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Abstract

Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the
importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However,
tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set
of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution
techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community
detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is
bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between
partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which
quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each
community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network
diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with
those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture
complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific
characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.
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Introduction

Noninvasive neuroimaging techniques provide quantitative

measurements of structural and functional connectivity in the

human brain. Functional magnetic resonance imaging (fMRI)

indirectly resolves time dependent neural activity by measuring the

blood-oxygen-level-dependent (BOLD) signal while the subject is

at rest or performing a cognitive task. Diffusion weighted imaging

(DWI) techniques use MRI to map the diffusion of water

molecules along white matter tracts in the brain, from which

anatomical connections between brain regions can be inferred. In

each case, measurements can be represented as a weighted

network [1,2,3,4,5,6,7], in which nodes correspond to brain

regions, and the weighted connection strength between two nodes

can, for example, represent correlated activity (fMRI) or fiber

density (DWI). The resulting network is complex, and richly

structured, with weights that exhibit a broad range of values,

reflecting a continuous spectrum from weak to strong connections.

The network representation of human brain connectivity

facilitates quantitative and statistically stringent investigations of

human cognitive function, aging and development, and injury or

disease. Target applications of these measurements include disease

diagnosis, monitoring of disease progression, and prediction of

treatment outcomes [8,9,10,11,12]. However, efforts to develop

robust methods to reduce these large and complex neuroimaging

data sets to statistical diagnostics that differentiate between patient

populations have been stymied by the dearth of methods to

quantify the statistical significance of apparent group differences in

network organization [13,14,15,16].

Network comparisons can be performed in several ways. In one

approach, network comparisons are made after applying a

threshold to weighted structural and functional connectivity

matrices to fix the number of edges at a constant value in all

individuals [4,13]. Edges with weights passing the threshold are set

to a value of 1 while all others are set to a value of 0 (a process

referred to as ‘binarizing’). In some cases results are tested for

robustness across multiple thresholds, although this increases the

probability of Type I (false positive) errors from multiple non-

independent comparisons. More generally, this procedure disre-

gards potentially important neurobiological information present in
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the original edge weights. A second approach involves examina-

tion of network geometry in the original weighted matrices without

binarizing. However, because the values of weighted metrics can

be influenced by both the average weight of the matrix and the

distribution of weights, this approach presents peculiar complica-

tions for the assessment of group differences [14,15]. Critically,

neither of these two approaches for network comparison allow for

a principled examination of network structure as a function of

weight (strong versus weak connections) or space (short versus long

connections). Disease-related group differences in network archi-

tecture that are present only at a particular edge weight range or at

a specific spatial resolution can therefore remain hidden.

In this paper, we employ several techniques to examine the

multi-resolution structure of weighted connectivity matrices: soft

thresholding, windowed thresholding, and modularity resolution.

A summary of these techniques is presented in Table 1, and each

method is discussed in more detail in the Methods section. We

apply these techniques to two previously published data sets:

structural networks extracted from diffusion tractography data in

five healthy human subjects [17] and functional networks

extracted from resting state fMRI data in people with schizophre-

nia and healthy controls (N = 58) [15]. As benchmark compari-

sons, we also explore a set of synthetic networks that includes a

random Erdős-Rényi network (ER), a ring lattice (RL), a small-

world network (SW), and a fractal hierarchical network (FH).

While multi-resolution techniques could be usefully applied to a

broad range of network diagnostics, here we focus on two

complementary mesoscale characteristics that can be used to

probe the manner in which groups of brain regions are connected

with one another: modularity and bipartivity. Modularity quan-

tifies community structure in a network by identifying groups of

brain regions that are more strongly connected to other regions in

their group than to regions in other groups [18,19]. Communities

of different sizes, nested within one another, have been identified

in both structural and functional brain networks [20,21,22,23,24]

and are thought to constrain information processing [25,26,27].

