia [mmHfg] Diastolic left ventricular pressure 3 [23, 26]

pr,dia [mmHg] Diastolic right ventricular pressure 6 [23, 26]

p̄Pa [mmHg] Mean pulmonary arterial pressure 20 [23, 26]

p̄Pv [mmHg] Mean pulmonary venous pressure 3.3 [23, 26]

p̄Sa [mmHg] Mean systemic arterial pressure mean(pSa
d ) = 79.5 meas

p̄Sv [mmHg] Mean systemic venous pressure 6.6 [23, 26]

p̄Ba [mmHg] Mean cerebral arterial pressure 0.99 p̄sa = 78.7 meas

p̄Bv [mmHg] Mean cerebral venous pressure 7 [23, 26]

q̄S [ml/s] Mean systemic flow 0.8 CO = 67.6 [23, 26]

q̄Ba, q̄B, q̄Bv [ml/s] Mean cerebral flow 0.2 CO = 16.6 [23, 26]

q̄Pa, q̄P, q̄Pv [ml/s] Mean pulm flow CO = 84.5 [23, 26]

Vt [ml] Total blood volume 5,408 (20) [32]

V̄
Sa [ml] Mean systemic arterial blood volume 0.1178 Vt = 637 [32]

V̄
Sv [ml] Mean systemic venous blood volume 0.6091 Vt = 3294 [32]

V̄
Ba [ml] Mean cerebral arterial blood volume 0.0237 Vt = 128 [32]

V̄
Bv [ml] Mean cerebral venous blood volume 0.0936 Vt = 521 [32]

V̄
Pa [ml] Mean pulmonary arterial blood volume 0.0288 Vt = 156 [32]

V̄
Pv [ml] Mean pulmonary venous blood volume 0.1243 Vt = 1672 [32]

TM,f Time to end-systole 0.35 [29]

TR,f Ventricular relaxation time TM,f/2 = 0.175 [29]

Vdl [ml] Zero left ventricular end-diastolic volume 90 [27]

Vdr [ml] Zero right ventricular end-diastolic volume 10 [12]

ED,l [mmHg/ml] Left ventricular diastolic elastance pl,dia/(EDVl – Vdl) = 0.0135 (18)
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Parameter Physiologic description Nominal value Reference

ED,r [mmHg/ml] Right ventricular diastolic elastance pr,dia/(EDVr – Vdr) = 0.0667 (18)

ES,l [mmHg/ml] Left ventricular systemic elastance pl,sys/(ESVl – Vdl) = 0.849 (18)

ES,r [mmHg/ml] Right ventricular systemic elastance pr,sys/(ESVr – Vdl) = 3.38 (18)

Ri,o [mmHg s/ml] Open i = mv, ao, tv, pv valve resistance 0.001 est

Ri,c [mmHg s/ml] Closed i = mv, ao, tv, pv valve resistance 20 est

RS [mmHg s/ml] Systemic resistance (p̄Sa – p̄Sv)/q̄S = 1.08 (22)

RB [mmHg s/ml] Cerebral resistance (p̄Ba – p̄Bv)/q̄B = 4.25 (22)

RBa [mmHg s/ml] Cerebral arterial resistance (p̄Sa – p̄Ba)/q̄Ba = 0.0471 (22)

RBv [mmHg s/ml] Cerebral venous resistance (p̄Bv – p̄Sv)/q̄Bv = 0.0237 (22)

RP [mmHg s/ml] Pulmonary resistance (p̄Pa – p̄Pv)/q̄P = 0.198 (22)

CSa [ml/mmHg] Systemic arterial compliance 0.3 VS̄a/p̄Sa = 2.40 (22) [32]

CSv [ml/mmHg] Systemic venous compliance 0.08 V̄
Sv/p̄Sv = 39.9 (22) [32]

CBa [ml/mmHg] Cerebral arterial compliance 0.22 VB̄a/p̄Ba = 0.359 (22) [32]

CBv [ml/mmHg] Cerebral venous compliance 0.08 V̄
Bv/p̄Bv = 5.95 (22) [32]

CPa [ml/mmHg] Pulmonary arterial compliance 0.58 V̄
Pa/p̄Pa = 4.52 (22) [32]

CPv [ml/mmHg] Pulmonary venous compliance 0.11 V̄
Pv/p̄Pv = 22.4 (22) [32]

κ [cm2] Brain-cerebral flow scaling 0.3 est

pPa
I

 [mmHg]
Initial pulmonary arterial pressure 20 [23, 26]

pPv
I

 [mmHg]
Initial pulmonary venous pressure 3.3 [23, 26]

pSv
I

 [mmHg]
Initial systemic arterial pressure mean(pSa

d ) = 79.5 meas

pBa
I

 [mmHg]
Initial systemic venous pressure 6.6 [23, 26]

pBv
I

 [mmHg]
Initial cerebral arterial pressure 0.99 psa

I = 78.7 meas

pBv
I

 [mmHg]
Initial cerebral venous pressure 7 [23, 26]

V lv
I

 [ml]
Initial left ventricular volume EDVl = 312 [27]

Vrv
I

 [ml]
Initial right ventricular volume EDVr = 100 [23, 26]
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Table 4

Nominal parameters and initial conditions for the respiratory model. Top: auxiliary parameters, center: model

parameters, bottom: initial values for ODE's.

