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Abstract

This work studies the problem of privacy-preserving classification – namely, learning a classifier

from sensitive data while preserving the privacy of individuals in the training set. In particular, the

learning algorithm is required in this problem to guarantee differential privacy, a very strong

notion of privacy that has gained significant attention in recent years.

A natural question to ask is: what is the sample requirement of a learning algorithm that

guarantees a certain level of privacy and accuracy? We address this question in the context of

learning with infinite hypothesis classes when the data is drawn from a continuous distribution.

We first show that even for very simple hypothesis classes, any algorithm that uses a finite number

of examples and guarantees differential privacy must fail to return an accurate classifier for at least

some unlabeled data distributions. This result is unlike the case with either finite hypothesis

classes or discrete data domains, in which distribution-free private learning is possible, as

previously shown by Kasiviswanathan et al. (2008).

We then consider two approaches to differentially private learning that get around this lower

bound. The first approach is to use prior knowledge about the unlabeled data distribution in the

form of a reference distribution  chosen independently of the sensitive data. Given such a

reference , we provide an upper bound on the sample requirement that depends (among other

things) on a measure of closeness between  and the unlabeled data distribution. Our upper bound

applies to the non-realizable as well as the realizable case. The second approach is to relax the

privacy requirement, by requiring only label-privacy – namely, that the only labels (and not the

unlabeled parts of the examples) be considered sensitive information. An upper bound on the

sample requirement of learning with label privacy was shown by Chaudhuri et al. (2006); in this

work, we show a lower bound.
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1. Introduction

As increasing amounts of personal data is collected, stored and mined by companies and

government agencies, the question of how to learn from sensitive datasets while still

maintaining the privacy of individuals in the data has become very important. Over the last

few years, the notion of differential privacy (Dwork et al., 2006) has received a significant

amount of attention, and has become the de facto standard for privacy-preserving

computation. In this paper, we study the problem of learning a classifier from a dataset,

while simultaneously guaranteeing differential privacy of the training data.

The key issue in differentially-private computation is that given a certain amount of

resources, there is usually a tradeoff between privacy and utility. In classification, a natural

measure of utility is the classification accuracy, and data is a scarce resource. Thus, a key

question in differentially-private learning is: how many examples does a learning algorithm

need to guarantee a certain level of privacy and accuracy? In this paper, we study this

question from an information-theoretic perspective – namely, we are concerned with the

sample complexity, and not the computational complexity of the learner.

This question was first considered by Kasiviswanathan et al. (2008), who studied the case of

finite hypothesis classes, as well as the case of discrete data domains. They showed that in

these two cases, one can obtain any given privacy guarantee and generalization error,

regardless of the unlabeled data distribution with a modest increase in the worst-case sample

requirement.

In this paper, we consider the sample complexity of differentially private learning in the

context of infinite hypothesis classes on continuous data distributions. This is a very general

class of learning problems, and includes many popular machine-learning tasks such as

learning linear classifiers when the examples have real-valued features, which cannot be

modeled by finite hypothesis classes or hypothesis classes over discrete data domains.

Surprisingly, we show that the results of Kasiviswanathan et al. (2008) do not extend to

infinite hypothesis classes on continuous data distributions. As an example, consider the

class of thresholds on the unit interval. This simple learning problem has VC dimension 1,

and thus for all unlabeled data distributions, it can be learnt (non-privately) with error ε

given at most  examples1. We show that even for this very simple hypothesis class, any

algorithm that uses a bounded number of examples and guarantees differential privacy must

fail to return an accurate classifier for at least some unlabeled data distributions.

The key intuition behind our proof is that if most of the unlabeled data is concentrated in a

small region around the best classifier, then, even slightly perturbing the best classifier will

result in a large classification error. As the process of ensuring differential privacy

necessarily involves some perturbation – see, for example, Dwork et al. (2006), unless the

algorithm has some prior public knowledge about the data distribution, the number of

1Here the Õ notation hides factors logarithmic in 1/ε
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samples required to learn privately grows with growing concentration of the data around the

best classifier.

How can we then learn privately in infinite hypothesis classes over continuous data

distributions? One approach is to use some prior information about the data distribution that

is known independently of the sensitive data. Another approach is to relax the privacy

requirements. In this paper, we examine both approaches.

First, we consider the case when the learner has access to some prior information on the

unlabeled data. In particular, the learner knows a reference distribution  that is close to the

unlabeled data distribution. Similar assumptions are common in Bayesian learning, and

PAC-Bayes style bounds have also been studied in the learning theory literature, for

example, by McAllester (1998).

Under this assumption, we provide an algorithm for learning with α-privacy, excess

generalization error ε, and confidence 1 − δ, using  samples. Here α

is a privacy parameter (where, lower α implies a stronger privacy guarantee),  is the

reference distribution, d  is the doubling dimension of its disagreement metric (Bshouty et

al., 2009), and κ is a smoothness parameter that we define. The quantity d  measures the

complexity of the hypothesis class with respect to  (see (Bshouty et al., 2009) for a

discussion), and we assume that it is finite. The smoothness parameter measures how close

the unlabeled data distribution is to  (smaller κ means closer), and is motivated by notions

of closeness used in Dasgupta (2005) and Freund et al. (1997). Thus the sample requirement

of our algorithm grows with increasing distance between  and the unlabeled data

distribution. Our algorithm works in the non-realizable case, that is, when no hypothesis in

the class has zero error; using standard techniques, a slightly better bound of 

can be obtained in the realizable setting. However, like the results of Kasiviswanathan et al.

(2008), our algorithm is computationally inefficient in general.

The main difficulty in reducing the differentially-private learning algorithms of

Kasiviswanathan et al. (2008) to infinite hypothesis classes on continuous data distributions

is in finding a suitable finite cover of the class with respect to the unlabeled data. This issue

is specific to our particular problem: for non-private learning, a finite cover can always be

computed based on the (sensitive) data, and for finite hypothesis classes, the entire class is a

cover. The main insight behind our upper bound is that when the unlabeled distribution  is

close to the reference distribution , then a cover of  is also a possibly coarser cover of .

Since one can compute a private cover of  independent of the sensitive data, we simply

compute a finer cover of , and learn over this fine cover using standard techniques such as

the exponential mechanism (McSherry and Talwar, 2007).

Next we relax the privacy requirement by requiring only label privacy. In other words, we

assume that the unlabeled part of the examples are not sensitive, and the only private

information is the labels. This setting was considered by Chaudhuri et al. (2006). An

example when this may be applicable is in predicting income from public demographic

information. Here, while the label (income) is private, the demographic information of

individuals, such as education, gender, and age may be public.
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In this case, we provide lower bounds to characterize the sample requirement of label-

private learning. We show two results, based on the value of α and ε. For small ε and α (that

is, for high privacy and accuracy) we show that any learning algorithm for a given

hypothesis class that guarantees α-label privacy and ε accuracy necessarily requires at least

 examples. Here d is the doubling dimension of the disagreement metric at a certain

scale, and is a measure of the complexity of the hypothesis class on the unlabeled data

distribution. This bound holds when the hypothesis class has finite VC dimension. For larger

α and ε, our bounds are weaker but more general; we show a lower bound of  on the

sample requirement that holds for any α and ε, and do not require the VC dimension of the

hypothesis class to be finite. Here d′ is the doubling dimension of the disagreement metric at

a certain scale.

The main idea behind our stronger label privacy lower bounds is to show that differentially

private learning algorithms necessarily perform poorly when there is a large set of

hypotheses such that every pair in the set labels approximately 1/α examples differently. We

then show that such large sets can be constructed when the doubling dimension of the

disagreement metric of the hypothesis class with respect to the data distribution is high.