Bipartivity quantifies bipartite structure in a network by separating

brain regions into two groups with sparse connectivity within each

group and dense connectivity between the two groups. The

dichotomous nature of bipartitivity is particularly interesting to

quantify in systems with bilateral symmetry such as the human

brain, in which inter- and intra-hemispheric connectivity display

differential structural [28] and functional [29] network properties.

We describe these techniques, diagnostics, and null models in

detail in the Methods section and illustrate their utility in

addressing questions in systems and clinical neuroscience in the

Results section.

Methods

This section has three major components: (1) a description of

the empirical data examined in this study as well as the simpler

synthetic networks employed to illustrate our techniques in well-

characterized, controlled settings, (2) a summary of the graph

diagnostics used in our analysis to examine properties of mesoscale

network architecture, and (3) definitions of the soft thresholding,

windowed thresholding, and modularity resolution techniques

which provide a means to resolve network structure at different

connection strengths.

Empirical and Synthetic Benchmark Networks
We examine two separate neuroimaging data sets acquired

noninvasively from humans. The first is a set of N~6 structural

networks constructed from diffusion spectrum imaging (DSI) data

(taken from 5 subjects; one subject was scanned twice) and the

second is a set of N~58 functional networks constructed from

resting state functional magnetic resonance imaging (fMRI) data.

For comparison, we generate 4 types of synthetic network models

that range from an Erdős-Rényi random graph to models that

include more complex structure, including hierarchy and clustering.

Each network is described by an adjacency matrix A whose ijth

entry describes the weight of the edge connecting nodes i and j.
For the empirical brain networks, the edge weights are determined

by neuroimaging measurements. For the synthetic networks, we

construct weights to mimic the structural organization of the

network, as described below.

Empirical brain networks: Data acquisition and

preprocessing. Because our focus in this paper lies in method

development and illustration, we have chosen to utilize two

previously published empirical brain network data sets. These data

sets were chosen to represent the two neuroimaging techniques

most commonly utilized for analysis of brain network architecture:

diffusion imaging which captures anatomical structure, and fMRI

which captures brain function. For our diffusion data set, we chose

the DSI data from the seminal contribution of Hagmann et al.

2008 in PLoS Biol [17]. For our fMRI data set, we chose a resting

state data set acquired from both healthy controls and a patient

population to enable the comparison of multiresolution structure

in two sets of networks, thereby illustrating the utility of these

techniques in the context of clinical questions [15]. In both data

sets, we utilized the brain networks extracted and examined in

these two papers [17,15], enabling a direct comparison between

the utility of multiresolution techniques and previously published

single resolution techniques.

Structural networks:. We construct an adjacency matrix A

whose ijth entries are the probabilities of fiber tracts linking region

i with region j as determined by an altered path integration

method. The resultant adjacency matrix A contains entries Aij

that represent connection weights between the 998 regions of

interest extracted from the whole brain. We also define the

distance matrix L to contain entries Lij that are the average

curvilinear distance traveled by fiber tracts that link region i with

region j, or the Euclidean distance between region i and j, where

Author Summary

The human brain is a fascinating organ full of exquisite
anatomical and functional detail. A striking feature of this
detail lies in the presence of small modules nested within
one another across hierarchical levels of organization. Here
we develop and apply computational analysis tools to
probe these features of brain architecture by examining
network representations in which brain areas are treated
as network nodes and links between areas are treated as
network edges. The class of methods that we describe are
referred to as ‘‘multi-resolution techniques’’ and enable us
to identify and isolate neural structures associated with
different edge properties. Our methods lead to multi-
resolution curves of these network diagnostics over a
range of spatial, geometric, and structural scales. For
statistical comparison, we contrast our results with those
obtained for several benchmark null models. Our work
demonstrates that multi-resolution diagnostic curves
capture complex organizational profiles in weighted
graphs. We apply these methods to the identification of
resolution-specific characteristics of healthy weighted
graph architecture and altered connectivity profiles in
psychiatric disease.

Multiresolution Structure in Brain Networks
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no data of the arc length was available. We define separate A and

L adjacency matrices for each of 5 healthy adults with 1 adult

scanned twice (treated as 6 separate scans throughout the paper).

