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Understanding, modeling, and predicting the impact of global change on ecosystem functioning across biogeographical gradients can benefit
from enhanced capacity to represent biota as a continuous distribution of traits. However, this is a challenge for the field of biogeography
historically grounded on the species concept. Here we focus on the newly emergent field of functional biogeography: the study of the
geographic distribution of trait diversity across organizational levels. We show how functional biogeography bridges species-based
biogeography and earth science to provide ideas and tools to help explain gradients in multifaceted diversity (including species, functional,
and phylogenetic diversities), predict ecosystem functioning and services worldwide, and infuse regional and global conservation programs
with a functional basis. Although much recent progress has been made possible because of the rising of multiple data streams, new
developments in ecoinformatics, and new methodological advances, future directions should provide a theoretical and comprehensive
framework for the scaling of biotic interactions across trophic levels and its ecological implications.
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Biogeography is the study of the distribution
of species and ecosystems across space and
time and of the underlying biotic and abiotic
factors, mechanisms, and processes (1). Bio-
geography is central to synthesizing small-
and large-scale patterns of species’ responses
to global environmental change and provid-
ing a window to assess the importance of
earth and evolutionary history, as well as
changing biotic and abiotic factors that un-
derlie the current distribution of taxa. Histor-
ically, biogeography has been rooted in the
species concept. Biologists long ago built
global maps of species’ ranges and species
diversity patterns, which allowed scientists
to develop, test, and validate prominent eco-
logical theories at the root of biogeography
(2, 3). Biogeography, however, has largely de-
veloped separately from ecosystem ecology
and earth system biology, yet we argue that
one of the great challenges of 21st century
biogeography is to provide theoretical base-
lines and tools for the understanding and
prediction of ecosystem responses to envi-
ronmental changes in terms of species com-
position and biogeochemical cycles (water,
carbon, nutrients, and energy).
For the last several decades, new directions

in biogeography have been aided by statistical
and computational advances (4, 5), and new
species distribution models have provided

maps of priority areas for conservation and
projections of the effects of global change on
species diversity patterns for the next century
(6–9). Nonetheless, predictions of how eco-
logical communities respond to past and pro-
jected future climates have increasingly been
challenged (10) due to the limitations of spe-
cies-based approaches, including conceptual
and technical difficulties in incorporating
species interactions, dispersal limitations,
and species’ adaptations into predictive mod-
els (11–16). Indeed, if we treat species as
qualitative entities, then we need to under-
stand each and every one. In contrast, trait-
based biogeography can help model species
interactions, dispersal ability, and physiolog-
ical tolerance more simply and generically
(17). More precisely, if we array species along
some continuous trait axes (18), then know-
ing cross-species relationships (19), e.g.,
between plant physiological tolerance to
drought and diameter of xylem vessel (20),
can help forecast the change in species com-
position of ecological communities in re-
sponse to variation in abiotic conditions
like water availability.
Contrary to species-based biogeography,

earth science models directly address changes
in biogeochemical cycles at a global scale
but using a simplistic representation of
biodiversity in most cases (21–24): few plant

functional types (PFT), characterized by
mean ecophysiological characteristics, are
used per biome in models dedicated to sim-
ulate and forecast the consequences of
global changes on biogeochemical cycling
(24). However, in biodiversity–ecosystem
functioning research (25–27), the taxonomic
composition of an ecosystem is identified as
a key driver of ecosystem functioning. More
recently, the functional component of biodi-
versity, i.e., the diversity of forms and func-
tions, has been recognized as the missing link
between biodiversity patterns and biogeo-
chemical cycles (28–30) and perhaps is a
core driver of ecosystem services (31, 32).
Given these insights from ecosystem ecology,
there is a growing consensus on the need
for a better representation of biodiversity—
in particular the composition of species,
forms, and functions—in earth science
models (21, 23, 24), as stressed in this issue
by Reichstein et al. (33).
In this Introduction, and in the related

special feature, to bridge historical species-
based biogeography with earth systems
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science, we argue that the time is ripe to
advance functional biogeography. We define
functional biogeography as the analysis of
the patterns, causes, and consequences of
the geographic distribution of the diver-
sity of form and function—namely, trait
diversity. Indeed treating the biota as a con-
tinuous distribution of traits appears pivotal
if one is expected to model the biosphere
when there are literally millions of separate
species. Describing and explaining the
global distribution of forms and functions
is a long-standing goal for ecologists (34–
36). Such attempts have been synthetized
under a variety of terms including macro-
physiology (19, 37–39). The emergence of
functional biogeography pursues this goal
but also aims at linking biogeographical
patterns of trait diversity to biogeographi-
cal patterns of species diversity, ecosystem
functioning, and services because of the in-
tegration of concepts and methodologies
from multiple fields (Fig. 1). Advancing func-
tional biogeography becomes timely with the
rise of a predictive era in ecology and the
acceleration of societal demand regarding
the evaluation and forecast of past, cur-
rent, and future ecosystem services.