How do these results fit into the context of non-private learning? For non-private learning,

sample requirement bounds based on the doubling dimension of the disagreement metric has

been extensively studied by (Bshouty et al., 2009); in the realizable case, they show an

upper bound of  for learning with accuracy ε, where d̄ is again the doubling dimension

of the disagreement metric at a certain scale. These bounds are incomparable to ours in

general, as the doubling dimensions in the two bounds are with respect to different scales;

however, we can compare them for hypothesis classes and data distributions for which the

doubling dimension of the disagreement metric is equal at all scales. An example is learning

half spaces with respect to the uniform distribution on the sphere. For such problems, on the

upper bound side, we need a factor of  times more examples to learn with α-

privacy. On the other hand, our lower bounds indicate that for small α and ε, even if we only

want α-label privacy, the sample requirement can be as much as a factor of  more than

the upper bound for non-private learning.

Finally, one may be tempted to think that we can always discretize a data domain or a

hypothesis class, and therefore in practice we are likely to only learn finite hypothesis

classes or over discrete data domains. However, there are several issues with such

discretization. First, if we discretize either the hypothesis class or the data, then the sample

requirement of differentially private learning algorithms will grow as the discretization

grows finer, instead of depending on intrinsic properties of the problem. Second, as our α-

privacy lower bound example shows, indiscriminate discretization without prior knowledge

of the data can drastically degrade the performance of the best classifier in a class. Finally,

infinite hypothesis classes and continuous data domains provide a natural abstraction for

designing many machine learning algorithms, such as those based on convex optimization or

differential geometry. Understanding the limitations of differentially private learning on

such hypothesis classes and data domains is useful in designing differentially private

approximations to these algorithms.
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The rest of our paper is organized as follows. In Section 2, we define some preliminary

notation, and explain our privacy model. In Section 3, we present our α-privacy lower

bound. Our α-privacy upper bound is provided in Section 4. In Section 5, we provide some

lower bounds on the sample requirement of learning with α-label privacy. Finally, the proofs

of most of our results are in the appendix.

1.1. Related work

The work most related to ours is Kasiviswanathan et al. (2008), Blum et al. (2008) and

Beimel et al. (2010), each of which deals with either finite hypothesis classes or discrete

data domains.

Kasiviswanathan et al. (2008) initiated the study of the sample requirement of differentially-

private learning. They provided a (computationally inefficient) α-private algorithm that

learns any finite hypothesis class  with error at most ε using at most  examples in

the realizable case. For the non-realizable case, they provided an algorithm with a sample

requirement of . Moreover, using a result from Blum et al. (2008), they

provided a computationally inefficient α-private algorithm that learns a hypothesis class

with VC-dimension V and data dimension n with at most  examples, provided the

data domain is {−1, 1}n. The latter result does not apply when the data is drawn from a

continuous distribution; moreover, their results cannot be directly extended to the

continuous case.

The first work to study lower bounds on the sample requirement of differentially private

learning was Beimel et al. (2010). They show that any α-private algorithm that selects a

hypothesis from a specific set Cε requires at least Ω̃(log(|Cε|)/α) samples to achieve error ε.

Here Cε is an ε-cover as well as an ε-packing of the hypothesis class  with respect to every

distribution over the discrete data domain. They also show an upper bound of Õ(log(|

Cε|)/(αε)). Such a cover Cε does not exist for continuous data domains; as a result their

upper bounds do not apply to our setting. Moreover, unlike our lower bounds, their lower

bound only applies to algorithms of a specific form (namely, those that output a hypothesis

in Cε), and it also does not apply when we only require the labels to be private.

For the setting of label privacy, Chaudhuri et al. (2006) show an upper bound for PAC-

learning in terms of the VC dimension of the hypothesis class. We show a result very similar

to theirs in the appendix for completeness, and we show lower bounds for learning with

label-privacy which indicate that their bounds are almost tight, in terms of the dependence

on α and ε.

Zhou et al. (2009) study some issues in defining differential privacy when dealing with

continuous outcomes; however, they do not consider the question of learning classifiers on

such data.

Finally, a lot of our work uses tools from the theory of generalization bounds. In particular,

some of our upper and lower bounds are inspired by Bshouty et al. (2009), which bounds the
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sample complexity of (non-private) classification in terms of the doubling dimension of the

disagreement metric.

Other related work on privacy—The issue of privacy in data analysis of sensitive

information has long been a source of problems for curators of such data, and much of this is

due to the realization that many simple and intuitive mechanisms designed to protect privacy

are simply ineffective. For instance, the work of Narayanan and Shmatikov (2008) showed

that an anonymized dataset released by Netflix revealed enough information so that an

adversary, by knowing just a few of the movies rated by a particular user, would be able to

uniquely identify such a user in the data set and determine all of his movie ratings. Similar

attacks have been demonstrated on private data in other domains as well including social

networks (Backstrom et al., 2007) and search engine query logs (Jones et al., 2007). Even

releasing coarse statistics without proper privacy safeguards can be problematic. This was

recently shown by Wang et al. (2009) in the context of genetic data, where a correlation

matrix of genetic markers compiled from a group of individuals contained enough clues to

uniquely pinpoint individuals in the dataset and learn of their private information, such as

whether or not they had certain diseases.

In order to reason about privacy guarantees (or lack thereof), we need a formal definition of

what it means to preserve privacy. In our work, we adopt the notion of differential privacy

due to Dwork et al. (2006), which has over the last few years gained much popularity.

Differential privacy is known to be a very strong notion of privacy: it has strong semantic

guarantees (Kasiviswanathan and Smith, 2008) and is resistant to attacks that many earlier

privacy definitions are susceptible to (Ganta et al., 2008b).

There has been a significant amount of work on differential privacy applied to a wide variety

of data analysis tasks (Dwork et al., 2006; Chaudhuri and Mishra, 2006; Nissim et al., 2007;

Barak et al., 2007; McSherry and Mironov, 2009). Some work that is relevant to ours

include Blum et al. (2008), which provides a general method for publishing datasets on

discrete data domains while preserving differential privacy so that the answers to queries

from a function class with bounded VC dimension will be approximately preserved after the

applying the sanitization procedure. More work on this line includes Roth (2010) and Gupta

et al. (2011). A number of learning algorithms have also been suitably modified to guarantee

differential privacy. For instance, both the classes of statistical query algorithms and the

class of methods based on L2-regularized empirical risk minimization with certain types of

convex losses can be made differentially private (Blum et al., 2005; Chaudhuri et al., 2011).

There has also been some prior work on providing lower bounds on the loss of accuracy that

any differentially private mechanism would suffer; much of this work is in the context of

releasing answers to some a of queries made on a database of n individuals. The first such

work is by (Blum et al., 2008), which shows that no differentially private mechanism can

hope to release with a certain amount of accuracy the answer to a number of median queries

when the data lies on a real line. This result is similar in spirit to our Theorem 5, but applies

to a much harder problem, namely data release. Other relevant work includes (Hardt and

Talwar, 2010), which uses a packing argument similar to ours to provide a lower bound on
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the amount of noise any differentially private mechanism needs to add to the answer to k

linear queries on a database of n people.

There has also been a significant amount of prior work on privacy-preserving data mining

(Agrawal and Srikant, 2000; Evfimievski et al., 2003; Sweeney, 2002; Machanavajjhala et

al., 2006), which spans several communities and uses privacy models other than differential

privacy. Many of the models used have been shown to be susceptible to various attacks,

such as composition attacks, where the adversary has some amount of prior knowledge

(Ganta et al., 2008a). An alternative line of privacy work is in the Secure Multiparty

Computation setting due to Yao (1982), where the sensitive data is split across several

adversarial databases, and the goal is to compute a function on the union of these databases.