For further details, see [17].

Functional networks: We construct an adjacency matrix A

whose ijth entry is given by the absolute value of the Pearson

correlation coefficient between the resting state wavelet scale 2

(0.06–0.12 Hz) blood oxygen level dependent (BOLD) time series

from region i and from region j. The resultant adjacency matrix A
contains entries Aij that represent functional connection weights

between 90 cortical and subcortical regions of interest extracted

from the whole brain automated anatomical labeling (AAL) atlas

[30].

We define separate adjacency matrices for each of 29

participants with chronic schizophrenia (11 females; age 41.3 +
9.3 (SD)) and 29 healthy participants (11 females; age 41.1 + 10.6

(SD)) (see [31] for detailed characteristics of participants and

imaging data). We note that the two groups had similar mean

RMS motion parameters (two-sample t-tests of mean RMS

translational and angular movement were not significant at

p~0:14 and p~0:12, respectively), suggesting that identified

group difference in network properties could not be attributed to

differences in movement during scanning.
Synthetic benchmark networks. In addition to empirical

networks, we also examine 4 synthetic model networks to illustrate

our techniques in well-characterized, controlled settings: an Erdös-

Rényi random network, a ring-lattice, a small world network, and

a fractal hierarchical network (see Fig. 9). These four network

models provide simple benchmark comparisons for the empirical

data but cannot be interpreted as biological models of the

empirical data. Indeed, the question of which graphical models

produce networks most similar to empirical data is a matter of

ongoing investigation [28]. All networks were created using

modified code from [32].

The Erdös-Rényi and the ring-lattice networks are important

benchmark models used in a range of contexts across a variety of

network systems. Small world and fractal hierarchical networks

incorporate clustering and layered structure, reminiscent of

properties associated with brain networks [33]. We emphasize

that the synthetic models are not intended to be realistic models of

the brain. Rather, we use them to isolate structural drivers of

network topology and to illustrate the utility of multi-resolution

approaches [34] in a controlled setting.

Most synthetic network models, including all those that we study

in this paper were originally developed as binary graphs (i.e. all

edge weights equal to either 0 or 1). Since we are specifically

interested in the effect of edge weights on network properties, we

consider weighted generalizations of these models, in which the

weights of edges are chosen to maintain essential structural

properties of the underlying graph (see Figure 9). For example, in

network models that display hierarchical structure, edge weights

differ across the hierarchical levels but remain constant within a

hierarchical level, while in network models with both short and

long distance topological connections, edge weights correspond to

the topological distance of connections (see below for additional

details). Importantly, all of these networks therefore maintain the

same number of nodes and edges as the empirical data, but differ

in terms of their average weight, degree distribution, and strength

distribution as expected mathematically from the differences in

their geometry (i.e., weighted network structure).

Erdös-Rényi Random (ER) model: The Erdös-Rényi random

graph serves as an important benchmark null model against which

to compare other empirical and synthetic networks. The graph

G(N,K) is constructed by assigning a fixed number of connections

K between the N nodes of the network. The edges are chosen

uniformly at random from all possible edges, and we assign them

weights drawn from a uniform distribution in ½0,1�.
Ring-Lattice (RL) model: The one-dimensional ring-lattice

model can be constructed for a given number of edges K and

number of nodes N by first placing edges between nodes separated

by a single edge, then between pairs of nodes separated by 2 edges

and so on, until all K connections have been assigned. To

construct a geometric (i.e. weighted) chain-like structure, we assign

the weights of each edge to mimic the topological structure of the

binary chain lattice. Edge weights decreased linearly from 1 to 0
with increasing topological distance between node pairs.

Table 1. Summary of multi-resolution methods for network diagnostics.

Technique Method Summary Control Parameter Strengths and Limitations Refs.

Soft
Threhsolding

Raise each entry in A to the power r:Aij?Ar
ij

r: power applied to entries in A. Small r limit
weights all connections equally. Large r limit
amplifies strong connections, relative to weak.

Enables continuous variation
of the contribution of edges of
different weights. Strong edges
may dominate, but all
connections retained.