Parameter Physiologic description Nominal value or formula Reference

w [kg] Body weight 83.2 meas

MCO2 [mlstpd/s] Body CO2 tissue metabolism 0.85 MO2 = 4.42 [1, 36, 37]

MO2 [mlstpd/s] Body O2 tissue metabolism 5.2 [1, 36, 37]

VCO2 [mlstpd] Body CO2 tissue volume 15,000 [1, 36, 37]

VO2 [mlstpd] Body CO2 tissue volume 6,000 [1, 36, 37]

MB,CO2 [mlstpd/s] Brain CO2 tissue metabolism 0.2 MO2 = 1.04 [1, 36, 37]

MB,O2 [mlstpd/s] Brain O2 tissue metabolism MB,CO2 = 1.04 [1, 36, 37]

MS,CO2 [mlstpd/s] Systemic CO2 tissue metabolism MCO2 – MB, CO2 = 3.38 [1, 36, 37]

MS, O2 [mlstpd/s] Systemic O2 tissue metabolism MO2 – MB, O2 = 4.16 [1, 36, 37]

VBtis, CO2 [mlstpd] Cerebral tissue CO2 volume 900 [1, 36, 37]

VBtis,O2 [mlstpd] Cerebral tissue O2 volume 1,000 [1, 36, 37]

VStis,CO2 [mlstpd] Systemic tissue CO2 volume VCO2 – VBtis,CO2 = 14,100 [1, 36, 37]

VStis,O2 [mlstpd] Systemic tissue O2 volume VO2 – VBtis,CO2 = 5,000 [1, 36, 37]

VBcap,CO2 [mlstpd] Cerebral capillary CO2 volume fV,cap VBtis,CO2 = 9 [21]

VScap,CO2 [mlstpd] Systemic capillary CO2 volume fV,cap VStis,CO2 = 141 est [21]

VBcap,O2 [mlstpd] Cerebral capillary O2 volume fV,cap VBtis,O2 = 10 [21]

VScap,O2 [mlstpd] Systemic capillary O2 volume fV,cap VStis,O2 = 50 est [21]

VD [mlbtps] Total dead space volume 181 [38, 36, 37]

KO2 [mlstpd/ml] O2 dissociation coefficient 0.200 [1, 36, 37]

kO2 [mmHg–1] O2 dissociation coefficient 0.046 [1, 36, 37]

KCO2 [mlstpd /mmHg/ml] CO2 dissociation coefficient 0.0065 [1, 36, 37]

kCO2 [mlstpd/ml] CO2 dissociation coefficient 0.244 [1, 36, 37]

K̃
O2 [mlstpd /mmHg/ml] O2 linearized dissociation coefficient 0.0025 [1, 36, 37]

DT,CO2 [ml/s] CO2 diffusion coefficient 9/60 w/KCO2 = 1899 [21]

DT,O2 [ml/s] O2 diffusion coefficient 9/60 w/K̃
O2 = 4938 [21]

fV,cap [N.D.] Tissue-capillary volume fraction 0.01 [21]

pD1,CO2

I
 [mmHg]

Initial CO2 partial pressure dead space 1 5 [37, 38]

pD1,O2

I
 [mmHg]

Initial O2 partial pressure dead space 1 159 [37, 38]

pD2,CO2

I
 [mmHg]

Initial CO2 partial pressure dead space 2 6 [37, 38]
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Parameter Physiologic description Nominal value or formula Reference

pD2,O2

I
 [mmHg]

Initial O2 partial pressure dead space 2 158 [37, 38]

pD3,CO2

I
 [mmHg]

Initial CO2 partial pressure dead space 3 7 [37, 38]

pD3,O2

I
 [mmHg]

Initial O2 partial pressure sdead space 3 157 [37, 38]

pa,CO2

I
 [mmHg]

Initial systemic arterial CO2 partial pressure 40 [39]

pa,O2

I
 [mmHg]

Initial systemic arterial O2 partial pressure 100 [40]

cStis,CO2

I
 [mlstpd/ml]

Initial systemic tissue CO2 concentration 0.543 [40]

cStis,O2

I
 [mlstpd/ml]

Initial systemic tissue MO2 concentration 0.128 [40]

cBtis,CO2

I
 [mlstpd/ml]

Initial brain tissue CO2 concentration 0.569 [37, 38]

cBtis,O2

I
 [mlstpd/ml]

Initial brain tissue O2 concentration 0.112 [37, 38]

cScap,CO2

I
 [mlstpd/ml]

Initial systemic capillary CO2 concentration cStis,CO2 – MS,CO2 /DT,CO2 = 0.541 (23)

cScap,O2

I
 [mlstpd/ml]

Initial systemic capillary O2 concentration cStis,O2 – MS,O2 /DT,O2 = 0.127 (23)

cBcap,CO2

I
 [mlstpd/ml]

Initial cerebral capillary CO2 concentration cBtis,CO2 – MB,CO2 /DT,CO2 = 0.568 (23)

cBcap,O2

I
 [mlstpd/ml]

Initial cerebral capillary O2 concentration cBtis,O2 – MB,O2 /DT,O2 = 0.111 (23)
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