This is in contrast with our setting, where a single centralized algorithm can access the entire

dataset.

2. Preliminaries

2.1. Privacy model

We use the differential privacy model of Dwork et al. (2006). In this model, a private

database DB ⊆  consists of m sensitive entries from a domain ; each entry in DB is a

record about an individual (e.g., their medical history) that one wishes to keep private.

The database DB is accessed by users through a sanitizer M. The sanitizer, a randomized

algorithm, is said to preserve differential privacy if the value of any one individual in the

database does not significantly alter the output distribution of M.

Definition 1—A randomized mechanism M guarantees α-differential privacy if, for all

databases DB1 and DB2 that differ by the value of at most one individual, and for every set

G of possible outputs of M,

We emphasize that the probability in the definition above is only with respect to the internal

randomization of the algorithm; it is independent of all other random sources, including any

that may have generated the values of the input database.

Differential privacy is a strong notion of privacy (Dwork et al., 2006; Kasiviswanathan and

Smith, 2008; Ganta et al., 2008b). In particular, if a sanitizer M ensures α-differential

privacy, then, an adversary who knows the private values of all the individuals in the

database except for one and has arbitrary prior knowledge about the value of the last

individual, cannot gain additional confidence about the private value of the last individual

by observing the output of a differentially private sanitizer. The level of privacy is controlled

by α, where a lower value of α implies a stronger guarantee of privacy.
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2.2. Learning model

We consider a standard probabilistic learning model for binary classification. Let  be a

distribution over  × {±1}, where  is the data domain and {±1} are the possible labels. We

use  to denote the marginal of  over the data domain . The classification error of a

hypothesis h:  → {±1} with respect to a data distibution  is

We denote by S ~  an i.i.d. draw of m labeled examples S = {(x1, y1), …, (xm, ym)} ⊆  ×

{±1} from the distribution . This process can equivalently be seen as drawing an unlabeled

sample X:= {x1, …, xm} from the marginal , and then, for each x ∈ X, drawing the

corresponding label y from the induced conditional distribution.

A learning algorithm is given as input a set of m labeled examples S ~ , a target accuracy

parameter ε ∈ (0, 1), and target confidence parameter δ ∈ (0, 1). Its goal is to return a

hypothesis h:  → {±1} such that its excess generalization error with respect to a specified

hypothesis class 

is at most ε with probability at least 1 − δ over the random choice of the sample S ~ , as

well as any internal randomness of the algorithm.

We also occasionally adopt the realizable assumption (with respect to ). The realizable

assumption states that there exists some h* ∈  such that Pr(x,y)~ [h*(x) ≠ y] = 0. In this

case, the excess generalization error of a hypothesis h is simply its classification error.

Without the realizable assumption, there may be no classifier in the hypothesis class  with

zero classification error, and we refer to this as the non-realizable case.

2.3. Privacy-preserving classification

In privacy-preserving classification, we assume that the database is a training dataset drawn

in an i.i.d manner from some data distribution , and that the sanitization mechanism is a

learning algorithm that outputs a classifier based on the training data. In this paper, we

consider two possible privacy requirements on our learning algorithms.

Definition 2—A randomized learning algorithm  guarantees α-label privacy (  is α-

label private) if, for any two datasets S1 = {(x1, y1), …, (xm−1, ym−1), (xm, ym)} and

 differing in at most one label , and any set of

outputs G of ,

Chaudhuri and Hsu Page 8

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2014 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Definition 3—A randomized learning algorithm  guarantees α-privacy (  is α-private)

if, for any two datasets S1 = {(x1, y1), …, (xm−1, ym−1), (xm, ym)} and

 differing in at most one example ( ), and

any set of outputs G of ,

Note that if the input dataset S is a random variable, then for any value S′ ⊆  × {±1} in the

range of S, the conditional probability distribution of (S) | S = S′ is determined only by the

algorithm  and the value S′; it is independent of the distribution of the random variable S.

Therefore, for instance,

for any S′ ⊆  × {±1} and any set of outputs G.

The difference between the two notions of privacy is that for α-label privacy, the two

databases can differ only in the label of one example; whereas for α-privacy, the two

databases differ can differ in a complete example (both labeled and unlabeled parts). Thus,

α-label privacy only ensures the privacy of the label component of each example; it makes

no guarantees about the unlabeled part. If a classification algorithm guarantees α-privacy,

then it also guarantees α-label privacy. Thus α-label privacy is a weaker notion of privacy

than α-privacy.

The notion of label privacy was also considered by Chaudhuri et al. (2006), who provided an

algorithm for learning with label privacy. For strict privacy, one would require the learning

algorithm to guarantee α-privacy; however, label privacy may also be an useful notion. For

example, if the data x represents public demographic information (e.g., age, zip code,

education), while the label y represents income level, an individual may consider the label to

be private but may not mind if others can infer her demographic information (which could

be relatively public already) by her inclusion in the database.

Thus, the goal of a α-private (resp. α-label private) learning algorithm is as follows. Given a

dataset S of size m, a privacy parameter α, a target accuracy ε, and a target confidence

parameter δ:

1. guarantee α-privacy (resp. α-label privacy) of the training dataset S;

2. with probability at least 1 − δ over both the random choice of S ~  and the

internal randomness of the algorithm, return a hypothesis h:  → {±1} with excess

generalization error
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2.4. Additional definitions and notation

We now present some additional essential definitions and notation.

Metric spaces, doubling dimension, covers, and packings—A metric space ( ,

ρ) is a tuple, where  is a set of elements, and ρ is a distance function from  ×  to {0} ∪

ℝ+. Let ( , ρ) be any arbitrary metric space. For any z ∈  and r > 0, let B(z, r) = {z′ ∈ :

ρ(z, z′) ≤ r} denote the ball centered at z of radius r.

The diameter of ( , ρ) is sup{ρ(z, z′): z, z′ ∈ }, the longest distance in the space. An ε-

cover of ( , ρ) is a set C ⊆  such that for all z ∈ , there exists some z′ ∈ C such that ρ(z,

z′) ≤ ε. An ε-packing of ( , ρ) is a set P ⊆  such that ρ(z, z′) > ε for all distinct z, z′ ∈ P.

Let  ( , ρ) denote the size of the smallest ε-cover of ( , ρ).

We define the doubling dimension of ( , ρ) at scale ε, denoted as ddimε( , ρ), as the

smallest number d such that each ball B(z, ε) ⊆  of radius ε can be covered by at most ⌊2d⌋

balls of radius ε/2, i.e. there exists z1, …, z⌊2d⌋ ∈  such that B(z, ε) ⊆ B(z1, ε/2) ∪ … ∪

B(z⌊2d⌋, ε/2). Notice that ddimε( , ρ) may increase or decrease with ε. The doubling

dimension of ( , ρ) is sup{ddimr( , ρ): r > 0}.

Disagreement metrics—The disagreement metric of a hypothesis class  with respect to

a data distribution  over  is the metric ( , ρ ), where ρ  is the following distance

function:

The empirical disagreement metric of a hypothesis class  with respect to a data

distribution  over  is the metric ( , ρX), where ρX is the following distance function:

The disagreement metric (or empirical disagreement metric) is the proportion of unlabeled

examples on which h and h′ disagree with respect to  (or the uniform distribution over X).

We use the notation B  (h, r) to denote the ball centered at h of radius r with respect to ρ ,

and BX(h, r) to denote the ball centered at h of radius r with respect to ρX.