[49,50]

Windowed
Thresholding

Construct binarized network a fixed
percentage of connections corresponding
to a range of edge weights

g: average edge weight of connections
within the window. Small g isolates weak
connections. Large g isolates strong connections.

Enables an isolated view of
structure at different edge
weights. Weak connections are
not obscured by strong
connections, but relationships
between strong and weak
connections are ignored.

[15,49]

Modularity
Resolution

Structural resolution tuned in community
detection. Sets a tolerance on the partition
into modules relative to a null model.

c: appears in the quality function Qb or Qw

optimized when dividing nodes into partitions.
Small c yields one large community.
Large c yields many small communities.

Enables a continuous variation
in the resolution of community
structure. This method has the
most direct, tunable control of the
output, but does not generalize to
diagnostics other than those
associated with modularity.

[51]

We use soft thresholding, windowed thresholding, and variation in the resolution parameter of modularity maximization to probe network architecture across scales
(Column 1). For each approach, we provide a method summary (Column 2), a description of the control parameter (Column 3), a brief synopsis of the strengths and
limitations of the approach (Column 4), and a few relevant references (Column 5).
doi:10.1371/journal.pcbi.1003712.t001
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Small World (SW) model: Networks with high clustering and

short path lengths are often referred to as displaying ‘‘small world’’

characteristics [35,36]. Here we construct a modular small world

model [33] by connecting N~2n nodes in elementary groups of

fully connected clusters of M~2m nodes, where m and n are

integers. If the number of edges in this model is less than K , the

remaining edges are placed uniformly at random throughout the

network. The edges in this model are either intra-modular (placed

within elementary groups) or inter-modular (placed between

elementary groups). To construct a geometrical modular small

world model, we assigned different weights to the two types of

edges: Aij~1 for intra-modular edges and Aij~0:5 for inter-

modular edges.

To ensure our comparisons are not dominated by the overall

network density, we construct synthetic network models with N
nodes and K edges to match the empirical data [13]. For modular

small world networks, this stipulation requires that we modify the

algorithm above to produce networks in which the number of

nodes is not necessarily an exact power of two. For comparisons to

the structural (functional) brain data, we generate a model as

described above with N~1024,M~8 (N~128,M~4) and then

chose 24 (38) nodes at random, which are deleted along with their

corresponding edges.

Fractal Hierarchical (FH) model: Network structure in the

brain displays a hierarchically modular organization

[20,21,22,23,24] thought generally to constrain information

processing phenomena [26,27,28]. Following [33,37], we create

a simplistic model consisting of N~2n nodes that form lmaxƒn
hierarchical levels to capture some essential features of fractal

hierarchical geometry in an idealized setting. At the lowest level of

the hierarchy, we form fully connected elementary groups of size

M~2m,m~n{lmaxz1 and weight all edges with the value 1. At

each additional level of the hierarchy l, we place edges uniformly

at random between two modules from the previous level l{1. The

density of these inter-modular edges is given by the probability

p(l)~E{l where E is a control parameter chosen to match the

connection density
K

N(N{1)
of the empirical data set. To mimic

this defining topological feature, we construct the network

geometry by letting edge weights at level l equal p(l). For

comparisons to the structural (functional) brain data, we generate

a model as described above with N~1024,M~8 lmax~7
(N~128,M~4,lmax~7) and then chose 24 (38) nodes at random,

which are deleted along with their corresponding edges.

Constructing network ensembles. Each empirical data set

displays variable K values. To construct comparable ensembles

of synthetic networks, we drew K from a Gaussian distribution

defined by the mean and standard deviation of K in the empirical

data. For comparisons to DSI empirical data, we constructed

ensembles of N~1000,K~(2:88+0:10):104 composed of 50

realizations per model. See Supplementary Information Table S1

for details on the ensembles.

Mesoscale Network Diagnostics
In this paper we focus on two, complementary network

characteristics that can be used to probe the manner in which

groups of brain regions are connected with one another:

modularity and bipartivity. These methods, however, are more

generally applicable, and could be used to evaluate weight

dependence of other metrics and data sets as well [38].