Biogeography Beyond Species:
Functional Traits as a Common Currency
Across Biological Organizational Levels
and Taxonomic Groups
We posit that a useful approach to functional
biogeography is to use a common currency,
namely functional traits. Functional traits are
morphological, physiological, phenological,

or behavioral features measured on organ-
isms that can ultimately be linked to their
performance (40). In trait-based ecology, it
has been shown that it is possible to aggre-
gate functional traits measured on organisms
to explain the functioning of populations,
communities, ecosystems, and beyond. For
instance, at the community level, the use of
community-weighed means (CWM, i.e., the
average trait value of a community account-
ing for effects of species abundance within
communities) (40, 41) is a promising tool to
accurately predict ecosystem functions such
as plant primary productivity (41, 42). As
a whole, functional traits can be imple-
mented into more or less complex inte-
grative functions (e.g., CWM is a simple
integrative function) to scale up from organs
to higher organizational levels including
ecosystems and biomes (40, 43, 44). Trait-
based approaches have also been extensively
used to describe the diversity of forms and
functions within a study unit—often termed
functional diversity sensu lato—using differ-
ent distance metrics (e.g., variance based)
(45–55) and how it scales spatially (56–61).
Variation in functional traits within species

is also key. For instance, in this special fea-
ture, Reich et al. (62) highlight huge intra-
specific variation in gymnosperm needle
traits with latitude across the vast boreal
domain. They note how this variation fits
with trait economic theory and model the
impacts of trait variation on carbon cycling
across the world’s boreal forests. They vali-
date the model output against independent
data. Studying phenotypic and genotypic

variation within species across space (e.g.,
within the range of species) represents one
primary aspect of functional biogeography
(63, 64). Future efforts to quantify both in-
traspecific phenotypic and genetic varia-
tion within species’ ranges should bring
interesting insights into the eco-evolutionary
drivers of species’ distributions and help
bridge functional ecology, spatial ecology,
genetics, and evolutionary biology (65)
(Fig. 1). The question of accounting for
intraspecific variation in cross-species trait-
based studies has been extensively discussed
for the last 5 years (52, 66, 67). The impor-
tance of accounting for intraspecific vari-
ation at macroecological scales, when
interspecific variations are expected to be
large, is still debated (21, 67–69).
A functional trait approach has now been

rapidly and extensively developed in plant
ecology, aided by the development of stan-
dardized protocols and methodologies (70,
71). More recently, similar initiatives have
been initiated for microbes and animals (17,
72–74). These initiatives will favor cross-
taxonomic group comparisons of trait di-
versity patterns from local to global and pave
the road of an integrated, comprehensive
framework for the understanding of ecology
at large spatial and temporal scales. In this
special feature, Whittaker et al. (75) are able
to provide new insights in the field of island
biogeography by building functional
diversity–area relationships, in comple-
ment to species richness–area relationships
and compare them across taxonomic groups
(here between beetles and spiders). The
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Fig. 1. Functional biogeography: an emergent field at the crossroads of several science fields. Functional biogeography calls for knowledge from multiple fields to answer
questions related to the distribution of forms and functions of organisms, populations, communities, ecosystems, and biomes across spatial scales.
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analysis of congruence of trait diversities
across groups is also timely for better tar-
geting conservation areas, quantifying and
explaining multitropic networks and evalu-
ating ecosystem services (76). Interestingly,
in this special feature, Kembel et al. (77)
demonstrate how phyllosphere bacterial
communities impact the performance of
plants and the structure of plant communities
in a Neotropical forest. The authors propose
that the phyllosphere bacterial diversity is
a key component of plant functioning and
should be considered as a plant functional
trait, hence extending our current definition
of functional traits (40). This study sheds
light on the ecological role of the extended
phenotype, still largely ignored in trait-based
ecology; in particular, its importance for the
adaption of organisms and for the inter-
actions among them. More broadly, such

pioneering studies are a step forward in the
quantification of species interactions (in-
cluding mutualism, competition, facilitation,
predation), which remains a priority question
in community ecology and biogeography.
Identifying the traits involved in species
interactions (interaction traits hereafter) is
challenging but pivotal for several approaches
including network analyses. Considering the
interacting communities (the phyllosphere
bacterial communities) as traits of other
organisms (the plants) is one promising
step in that direction.