Datasets and empirical error—For an unlabeled dataset X ⊆  and a hypothesis h: 

→ {±1}, we denote by SX,h:= {(x, h(x)): x ∈ X} the labeled dataset induced by labeling X

with h. The empirical error of a hypothesis h:  → {±1} with respect to a labeled dataset S

⊆  × {±1} is err(h, S):= (1/|S|)Σ(x,y) ∈S  [h(x) ≠ y] the average number of mistakes that h

makes on S; note that ρX(h, SX,h′) = err(h, SX,h′). Finally, we informally use the Õ(·) notation

to hide log(1/δ) factors, as well as factors that are logarithmic in those that do appear.
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3. Lower bounds for learning with α-privacy

In this section, we show a lower bound on the sample requirement of learning with α-

privacy. In particular, we show an example that illustrates that when the data is drawn from

a continuous distribution, for any M, all α-private algorithms that are supplied with at most

M examples fail to output a good classifier for at least one unlabeled data distribution.

Our example hypothesis class is the class of thresholds on [0, 1]. This simple class has VC

dimension 1, and thus can be learnt non-privately with classification error ε given only

Õ(1/ε) examples, regardless of the unlabeled data distribution. However, Theorem 5 shows

that even in the realizable case, for every α-private algorithm that is given a bounded

number of examples, there is at least one unlabeled data distribution on which the learning

algorithm produces a classifier with error , with probability at least 1/2 over its own

random coins.

The key intuition behind our example is that if most of the unlabeled data is concentrated in

a small region around the best classifier, then, even slightly perturbing the best classifier will

result in a large classification error. As the process of ensuring differential privacy

necessarily involves some perturbation, unless the algorithm has some prior public

knowledge about the data distribution, the number of samples required to learn privately

grows with growing concentration of the data around the best classifier. As illustrated by our

theorem, this problem is not alleviated if the support of the unlabeled distribution is known;

even if the data distribution has large support, a large fraction of the data can still lie in a

region close to the best classifier.

Before we describe our example in detail, we first need a definition.

Definition 4—The class of thresholds on the unit interval is the class of functions hw: [0, 1]

→ {−1, 1} such that:

Theorem 5—Let M > 2 be any number, and let  be the class of thresholds on the unit

interval [0, 1]. For any α-private algorithm A that outputs a hypothesis h ∈ , there exists a

distribution  on labeled examples with the following properties:

1. There exists a threshold h* ∈  with classification error 0 with respect to .

2. For all samples S of size m ≤ M drawn from , with probability at least 1/2 over the

random coins of A, the hypothesis output by A(S) has classification error at least 

with respect to .

3. The marginal  of  over the unlabeled data has support [0, 1].
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Proof—Let , and let  denote the uniform distribution over [0, 1]. Let Z = {η,

2η, …, Kη}, where K = ⌊1/η⌋ − 1. We let Gz = [z − η/3, z + η/3] for z ∈ Z, and let  ⊂  be

the subset of thresholds:  = {hτ|τ ∈ Gz}. We note that Gz ⊆ [0, 1] for all z ∈ Z.

For each z ∈ Z, we define a distribution  over labeled examples as follows. First, we

describe the marginal  of  over the unlabeled data. A sample from  is drawn as

follows. With probability , x is drawn from ; with probability , it is drawn from

uniformly from Gz. Now, an unlabeled example x drawn from  is labeled positive if x ≥ z,

and negative otherwise. We observe that for every such distribution , there exists a

threshold, namely, hz that has classification error 0; in addition, the support of  is [0, 1].

Moreover, there are  such distributions  in all, and .

We say that an α-private algorithm A succeeds on a sample S with respect to a distribution 

if with probability  over the random coins of A, the hypothesis output by A(S) has

classification error  over .

Suppose for the sake of contradiction that there exists an α-private algorithm A* such that

for all distributions , there is at least one sample S of size ≤ M drawn from  such that A*

succeeds on S with respect to . Then, for all z ∈ Z, and for all , there exists a sample Sz of

size m ≤ M drawn from  such that A* succeeds on Sz with respect to .

By construction, the Gz’s are disjoint, so

(1)

Furthermore, any Sz differs from Sz′ by at most m labeled examples, so because A* is α-

private, Lemma 22 that implies for any z′,

(2)

If A*(Sz′) lies outside , A*(Sz′) classifies at least 1/4 fraction of the examples from 

incorrectly, and thus A* cannot succeed on Sz′ with respect to . Therefore, by the

assumption on A*, for any z′,

(3)

Combining Equations (1), (2), and (3) gives the inequality
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Since m ≤ M, the quantity on the RHS of the above equation is more than . A* therefore

does not succeed on Sz with respect to , thus leading to a contradiction.

4. Upper bounds for learning with α-privacy

In this section, we show an upper bound on the sample requirement of learning with α-

privacy by presenting a learning algorithm that works on infinite hypothesis classes over

continuous data domains, under certain conditions on the hypothesis class and the data

distribution. Our algorithm works in the non-realizable case, that is, when there may be no

hypothesis in the target hypothesis class with zero classification error.

A natural way to extend the algorithm of Kasiviswanathan et al. (2008) to an infinite

hypothesis class  is to compute a suitable finite subset  of  that contains a hypothesis

with low excess generalization error, and then use the exponential mechanism of McSherry

and Talwar (2007) on . To ensure that a hypothesis with low error is indeed in , we would

like  to be an ε-cover of the disagreement metric ( , ρ ). In a non-private or label-private

learning, we can compute such a  directly based on the unlabeled training examples; in our

setting, the training examples themselves are sensitive, and this approach does not directly

apply.

The key idea behind our algorithm is that instead of using the sensitive data to compute ,

we can use a reference distribution  that is known independently of the sensitive data. For

instance, if the domain of the unlabeled data is bounded, then a reasonable choice for  is

the uniform distribution over the domain. Our key observation is that if  is close to the

unlabeled data distribution  according to a certain measure of closeness inspired by

Dasgupta (2005) and Freund et al. (1997), then a cover of the disagreement metric on 

with respect to  is a (possibly coarser) cover of the disagreement metric on  with respect

to . Thus we can set  to be a fine cover of ( , ρ ), and this cover can be computed

privately as it is independent of the sensitive data.

Our algorithm works when the doubling dimension of ( , ρ ) is finite; under this

condition, there is always such a finite cover . We note that this is a fairly weak condition

that is satisfied by many hypothesis classes and data distributions. For example, any

hypothesis class with finite VC dimension will satisfy this condition for any unlabeled data

distribution .

Finally, it may be tempting to think that one can further improve the sample requirement of

our algorithm by using the sensitive data to privately refine a cover of ( , ρ ) to a cover of

( , ρ ). However, our calculations show that naively refining such a cover leads to a much

higher sample requirement.

We now define our notion of closeness.

Definition 6—We say that a data distribution  is κ-smooth with respect to a distribution

 for some κ ≥ 1, if for all measurable sets A ⊆ ,
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This notion of smoothness is very similar to, but weaker than the notions of closeness

between distributions that have been used by (Dasgupta, 2005; Freund et al., 1997). We note

that if  is absolutely continuous with respect to  (i.e.,  assigns zero probability to a set

only if  does also), then  is κ-smooth with respect to  for some finite κ.

4.1. Algorithm

Our main algorithm  is given in Figure 1. The first step of the algorithm calculates the

distance scale at which it should construct a cover of ( , ρ ). This scale is a function of |S|,

the size of the input data set S, and can be computed privately because |S| is not sensitive

information. A suitable cover of ( , ρ ) that is also a suitable packing of ( , ρ ) is then

constructed; note that such a set always exists because of Lemma 13. In the final step, an

exponential mechanism (McSherry and Talwar, 2007) is used to select a hypothesis from the

cover with low error. As this step of the algorithm is the only one that uses the input data,

the algorithm is α-private as long as this last step guarantees α-privacy.

4.2. Privacy and learning guarantees

Our first theorem states the privacy guarantee of Algorithm .