Community detection and modularity. Community de-

tection by modularity maximization identifies a partition of the

nodes of a network into groups (or communities) such that nodes

are more densely connected with other nodes in their group than

expected in an appropriate statistical null model. In this paper, we

use this method to extract values of network modularity and other

related diagnostics including community laterality, community

radius, and the total number and sizes of communities. An

additional feature of modularity maximization that is particularly

useful for our purposes is its resolution dependency, which enables

us to continuously monitor diagnostic values over different

organizational levels in the data.

Community detection can be applied to both binary and

weighted networks. Assuming node i is assigned to community ci

and node j is assigned to community cj , the quality of a partition

for a binary network is defined using a modularity index

[18,19,39,40,41]:

Qb~
1

2K

X
i,j

(Bij{cPij)d(ci,cj), ð1Þ

where
1

2K
is a normalization constant, B is the binary adjacency

matrix, c is a structural resolution parameter, and Pij is the

probability of a connection between nodes i and j under a given

null model. Here we use the Newman-Girvan null model [40] that

defines the connection probability between any two nodes under

the assumption of randomly distributed edges and the constraint of

a fixed degree distribution: Pij~
kikj

2K
, where ki is the degree of

node i. We optimize Qb from Equation 1 using a Louvain-like [42]

locally greedy algorithm [43] to identify the optimal partition of

the network into communities.

For weighted networks, a generalization of the modularity index

is defined as [44,45]:

Qw~
1

2W

X
i,j

(Aij{c
sisj

2W
)d(ci,cj), ð2Þ

where W~
1

2

X
ij

Aij is the total edge weight, A is the weighted

adjacency matrix, and si is the strength of node i defined as the

sum of the weights of all edges emanating from node i.

Due to the non-unique, but nearly-degenerate algorithmic

solutions for Qb and Qw obtained computationally [46], we

perform 20 optimizations of Equation 1 or 2 for each network

under study. In the results, we report mean values of the

following 4 diagnostics over these optimizations: the modularity

Qb or Qw, the number of communities, the number of singletons

(communities that consist of only a single node), and the

community laterality and radius (defined in a later sections).

We observed that the optimization error in these networks is

significantly smaller than the empirical inter-individual or

synthetic inter-realization variability, suggesting that these

diagnostics produce reliable measurements of network structure

(see Supplementary Information).

Community laterality. Laterality is a property that can be

applied to any network in which each node can be assigned to one

of two categories, and within the community detection method,

describes the extent to which a community localizes to one

category or the other [29]. In neuroscience, an intuitive category is

that of the left and right hemispheres, and in this case laterality

quantifies the extent to which the identified communities in

functional or structural brain networks are localized within a

hemisphere or form bridges between hemispheres.

For an individual community c within the network, the laterality

Lc is defined as [29]:

Multiresolution Structure in Brain Networks
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Lc~
DNr{Nl D

Nc

, ð3Þ

where Nr and Nl are the number of nodes located in the left and

right hemispheres respectively, or more generally in one or other

of the two categories, and Nc is the total number of nodes in c.

The value of l ranges between zero (i.e., the number of nodes in

the community are evenly distributed between the two categories)

and unity (i.e., all nodes in the community are located in a single

category).

We define the laterality of a given partition of a network as:

L~
1

N

X
c

NcLc{SX
c

NcLcT
 !

, ð4Þ

where we use S
P

c NcLcT to denote the expectation value of the

laterality under the null model specified by randomly reassigning

nodes to the two categories while keeping the total number of

nodes in each category fixed. We estimate the expectation value by

calculating
P

c NcLc for 1000 randomizations of the data, which

ensures that the error in the estimation of the expectation value is

of order 10{3.

The laterality of each community is weighted by the number of

nodes it contains, and the expectation value is subtracted to

minimize the dependence of L on the number and sizes of

detected communities. This correction is important for networks

like the brain that exhibit highly fragmented structure. Otherwise

the estimation would be biased by the large number of singletons,

that by definition have a laterality of Lc~1:0.