From Patterns to Predictions
Describing Trait Diversity Across Space.
We still lack knowledge of the response of
organismal traits to environmental changes
for most kingdoms, including plants, which
is, however, a prerequisite to make trait-
based ecology a predictive science (Fig. 2).

The first trait–environment relationships
were established from local studies (78, 79),
but site-dependent effects and the restricted
range of environmental conditions covered in
most studies question the robustness of the
results. A functional biogeography approach
to this question is a relevant alternative (80).
Indeed, examining how species and their
functionalities vary geographically can be
useful because many of the same drivers of
change that occur at every single site on
earth have already varied across time and
across space. The study from Reich et al.
(81) is a notable example. Using a large
global biomass dataset, the authors provide
biogeographically explicit relationships be-
tween biomass partitioning in trees and
temperature, elucidating a long-standing
ecological question about the variation of
plant biomass allocation with increasing
stressful conditions.
The establishment of robust trait–envi-

ronment relationships will help achieve one
core goal of functional biogeography: to
place measures of the functions of bio-
diversity on a map (58, 60, 82). Such func-
tional maps are indeed the bases of many
questions in functional biogeography and
derived fields (57). In this special feature,
Bennie et al. (83) elegantly map a core be-
havioral trait in mammals: the diel time
partitioning. They show that the bioge-
ography of this trait is under the in-
fluence of thermal constraints but also
artificial lighting and other anthropo-
genic activities. Such a finding is important
for improving the modeling of mammals’
distribution. Beyond macrophysiological
implications on the biogeography of species,
mapping the diversity of organismal func-
tions is also central to the quantification of
ecosystem functioning and services. Here,
van Bodegom et al. (84) show that trait data
are now available worldwide to map core
traits pertaining to plant functioning (leaf
mass per area, stem-specific density, and
seed mass in their study) at a global scale.
Further, they demonstrate that the spatial
variation of these three traits alone explains
a large part of observed vegetation types,
thus linking trait distributions to dynamic
global vegetation models (DGVMs). Ulti-
mately such maps can help refine earth
science and land surface models in a more
continuous manner, i.e., by replacing the
spatial distribution of plant functional
types by continuous maps of functional
traits as input information in those models
(33) provided that data on traits and spe-
cies occurrences are available (Fig. 3).
Finally, the supposed link between func-

tional traits and resource availabilities offers
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Fig. 2. The three tenets of functional biogeography: describe, explain, predict. The first tenet of functional bio-
geography is to describe the distribution of forms and functions along environmental gradients and across spatial
scales. The second is to use this information to explain the geographic distribution of organisms, biodiversity (notably
species and phylogenetic diversity) patterns, and ecosystem processes and services. The third is to predict their
responses to environmental changes using trait-based predictive functions and models.
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new insights into the physiological limits of
the biogeographical distribution of species
and the delineation of their fundamental and
realized niches. In this issue, Stahl et al. (85)
successfully show that three key functional
traits—seed mass, wood density and plant
height—explain species’ range limits of a
continental flora. Maps of functional traits
could also be considered as new environ-
mental layers for species distribution model-
ing (86, 87). Such analyses are a step forward
in the definition and quantification of the
functional niches of species (18, 88).