Theorem 7—Algorithm  preserves α-privacy.

Proof—The algorithm only accesses the private dataset S in the final step. Because

changing one labeled example in S changes err(g, S) by at most 1, this step is guarantees α-

privacy (McSherry and Talwar, 2007).

The next theorem provides an upper bound on the sample requirement of Algorithm . This

bound depends on the doubling dimension d  of ( , ρ ) and the smoothness parameter κ,

as well as the privacy and learning parameters α, ε, δ.

Theorem 8—Let  be a distribution over  × {±1} whose marginal over  is . There

exists a universal constant C > 0 such that for any α, ε, δ ∈ (0, 1), the following holds. If

1. the doubling dimension d  of ( , ρ ) is finite,

2.  is κ-smooth with respect to ,

3. S ⊆  × {±1} is an i.i.d. random sample from  such that

(4)

then with probability at least 1 − δ, the hypothesis h  ∈  returned by  (S, , α,

ε, δ) satisfies
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The proof of Theorem 8 is stated in Appendix C. If we have prior knowledge that some

hypothesis in  has zero error (the realizability assumption), then the sample requirement

can be improved with a slightly modified version of Algorithm . This algorithm, called

Algorithm , is given in Figure 3 in Appendix C.

Theorem 9—Let  be any probability distribution over  ×{±1} whose marginal over 

is . There exists a universal constant C > 0 such that for any α, ε, δ ∈ (0, 1), the following

holds. If

1. the doubling dimension d  of ( , ρ ) is finite,

2.  is κ-smooth with respect to ,

3. S ⊆  × {±1} is an i.i.d. random sample from  such that

(5)

4. there exists h* ∈  with Pr(x,y) ~  [h*(x) ≠ y] = 0, then with probability at least 1 −

δ, the hypothesis h  ∈  returned by  (S, , α, ε, δ) satisfies

Again, the proof of Theorem 9 is in Appendix C.

4.3. Examples

In this section, we give some examples that illustrate the sample requirement of Algorithm

.

First, we consider the example from the lower bound given in the proof of Theorem 5.

Example 1—The domain of the data is := [0, 1], and the hypothesis class is :=  =

{ht: t ∈ [0, 1]} (recall, ht(x) = 1 if and only if x ≥ t). A natural choice for the reference

distribution  is the uniform distribution over [0, 1]; the doubling dimension of ( , ρ ) is 1

because every interval can be covered by two intervals of half the length. Fix some M > 0

and α ∈ (0, 1), and let η:= 1/(6 + 4 exp(αM)). For z ∈ [η, 1 − η], let  be the distribution on

[0, 1] with density
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Clearly,  is κ-smooth with respect to  for . Therefore the sample

requirement of Algorithm  to learn with α-privacy and excess generalization error ε is at

most

which is Õ(M) for constant ε, matching the lower bound from Theorem 5 up to constants.

Next, we consider two examples in which the domain of the unlabeled data :=  is the

uniform distribution on the unit sphere in ℝn:

and the target hypothesis class :=  is the class of linear separators that pass through the

origin in ℝn:

The examples will consider two different distributions over .

A natural reference data distribution in this setting is the uniform distribution over ; this

will be our reference distribution . It is known that d := sup{ddimr( , ρ ): r ≥ 0} = O(n)

(Bshouty et al., 2009).

Example 2—We consider a case where the unlabeled data distribution  is concentrated

near an equator of . More formally, for some vector u ∈ , and γ ∈ (0, 1), we let  be

uniform over W:= {x ∈ : |u · x| ≤ γ}; in other words, the unlabeled data lies in a small

band of width γ around the equator.

By Lemma 20 (see Appendix C),  is κ-smooth with respect to  for . Thus

the sample requirement of Algorithm  to learn with α-privacy and excess excess

generalization error ε is at most

When n is large and , this bound is , where the Õ notation hides factors

logarithmic in 1/δ and 1/ε.

Example 3—Now we consider the case where the unlabeled data lies on two diametrically

opposite spherical caps. More formally, for some vector u ∈ , and γ ∈ (0, 1), we now let
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 be uniform over \W, where W:= {x ∈ : |u · x| ≤ γ}; in other words, the unlabeled

data lies outside a band of width γ around the equator.

By Lemma 21 (see Appendix C),  is κ-smooth with respect to  for . Thus

the sample requirement of Algorithm  is to learn with α-privacy and excess generalization

error ε is at most:

Thus, for large n and constant γ < 1, the sample requirement of Algorithm  is .

So, even though the smoothness parameter κ is exponential in the dimension n, the sample

requirement remains polynomial in n.

5. Lower bounds for learning with α-label privacy

In this section, we provide two lower bounds on the sample complexity of learning with α-

label privacy. Our first lower bound holds when α and ε are small (that is, high privacy and

high accuracy), and when the hypothesis class has bounded VC dimension V. If these

conditions hold, then we show a lower bound of Ω(d/εα) where d is the doubling dimension

of the disagreement metric ( , ρ ) at some scale.

The main idea behind our bound is to show that differentially private learning algorithms

necessarily perform poorly when there is a large set of hypotheses such that every pair in the

set labels approximately 1/α examples differently. We then show that such large sets can be

constructed when the doubling dimension of the disagreement metric ( , ρ ) is high.

5.1. Main results

Theorem 10—There exists a constant c > 0 such that the following holds. Let  be a

hypothesis class with VC dimension V < ∞,  be a distribution over , X be an i.i.d. sample

from  of size m, and  be a learning algorithm that guarantees α-label privacy and outputs

a hypothesis in . Let d:= ddim12ε ( , ρ ) > 2, and d′:= inf{ddim12r( , ρ ): ε ≤ r < Δ/6}

> 2. If

where Δ is the diameter of ( , ρ ), then there exists a hypothesis h* ∈  such that with

probability at least 1/8 over the random choice of X and internal randomness of , the

hypothesis h  returned by (SX,h*) has classification error
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We note that the conditions on α and ε can be relaxed by replacing the VC dimension with

other (possibly distribution-dependent) quantities that determine the uniform convergence of

ρX to ρ ; we used a distribution-free parameter to simplify the argument. Moreover, the

condition on ε can be reduced to ε < c for some constant c ∈ (0, 1) provided that there exists

a lower bound of Ω(V/ε) to (non-privately) learn  under the distribution .

The proof of Theorem 10, which is in Appendix D, relies on the following lemma (possibly

of independent interest) which gives a lower bound on the empirical error of the hypothesis

returned by an α-label private learning algorithm.

Lemma 11—Let X ⊆  be an unlabeled dataset of size m,  be a hypothesis class,  be a

learning algorithm that guarantees α-label privacy, and s > 0. Pick any h0 ∈ . If P is an s-

packing of BX(h0, 4s) ⊆ , and

then there exists a subset Q ⊆ P such that

1. |Q| ≥ |P|/2;

2. for all h ∈ Q, Pr  [ (SX,h) ∉ BX(h, s/2)] ≥ 1/2.

The proof of Lemma 11 is in Appendix D. The next theorem shows a lower bound without

restrictions on ε and α. Moreover, this bound also applies when the VC dimension of the

hypothesis class is unbounded. However, we note that this bound is weaker in that it does

not involve a 1/ε factor, where ε is the accuracy parameter.

Theorem 12—Let  be a hypothesis class,  be a distribution over , X be an i.i.d.

sample from  of size m, and  be a learning algorithm that guarantees α-label privacy and

outputs a hypothesis in . Let d″:= ddim4ε ( , ρ ) ≥ 1. If ε ≤ Δ/2 and

where Δ is the diameter of ( , ρ ), then there exists h* ∈  such that with probability at

least 1/2 over the random choice of X and internal randomness of , the hypothesis h

returned by (SX,h*) has classification error

In other words, any α-label private algorithm for learning a hypothesis in  with error at

most ε ≤ Δ/2 must use at least (d″ − 1) log(2)/α examples. Theorem 12 uses ideas similar to
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those in (Beimel et al., 2010), but the result is stronger in that it applies to α-label privacy

and continuous data domains. A detailed proof is provided in Appendix D.