Community radius: To measure the spatial extent of a

community in a physically embedded network such as the human

brain, we suggest the notion of a community ‘radius’. Each node in

the brain network has a position in physical space, which can be

delineated by x, y, and z coordinates and which we refer to as that

node’s position vector. We calculate the standard deviation si of

the position vectors x along each dimension i. Then we estimate

the radius of the community as the length of the standard

deviation vector s as follows:

rc~
1

Nc

(N
X
i[c

rik k2{E
X
i[c

riE2)
1
2, ð5Þ

where Nc is the number of nodes in community c and ri is the

position vector of node i.

The average community radius of the entire network A is

rA~
1

N

X
c

Nc
rc

RA

, ð6Þ

where Nc serves to weight every community by the number of

nodes it contains (compare to Equation 4), and RA is a

normalization constant equal to the ‘radius’ of the entire network:

RA~
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
XN

i~1
rik k2

{E
XN

i~1
riE2)

r
. In this investigation,

community radius is evaluated only for the empirical brain

networks, since the synthetic networks lack a physical embedding.

Bipartivity. Bipartivity is a topological network characteristic

that occurs naturally in certain complex networks with two types of

nodes. A network is perfectly bipartite if it is possible to separate

the nodes of the network into two groups, such that all edges lie

between the two groups and no edges lie within a group. In this

sense bipartivity is a complementary diagnostic to modularity,

which maximizes the number of edges within a group and

minimizes the number of edges between groups.

Most networks are not perfectly bipartite, but still show a certain

degree of bipartivity. A quantitative measure of bipartivity can be

defined by considering the subgraph centrality SSCT of the

network, which is defined as a weighted sum over the number of

closed walks of a given length. Because a network is bipartite if and

only if there only exist closed walks of even length, the ratio of the

contribution of closed walks of even length to the contribution of

closed walks of any length provides a measure of the network

bipartivity [47]. As shown in [47], this ratio can be calculated from

the eigenvalues �lj of the adjacency matrix [47]:

b~
SSCevenT
SSCT

~

X
lj

cosh (lj)X
lj

exp (lj)
, ð7Þ

where SSCevenT is the contribution of closed walks of even length

to the subgraph centrality. In this formulation, b takes values

between 0:5 for the least bipartite graphs (fully connected graphs)

and 1:0 for a perfectly bipartite graph [47].

The definition of bipartivity given in Equation 7 provides an

estimate of b but does not provide a partition of network nodes

into the two groups. To identify these partitions, we calculate the

eigenvector corresponding to the smallest eigenvalue lmin of the

modularity quality matrix Mij~
1

2K
(Aij{

kikj

2K
) [48]. We then

partition the network according to the signs of the entries of this

eigenvector: nodes with positive entries in the eigenvector form

group one and nodes with negative entries in the eigenvector form

group two. This spectral formulation demonstrates that bipartivity

is in some sense an anti-community structure [48]: community

structure corresponds to the highest eigenvalues of M while the

bipartivity corresponds to the lowest eigenvalue of M.

Multi-Resolution Methods
We quantify organization of weighted networks across varying

ranges of connection weights (weak to strong) and connection

lengths (short to long), using three complementary approaches: soft

thresholding, windowed thresholding, and multi-resolution com-

munity detection. Each method employs a control parameter that

we vary to generate network diagnostic curves, representing

characteristics of the network under study. We refer to these curves

as mesoscopic response functions (MRF) of the network [34]. A

summary of the methods and control parameters is contained in

Table 1.

Soft thresholding. To date, most investigations that have

utilized thresholding to study brain networks have focused on

cumulative thresholding [4], where a weighted network is

converted to a binary network (binarized) by selecting a single

threshold parameter t and setting all connections with weight

Aijwt to 1 and all other entries to 0. Varying t produces multiple

binary matrices over a wide range of connection densities (sparsity

range). On each of these matrices, we can compute a network

diagnostic of interest. One disadvantage of this hard thresholding

technique is that it assumes that matrix elements with weights just

below t are significantly different from weights just above t.