Explaining Species Coexistence, Species
Diversity, and Community Assembly at
Local to Regional and Continental Scales.
Functional biogeography can shed light on
local species assembly processes and the
structure of communities. The idea that
local processes depend on regional ones
is not new in biogeography (89, 90), but
the rising of systematic and standardized
descriptions of trait diversity across scales can
accelerate quantification of ecological prop-
erties and processes and the test of ecological
theories on patterns of species diversity

(Fig. 3). For instance, delineating the func-
tional trait space of a region is a way to
evaluate the niche space available in this
region (18, 86), which should subsequently
help explain local species diversity patterns
(86, 91, 92). In this special feature, Lamanna
et al. (86) recast several biodiversity theories
for species richness gradients in terms of
variation in functional diversity. As a result,
they are able to uniquely assess several trait-
based hypotheses for the latitudinal gradient
of species richness but from a trait perspec-
tive. Based on a large botanical and trait
database for woody species in the New
World, they find that species occupy a larger
functional space in the temperate zone in
comparison with the tropics. This finding
contradicts several theories that have sug-
gested that there are a greater number of
species in the tropics due to larger trait or
niche space. In the future we expect more
and more powerful tests of biodiversity
theories and the elucidation of the bio-
geographical patterns of species richness by
using new botanical and animal trait data-
bases worldwide (Fig. 3). These efforts will

help solidify the development of trait-based
biogeography theory.
Functional traits are increasingly used in

community ecology to detect and quantify
the processes that shape ecological com-
munities (52, 93, 94). With a biogeography
perspective, this approach can be applied to
understand the spatial scaling of assembly
processes across broad gradients. In particu-
lar, the scaling of species interactions is the
source of one of the most intense debates
in biogeography (3, 14, 95–98). Indeed
understanding when and how local biotic
interactions influence the biogeographical
distribution of species is crucial for species
distribution modeling (13, 15). Further, the
intensity of species interactions (competi-
tion in particular) has long been supposed
to vary along environmental and latitudinal
gradients (e.g., less competition expected
in harsh environments and/or higher lati-
tude), which could explain the latitudinal
patterns of species richness (3, 95). Map-
ping traits directly involved in species inter-
actions (82, 99) can help us to understand the
scaling of species interactions. For instance,
one can expect past intense competition
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in biogeographical areas characterized by
greater variance in interaction traits (58) as
a result of limiting similarity processes (100).

Elucidating the Drivers of Ecosystem
Functioning and Services Across Space.
Functional biogeography offers a unique
window to explain the variation of ecosystem
functioning at large scales (33). Elucidating
the drivers of ecosystem functioning at this
scale is of high priority for policymakers from
the perspective of modulating the impacts of
human-driven global changes and adjusting
conservation policies (101). Past functional
biogeography exercises successfully linked the
mean functional characteristics of ecosystems
to resource cycling (102), but the functional
structure of communities, i.e., the distribu-
tion of trait values within communities, was
not fully characterized. More recent advances
in functional ecology have provided tools to
quantify both mean functional characteristics
(e.g., CWM) and functional dispersion (e.g.,
Rao’s entropy) within ecosystems. Today it is
urgent to disentangle effects of both facets of
trait diversity in driving ecosystem function-
ing (103, 104). In particular, functional dis-
persion could be considered as a proxy of the
result of biotic interactions (see above); thus,
its quantification can provide insights into
the importance of species interactions in the
modulation of ecosystem functioning.
Latitudinal gradients, often considered as

natural laboratories (105), are particularly
appropriate tools for functional biogeog-
raphy exercises and are of particular rele-
vance to the analysis of large-scale patterns
in trait diversity and how it is related to
observed or inferred ecosystem processes.
In the next few years, relating the functional
structure of ecosystems to ecosystem func-
tional features inferred from remote sensing
outputs will be particularly valuable to
provide continuous maps of functional
traits, as well as highly resolved proxies for
ecosystem functioning (Fig. 3), as revealed
by recent successful attempts (106, 107).
Collectively, a better understanding and

quantification of the functional drivers of
ecosystem functioning across biogeographical
gradients will help refine plant functional
types, or eliminate their need entirely, for
earth science modeling (24). Practically,
providing well-resolved continuous maps of
functional traits is a first important step in
that direction (84).
The same line of reasoning can be applied

to ecosystem services given that ecosystem
functions are the biological bases of ecosystem
services. Interestingly, as shown by Lamarque
et al. (108), it is possible to evaluate ecosystem
services bundles and tradeoffs using a trait-

based empirical model. Using mountain
grasslands in the French Alps as a case study,
the authors are able to disentangle the direct
and indirect effects of climate and land use
on ecosystem services, including water qual-
ity, aesthetic value, and fodder quality and
quantity, through a scenario-based study.