5.2. Example: linear separators in ℝn

In this section, we show an example that illustrates our label privacy lower bounds. Our

example hypothesis class :=  is the class of linear separators over ℝn that pass through

the origin, and the unlabeled data distribution  is the uniform distribution over the unit

sphere . By Lemma 25 (see Appendix D), the doubling dimension of ( , ρ ) at any

scale r is at least n − 2. Therefore Theorem 10 implies that if α and ε are small enough, any

α-label private algorithm  that correctly learns all hypotheses h ∈  with error ≤ ε requires

at least  examples. (In fact, the condition on ε can be relaxed to ε ≤ c for some constant

c ∈ (0, 1), because Ω(n) examples are needed to even non-privately learn in this setting

(Long, 1995).) We also observe that this bound is tight (except for a log(1/δ) factor): as the

doubling dimension of  is at most n, in the realizable case, Algorithm  using := 

learns linear separators with α-label privacy given  examples.
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Appendix A. Metric spaces

Lemma 13 (Kolmogorov and Tikhomirov, 1961)

For any metric space ( , ρ) with diameter Δ, and any ε ∈ (0, Δ), there exists an ε-packing of

( , ρ) that is also an ε-cover.

Lemma 14 (Gupta, Krauthgamer, and Lee, 2003)

For any ε > 0 and r > 0, if a metric space ( , ρ) has doubling dimension d and z ∈ , then

every ε-packing of (B(z, r), ρ) has cardinality at most (4r/ε)d.

Lemma 15

Let ( , ρ) be a metric space with diameter Δ, and r ∈ (0, 2Δ). If ddimr( , ρ) ≥ d, then there

exists z ∈  such that B(z, r) has an (r/2)-packing of size at least 2d.

Proof

Fix r ∈ (0, 2Δ) and a metric space ( , ρ) with diameter Δ. Suppose that for every z ∈ ,

every (r/2)-packing of B(z, r) has size less than 2d. For each z ∈ , let Pz be an (r/2)-packing

of (B(z, r), ρ) that is also an (r/2)-cover—this is guaranteed to exist by Lemma 13.

Therefore, for each z ∈ , B(z, r) ⊆ ∪z′∈Pz B(z, r/2), and |Pz| < 2d. This implies that

ddimr( , ρ) is less than d.

Appendix B. Uniform convergence

Lemma 16 (Vapnik and Chervonenkis, 1971)

Let  be a family of measurable functions f:  → {0, 1} over a space  with distribution

. Denote by [f] the empirical average of f over a subset Z ⊆ . Let εm:= (4/m)(log( 

(2m)) + log(4/δ)), where  (n) is the n-th VC shatter coefficient with respect to . Let Z be

an i.i.d. sample of size m from . With probability at least 1 − δ, for all f ∈ ,

Also, with probability at least 1 − δ, for all f ∈ ,

Lemma 17

Let  be a hypothesis class with VC dimension V. Fix any δ ∈ (0, 1), and let X be an i.i.d.

sample of size m ≥ V/2 from . Let εm:= (8V log(2em/V) + 4 log(4/δ))/m. With probability at

least 1 − δ, for all pairs of hypotheses {h, h′} ⊆ ,
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Also, with probability at least 1 − δ, for all pairs of hypotheses {h, h′} ⊆ ,

Proof

This is an immediate consequence of Lemma 16 as applied to the function class := {x ↦ 

[h(x) ≠ h′ (x)]: h, h′ ∈ }, which has VC shatter coefficients  (2m) ≤  (2m)2 ≤ (2em/V)2V

by Sauer’s Lemma.

Appendix C. Proofs from Section 4

C.1. Some lemmas

We first give two simple lemmas. The first one, Lemma 18 states some basic properties of

the exponential mechanism.

Lemma 18 (McSherry and Talwar, 2007)

Let I be a finite set of indices, and let ai ∈ ℝ for all i ∈ I. Define the probability distribution

p:= (pi: i ∈ I) where pi ∝ exp(−ai) for all i ∈ I. If j ∈ I is drawn at random according to p,

then the following holds for any element i0 ∈ I and any t ∈ ℝ.

1. Let i ∈ I. If ai ≥ t, then Prj−p[j = i] ≤ exp(−(t − ai0)).

2. Prj~p[aj ≥ ai0+ t] ≤ |I| exp(−t).

Proof

Fix any i0 ∈ I and t ∈ ℝ. To show the first part of the lemma, note that for any i ∈ I with ai ≥

t, we have

For the second part, we apply the inequality from the first part to all i ∈ I such that ai ≥ ai0 +

t, so

The next lemma is consequences of smoothness between distributions  and .
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Lemma 19

If  is κ-smooth with respect to , then for all ε > 0, every ε-cover of ( , ρ ) is a κε-cover

of ( , ρ ).

Proof

Suppose C is an ε-cover of ( , ρ ). Then, for any h ∈ , there exists h′ ∈ C such that

ρ (h, h′) ≤ ε. Fix such a pair h, h′, and let A := {x ∈ χ : h(x) ≠ h′(x)} be the subset of χ on

which h and h′ disagree. As  is κ-smooth with respect to , by definition of smoothness,

and thus C is a κε-cover of ( , ρ ).

C.2. Proof of Theorem 8

First, because of the lower bound on m := |S| from (4), the computed value of κ̂ in the first

step of the algorithm must satisfy κ̂ ≥ κ. Therefore,  is also κ̂-smooth with respect to .

Combining this with Lemma 19,  is an (ε/4)-cover of ( , ρ ). Moreover, as  is also an

(ε/4κ̂)-packing of , from Lemma 14, the cardinality of  is at most | | ≤ (16κ̂/ε)d .

Define err(h) := Pr(x,y)~ [h(x) ≠ y]. Suppose that h* ∈  minimizes err(h) over h ∈ . Let

g0 ∈  be an element of  such that ρ (h*, g0) ≤ ε/4; g0 exists as  is an (ε/4)-cover of ( ,

ρD). By the triangle inequality, we have that:

(6)

Let E be the event that maxg∈  | err(g) − err(g, S)| > ε/4, and Ē be its complement. By

Hoeffding’s inequality, a union bound, and the lower bound on |S|, we have that for a large

enough value of the constant C in Equation (4),

In the event Ē, we have err(h ) ≥ err(h , S) − ε/4 and err(g0) ≤ err(g0, S) + ε/4 because

both h  and g0 are in . Therefore,
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Here, the first step follows from (7), and the final three inequalities follow from Lemma 18

(using ag = α|S| err(g, S)/2 for g ∈ ), the upper bound on | |, and the lower bound on m in

(4).

C.3. Proof of Theorem 9

The proof is very similar to the proof of Theorem 8.

First, because of the lower bound on m := |S| from (5), the computed value of κ̂ in the first

step of the algorithm must satisfy κ̂ ≥ κ. Therefore,  is also κ̂-smooth with respect to .

Combining this with Lemma 19, as  is an (ε/4κ̂)-cover of ,  is an (ε/4)-cover of ( , ρ ).

Moreover, as  is also an (ε/4κ̂)-packing of , from Lemma 14, the cardinality of  is at

most | | ≤ (16κ̂/ε)d .

Define err(h) := Pr(x,y)~ [h(x) ≠ y]. Suppose that h* ∈  minimizes err(h) over h ∈ .