Soft thresholding [49,50] instead probes the full network

geometry as a function of edge weight. First, we normalize edge

weights to ensure that all Aij are in ½0,1�. Next, we create a family

of graphs from each network by reshaping its weight distribution

by taking the adjacency matrix to the power r: Aij?Ar
ij . At each

value of r, the distribution of edge weights – and by extension, the
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network geometry – is altered. As r goes towards zero, all nonzero

elements of the matrix have larger and larger weights. At r~0, the

weight distribution approximates a delta function: all nonzero

elements of the resulting matrix have the same weight of Ar
ij~1,

which corresponds to the application of a hard threshold at t~0.

At r??, the weight distribution is heavy-tailed: the majority of

elements of the resulting matrix are equal to 0, corresponding to

the application of a hard threshold at t?maxij Aij .

Windowed thresholding. A potential disadvantage of both

the cumulative and soft thresholding approaches is that results

may be driven by effects of both connection density and the

organization of the edges with the largest weights. As a result, these

procedures can neglect underlying structure associated with

weaker connections.

Windowed thresholding [15,49] instead independently probes

the topology of families of edges of different weights. We replace

the cumulative threshold t with a threshold window ½g{,gz� that

enforces an upper and lower bound on the edge weights retained

in the construction of a binary matrix. We can specify this window

using two parameters: (i) a fixed percentage p of connections which

are retained in each window, and (ii) the average percentile weight

g of connections in each window. Note that we refer to the average

percentile edge weight g in the remainder of this document as the

connection weight. For example, if we specify p~0:10 and

g~0:40, then we can identify the values g, g{ and gz (here

given as percentiles of all connections) that provide a set of p � K
edges whose average percentile edge weight is 0:40. Each pair of

variables (p,g) ensures a unique set of edges.

More specifically, for each network A, we construct a family of

binary graphs Bp(g), each of which depends on the window size p
(percentage of connections retained), and the average weight g of

connections in the window (together p and g determine the upper

and lower bounds, g{ and gz, defining the window):

B
p
ij(g)~

1, if Aij [ ½g{, gz�;
0, otherwise:

�
ð8Þ

The fixed window size (5%–25%) mitigate biases associated

with variable connection densities [4,14,15]. Each resulting binary

graph Bp(g) in the family summarizes the topology of edges with a

given range of weights. The window size sets a resolution limit to

the scale on which one can observe weight dependent changes in

structure (see the Supplementary Information).

To probe the roles of weak versus strong edges and short versus

long edges in the empirical brain networks, we extract families of

graphs based on (i) networks weighted by correlation strength

(fMRI), (ii) networks weighted by number of white matter

streamlines (DSI), (iii) networks weighted by Euclidean distance

between brain regions (DSI), and (iv) one network weighted by

fiber tract arc length (DSI). For each case we compute graph

diagnostics as a function of the associated connection weight g.

This method isolates effects associated with different connection

weights, but does not resolve network organization across different

ranges of weights.

Resolution in community detection. The definition of

modularity in Equations 1,2 includes a resolution parameter c
[51,52,53] which tunes the size of communities in the optimal

partition: high values of c lead to many small communities and low

values of c lead to a few large communities. We vary c to explore

partitions with a range of mean community sizes: for the smallest

value of c the partition contains a single community of size N,

while for the largest value of c the partition contains N

communities of size unity. In physically embedded systems, such

as brain networks, one can probe the relationship between

structural scales uncovered by different �c values and spatial scales

defined by the mean community radius r.

Results

Multi-resolution methods serve as tools to investigate the

structure of networks in ways that are unapproachable to single-

resolution methods. What types of multi-resolution structure might

be present in a network? One type of multi-resolution structure

corresponds to the properties of individuals edges. In weighted

embedded networks, for example, edges have both weights and

lengths, and therefore network architecture might vary over both

weight- or length-scales, and even perhaps differently over these

two scales. Understanding this multi-resolution structure can

inform our interpretations of network diagnostics and can provide

mathematical means to distinguish between real and synthetic

networks or between healthy and diseased brain networks.