Toward Predictions in a Changing World.
Because functional biogeography links or-
ganismal functions to their environment, it is
theoretically possible to predict the response
of organisms, communities, and ecosystems
to environmental changes from functional
traits (43, 44, 109). Ultimately, it appears
possible to predict bundles of ecosystem
services based on theoretical and empirical
knowledge and the mapping of different
facets of functional diversity (108, 110).
The stacking of different maps (e.g., taxo-

nomic, phylogenetic functional diversity,
carbon stocks, ecosystem productivity, aes-
thetic values, socio-ecological mapping of
species’ favorable habitats) (Fig. 3) will help
refine conservation areas because there is
little reason for a perfect overlapping of
species, functional, and phylogenetic rarity
(111). For instance, in this special fea-
ture, Mouillot et al. (112) show that the
functional vulnerability—defined as a po-
tential decrease of functional diversity fol-
lowing species loss—of fish fauna on tropi-
cal reefs can be high in areas characterized
by high species diversity. Conversely, func-
tional redundancy is discovered in low
species diversity areas. Together, this sug-
gests that conserving hotspots of species
diversity is not sufficient if one also aims at
targeting the functional insurance of biota.

The Rise of Specific Tools and Resources
Functional biogeography will advance faster
if large heterogeneous datasets and comput-
ing tools are combined and brought to bear
in a spatially explicit context (Fig. 3). These
datasets are now available or will emerge
soon. They encompass a global coverage
of geo-referenced species occurrences (113–
115), the functional characteristics of species
(21, 73, 116, 117), and more and more pre-
cise environmental layers (118, 119). Ecoin-
formatics accelerated the development of
datasets structured in a complex and consis-
tent fashion by the means of ontologies for
ecology (120, 121), methods for model–data
integration (122, 123), and the calculation
of the n-dimensional hypervolume (55, 86).
Computing and mathematical science are
developing approaches to spatial data mining
and the extrapolation of information from
incomplete datasets (124). For instance, using
Bayesian statistics, it will be possible to fill

gaps in trait databases for a given trait and
a given species with information from other
traits and other species (125, 126). Similarly,
in a spatial context, missing information in
a grid cell can be filled based on information
contained in surrounding grids (124).

Future Perspectives
Functional biogeography should help im-
prove our understanding of the biogeo-
graphical patterns of species diversity and,
ultimately, may allow us to predict the con-
sequences of global changes for ecosystem
functions and services. However, the de-
velopment of expectations specific to func-
tional biogeography is in its infancy. Indeed,
although functional biogeography is in-
herently process based, theory is still lacking.
To make functional biogeography a pre-
dictive science, it will be important to include
the eco-evolutionary dynamics of organisms,
communities, ecosystems, and beyond (10).
Some recent findings suggest a tight linkage
between functional traits and demography
(127), which represents a promising step in
the development of an integrative and dy-
namical theory to functional biogeography.
Another priority avenue is to provide

insights into trophic or food web models,
first by providing maps of functions of
primary producers. To do so, it is urgent to
better characterize traits across taxonomic
groups and their interrelationships (32,
128), as well as to identify and quantify
interaction traits. Rapid progress has been
made in ecoinformatics, but global cover-
age of functional traits, even for plants, is still
sparse. Until greater coverage is achieved, it
will be impossible to achieve an accurate es-
timation of trait diversity at a global scale and
to account for some facets of trait diversity,
including functional rarity. Further efforts
in ecoinformatics should also provide relevant
ontologies, including trait ontologies that
are proving themselves indispensable for
functional biogeography exercises.
A functional perspective to biogeography

can easily integrate intraspecific trait vari-
ation to assess the importance of local
adaptation and phenotypic plasticity in
the modulation of large-scale processes.
Nevertheless, although recent debates in
functional ecology have advanced our un-
derstanding of the importance of intra-
specific variation at local scales (52, 66, 129,
130), it is urgent to evaluate its importance
at large scales. It has been assumed that
species turnover and interspecific variations
predominate over intraspecific variation at
large scales (66), but empirical tests are
scarce and mostly come from the plant
kingdom (68, 69). Further, there are some
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specific areas of functional biogeography
where intraspecific variation should be
accounted for, in particular when character-
izing the functional space of a given species
(18) and its phenotypic variation within its
distribution range (63). A better evaluation
of intraspecific trait variation within species’
ranges, in complement to a quantification of
genetic variation, should bring novel insights

into the eco-evolutionary drivers of species’
biogeography and functional niches.
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