Recall that from the realizability assumption, err(h*) = 0. Let g0 ∈  be an element of  such

that ρdcl12;(h*, g0) ≤ ε/4; g0 exists as  is an (ε/4)-cover of ( , ρ ). By the triangle

inequality, we have that:

(7)

We define two events E1 and E2. Let  ⊂ G be the set of all g ∈  for which err(g) ≥ ε. The

event E1 is the event that ming∈  err(g, S) > 9ε/10, and let Ē1 be its complement. Applying

the multiplicative Chernoff bounds, for a specific g ∈ ,

The quantity on the right hand side is at most  for a large enough constant C in

Equation (5). Applying an union bound over all g ∈ , we get that

(8)

We define E2 as the event that err(g0, S) ≤ 3ε/4, and Ē2 as its complement. From a standard

multiplicative Chernoff bound, with probability at least 1 − δ/4,
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Thus, if |S| ≥ (3/ε) log(4/δ), which is the case due to Equation (5),

(9)

Therefore, we have

Here, the second step follows from the definition of events E1 and E2 and from Equations

(8) and (9), the third step follows from simple algebra, the fourth step follows from Lemma

18, the fifth step from the bound on | | and the final step from Equation (5).

C.4. Examples

Lemma 20

Let  be uniform over the unit sphere , and let  be defined as in Example 2. Then,  is

with respect to .

Proof

From (Ball, 1997), we know that Prx~ [x ∈ W] ≥ 1 − 2 exp(−nγ2/2). Thus, for any set A ⊆

, we have

This means  is κ-smooth with respect to  for 1
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Lemma 21

Let  uniform over the unit sphere  and let  be defined as in Example 3. Then,  is

with respect to .

Proof

From (Ball, 1997), we know that Prx~ [x ∈  \ W] = Prx~ [x ∉ W] ≥ ((1 − γ)/2)(n−1)/2.

Therefore, for any A ⊆ , we have

This means  is κ-smooth with respect to  for

Appendix D. Proofs from Section 5

D.1. Some lemmas

Lemma 22

Let S := {(x1, y1), …, (xm, ym)} ⊆ χ × {±1} be a labeled dataset of size m, α ∈ (0, 1), and k ≥

0.

1. If a learning algorithm  guarantees α-privacy and outputs a hypothesis from ,

then for all  with  for at

least |S| − k such examples,

2. If a learning algorithm  guarantees α-label privacy and outputs a hypothesis from

, then for all  with 
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for at least |S| − k such labels,

Proof

We prove just the first part, as the second part is similar. For a labeled dataset S′ that differs

from S in at most k pairs, there exists a sequence of datasets S(0), …, S(ℓ) with ℓ ≤ k such that

S(0) = S′, S(ℓ) = S, and S(j) differs from S(j+1) in exactly one example for 1 ≤ j < ℓ. In this

case, if  guarantees α-privacy, then for all  ⊆ ,

and therefore

Lemma 23

There exists a constant C > 1 such that the following holds. Let  be a hypothesis class with

VC dimension V, and let  be distribution over χ. Fix any r ∈ (0, 1), and let X be an i.i.d.

sample of size m from . If

then the following holds with probability at least 1/2:

1. every pair of hypotheses{h, h′} ⊆  for which ρX(h, h′) > 2r has ρ (h, h′) > r;

2. for all h0 ∈ , every (6r)-packing of (B (h0, 12r), ρ ) is a (4r)-packing of (BX(h0,

16r), ρX).

Proof

This is a consequence of Lemma 17. To show the first part, we plug in Lemma 17 with εm =

r/2.

To show the second part, we use two applications of Lemma 17. Let h and h′ be any two

hypotheses in any (6r)-packing of (B (h0, 12r), ρ ); we first use Lemma 17 with εm = r/3

to show that for all such h and h′, ρX(h, h′) > 4r. Next we need to show that all h in any (6r)-
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packing of (B (h0, 12r), ρ ) has ρX(h, h0) ≤ 16r; we show this through a second application

of Lemma 17 with εm = r/3.

D.2. Proof of Theorem 12

We prove the contrapositive: that if ε ≤ Δ/2 and PrX~ , [ (SX,h*) ∈ B (h*, ε)] > 1/2 for

all h* ∈ H, then m > log(2d″−1)/α. So pick any ε ≤ Δ/2. By Lemma 15, there exists an h0 ∈ 

and P ⊆  such that P is a (2ε)-packing of (B (h0, 4ε), ρ ) of size ≥ 2d″. For any h, h′ ∈ P

such that h ≠ h′, we have B (h, ε) ∩ B (h′, ε) = ∅ by the triangle inequality. Therefore for

any h ∈ P and any X′ ⊆ χ of size m,

where the second inequality follows by Lemma 22 because SX′,h and SX′,h′ can differ in at

most (all) m labels. Now integrating both sides with respect to X′ ~  shows that if

PrX~ , [ (SX,h*) ∈ B (h*, ε)] > 1/2 for all h* ∈ , then for any h ∈ P,

which in turn implies m > log(|P| − 1)/α ≥ log(2d″ − 1)/α ≥ log(2d″−1)/α, as d″ is always ≥ 1.

D.3. Proof of Lemma 11

Let h0 ∈  and P be an s-packing of BX(h0, 4s) ⊆ . Say the algorithm  is good for h if

Pr [ (SX,h) ∈ BX(h, s/2)] ≥ 1/2. Note that  is not good for h ∈ P if and only if Pr [ 

(SX,h) ∉/BX(h, s/2)] > 1/2. Therefore, it suffices to show that if  is good for at least |P|/2

hypotheses in P, then m ≥ (log((|P|/2) −1)/(8αs).

By the triangle inequality and the fact that P is an s-packing, BX(h, s/2)∩BX(h′, s/2) = ∅ for

all h, h′ ∈ P such that h ≠ h′. Therefore for any h ∈ P,

Moreover, for all h, h′ ∈ P, we have ρX(h, h′) ≤ ρX(h0, h) + ρX(h0, h′) ≤ 8s by the triangle

inequality, so SX,h and SX,h′ differ in at most 8sm labels. Therefore Lemma 22 implies
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for all h, h′ ∈ P. If  is good for at least |P|/2 hypotheses h′ ∈ P, then for any h ∈ P such that

 is good for h, we have

which in turn implies m ≥ log((|P|/2) − 1)/(8s).

D.4. Proof of Theorem 10

We need the following lemma.

Lemma 24

There exists a constant C > 1 such that the following holds. Let  be a hypothesis class with

VC dimension V,  be a distribution over χ, X be an i.i.d. sample from  of size m,  be a

learning algorithm that guarantees α-label privacy and outputs a hypothesis in , and Δ be

the diameter of ( , ρ ). If r ∈ (0, Δ/6) and

where d := ddim12r( , ρ ), then there exists a hypothesis h* ∈  such that

Proof

First, assume r and m satisfy the conditions in the lemma statement, where C is the constant

from Lemma 23. Also, let h0 ∈  and P ⊆  be such that P is a (6r)-packing of (B (h0,

12r), ρ ) of size |P| ≥ 2d; the existence of such an h0 and P is guaranteed by Lemma 15.

We first define some events in the sample space of X and . For each h ∈ , and a sample

X, let E1(h, X) be the event that

(SX,h) makes more than 2rm mistakes on SX,h (i.e., ρX(h, (SX,h)) > 2r).
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Given a sample X, let φ(X) be a 0/1 random variable which is 1 when the following

conditions hold:

1. every pair of hypotheses{h, h′} ⊆  for which ρX(h, h′) > 2r has ρ (h, h′) > r; and

2. for all h0 ∈ , every (6r)-packing of (B (h0, 12r), ρ ) is a (4r)-packing of (BX(h0,

16r), ρX)

(i.e., the conclusion of Lemma 23). Note that conditioned on E1(h, X) and φ(X) = 1, we have

ρX(h, (SX,h)) > 2r and thus ρ (h, (SX,h)) > r, so PrX~ , [E1(h, X), (φ(X) = 1)] ≤

PrX~ , [ρ (h, (SX,h)) > r]. Therefore it suffices to show that there exists h* ∈  such

that PrX~ , [E1(h*, X), (φ(X) = 1)] ≥ 1/8.

The lower bound on m and Lemma 23 ensure that 1

(10)

Also, if the unlabeled sample X is such that φ(X) = 1 holds, then the set P is a (4r)-packing

of (BX(h0, 16r), ρX). Therefore, the upper bound on m and Lemma 11 (with s = 4r) imply

that for all such X, there exists Q ⊆ P of size at least |P|/2 such that Pr [E1(h, X) | φ(X) = 1]

≥ 1/2 for all h ∈ Q. In other words,

(11)

Combining Equations (10) and (11) gives

Here the first step follows because φ(X) is a 0/1 random variable, the fourth step follows

from Equation (11) and the fifth step follows from Equation (10).

Therefore there exists some h* ∈ P such that PrX~ , [E1(h*, X), φ(X) = 1] ≥ 1/8.
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Proof [Proof of Theorem 10]

Assume

where C is the constant from Lemma 24. The proof is by case analysis, based on the value of

m.

Case 1: m < 1/(4ε)—Since ε < Δ/2, Lemma 15 implies that there exists a pair{h, h′} ⊆ 

such that ρ (h, h′) > 2ε but ρ (h, h′) ≤ 4ε. Using the bound on m and the fact ε ≤ 1/5, we

have

This means that PrX~ [h := (SX,h) = (SX,h′)] ≥ 1/8. By the triangle inequality, B (h, ε)

∩ B (h′, ε) = ∅. So if, say, PrX~ , [h  ∈ B (h, ε)] ≥ 1/8, then PrX~ , [h  ∉/B (h

′, ε)] ≥1/8. Therefore PrX~ , [h  ∉/B (h*, ε)] ≥ 1/8 for at least one h* ∈ {h, h′}.

Case 2: 1/(4ε) ≤ m < (CV/ε) log(C/ε)—First, let r > 0 be the solution to the equation

(CV/r) log(C/r) = m, so r > ε. Moreover, the bound on m and ε imply

so r < Δ/6. Finally, using the bound on α, definition of d′, and fact r > ε, we have

where d″ := ddim12r( , ρ ); this implies

The conditions of Lemma 24 are thus satisfied, which means there exists h* ∈  such that

PrX~ , [ (SX,h*) ∉/B (h*, r)] ≥ 1/8.
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Case 3: (CV/ε) log(C/ε) ≤ m < log(2d−1 − 1)/(32αε)—The conditions of Lemma 24 are

satisfied in this case with r := ε < Δ/6, so there exists h* ∈ H such that PrX~ , [ρD(h*, 

(SX,h*)) > ε] ≥ 1/8.

D.5. Example

The following lemma shows that if  is the uniform distribution on , then ddimr( , ρ )

≥ n − 2 for all scales r > 0.

Lemma 25

Let  :=  be the class of linear separators through the origin in ℝn and  be the uniform

distribution on . For any u ∈  and any r > 0, there exists an (r/2)-packing of (B (hu,

r), ρ ) of size at least 2n−2.

Proof

Let μ be the uniform distribution over ; notice that this is also the uniform distribution over

.

We call a pair hypotheses hv and hw in  close if ρ  (hv, hw) ≤ r/2. Observe that if any set

of hypotheses has no close pairs, then it is an (r/2)-packing.

Using a technique due to Long (1995), we now construct an (r/2)-packing of B (hu, r) by

first randomly choosing hypotheses in B (hu, r), and then removing hypotheses until no

close pairs remain. First, we bound the probability p that two hypotheses hv and hw, chosen

independently and uniformly at random from B (hu, r), are close:

where the second-to-last equality follows by symmetry, and the last equality follows by the

fact that B (hu, r) corresponds to a (n−1)-dimensional spherical cap of . Now, choose

N := 2n−1 hypotheses hv1, …, hvN independently and uniformly at random from B (hu, r).

The expected number of close pairs among these N hypotheses is
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Therefore, there exists N hypotheses hv1, …, hvN in B (hu, r) among which there are at most

M close pairs. Removing one hypothesis from each such close pair leaves a set of at least N

− M hypotheses with no close pairs—this is our (r/2)-packing of B (hu, r). Since N = 2n−1,

the cardinality of this packing is at least

Appendix E. Upper bounds for learning with α-label privacy

Algorithm  for learning with α-label privacy, given in Figure 3, differs from the

algorithms for learning with α-privacy in that it is able to use the unlabeled data itself to

construct a finite set of candidate hypotheses. The algorithm and its analysis are very similar

to work due to Chaudhuri et al. (2006); we give the details for completeness.

Theorem 26

Algorithm  preserves α-label privacy.

Proof

The algorithm only accesses the labels in S in the final step. It follows from standard

arguments in (McSherry and Talwar, 2007) that α-label privacy is guaranteed.

Theorem 27

Let  be any probability distribution over χ × {±1} whose marginal over χ is . There exists

a universal constant C > 0 such that for any α, ε, δ ∈ (0, 1), the following holds. If S ⊆ χ ×

{±1} is an i.i.d. random sample from  of size

where η := infh′∈  Pr(x,y)~ [h′(x) ≠ y] and V is the VC dimension of ; then with

probability at least 1 − δ, the hypothesis h  ∈  returned by (S, α, ε, δ) satisfies
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Remark 28

The first term in the sample size requirement (which depends on VC dimension) can be

replaced by distribution-based quantities used for characterizing uniform convergence such

as those based on l1-covering numbers (Pollard, 1984).

Proof

Let err(h) := Pr(x,y)~ [h(x) ≠ y], and let h* ∈  minimize err(h) over h ∈ . Let S := {(x1,

y1), …, (xm, ym)} be the i.i.d. sample drawn from , and X := {x1, …, xm} be the unlabeled

components of S. Let g0 ∈  minimize err(g, S) over g ∈ . Since  is an (ε/4)-cover for ( ,

ρX), we have that err(g0, S) ≤ infh′∈  err(h′, S) + ε/4. Since  is also an (ε/4)-packing for

( , ρX), we have that | | ≤ ( , ρX) (Pollard, 1984). Let  := {fh : h ∈ H} where fh(x, y) :=

[h(x) ≠ y]. We have [fh(x, y)] = err(h) and m−1 Σ(x,y)∈S fh(x, y) = err(h, S). Let E be the

event that for all h ∈ H,

where εm := (8V log(2em/V) + 4 log(16/δ))/m. By Lemma 16, the fact ( , n) = S(H, n),

and union bounds, we have PrS~  [E] ≥ 1 − δ/2. Now let E′ be the event that

where tm := 2 log(2 [| |]/δ)/(αm). The probability of E′ can be bounded as

where the first inequality follows from Lemma 18, and the second inequality follows from

the definition of tm. By the union bound, PrS~ , [E ∩ E′] ≥ 1 −δ. In the event E ∩ E′, we

have
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since err(g0, S) ≤ infh′∈  err(h′, S) + ε/4 ≤ err(h*, S) + ε/4. By various algebraic

manipulations, this in turn implies

for some constant C′ > 0. The lower bound on m now implies the theorem.
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Figure 1.
Learning algorithm for α-privacy.
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Figure 2.
Learning algorithm for α-privacy under the realizable assumption.
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Figure 3.
Learning algorithm for α-label privacy.
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