To illustrate these points, we apply multi-resolution diagnostics

to a sequence of 5 problems involving weighted empirical and

synthetic network data (see Fig. 1). Problem 1 illustrates the utility

of multi-resolution methods in informing our interpretations of

network diagnostics. Problems 2 and 5 illustrate the utility of

multi-resolution methods in distinguishing different types of

networks. Problems 3 and 4 illustrate how multi-resolution

structure in networks can differ across weight and length scales.

We summarize each of these problems in more detail below.

N Problem 1: Probing Drivers of Weighted Modularity.
We begin our analysis with the weighted modularity Qw

(Equation 2), a diagnostic that is based on the full weighted

adjacency matrix. Using soft thresholding, we show that Qw is

most sensitive to the strongest connections. This motivates the

use of windowed thresholding to isolate the topology of

connections based on their weight.

N Problem 2: Determining Network Differences in
Multiresolution Structure. In anatomical brain data and

corresponding synthetic networks, we use windowed thresh-

olding to obtain multi-resolution response functions (MRFs) for

modularity Qb(g) and bipartivity b(g) as a function of the

average weight g within the window. MRFs of synthetic

networks do not resemble MRFs of the brain.

N Problem 3: Uncovering Differential Structure in Edge
Strength & Length. Using windowed thresholding, we

probed the multiresolution structure in anatomical brain data

captured by two measures of connection weight: fiber density

and fiber length. We observe that communities involving short,

high density fibers tend to be localized in one hemisphere,

while communities involving long, low density fibers span the

hemispheres.

N Problem 4: Identifying Physical Correlates of Multi-
resolution Structure. To investigate structure that spans

geometric scales, we vary the resolution parameter in

modularity maximization to probe mesoscale structure at

large (few communities) and small scales (many communities).

By calculating community radius, we find that large commu-

nities, as measured by the number of nodes, are embedded in

large physical spaces.

N Problem 5: Demonstrating Clinical Relevance. To test

diagnostic applicability, we apply our methods to functional

(fMRI) networks extracted from a people with schizophrenia

and healthy controls. Using windowed thresholding, we

observe previously hidden significant differences between the
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two groups in specific weight ranges, suggesting that multi-

resolution methods provide a powerful approach to differen-

tiating clinical groups.

In the remainder of this Results section, we describe each of

these problems and subsequent observations in greater detail.

Probing Drivers of Weighted Modularity
In this first section, we examine Problem 1: Probing Drivers of

Weighted Modularity. We begin our analysis with measurements

that illustrate the sensitivity of mesoscale network diagnostics to

the edge weight organization and distribution. We employ the

weighted modularity Qw to characterize the community structure

of the network and ask whether the value of this diagnostic is

primarily driven by the organization of strong edges or by the

organization of weak edges. To answer this question, we will utilize

two methods: network rewiring and soft thresholding.

Rewiring. By randomly rewiring connections in a weighted

network, one can quantify which connections dominate the value

of the diagnostic in the original adjacency matrix. In empirical

DSI data and three synthetic networks, we compare results

obtained when a percentage p of the connections are rewired,

starting with the strongest connections (solid lines) or starting with

the weakest connections (dashed lines); see Fig. 2. We observe that

modularity Qw as a function of rewiring percentage p depends on

the network topology. Randomly rewiring an Erdös-Rényi

network has no effect on Qw since it does not alter the underlying

geometry. However, randomly rewiring a human DSI network or

a synthetic fractal hierarchical or ring lattice network leads to

changes in Qw, that moreover depend on the types of edges

rewired. Rewiring a large fraction of the weakest edges has a

negligible effect on the value of Qw, while rewiring even a few of

the strongest edges decreases the value of Qw drastically in all three

networks. These results illustrate that the value of Qw is dominated

by a few edges with the largest weights. For additional

contributions to Qw from the number of singletons in the network,

see Supplementary Figure S4 and accompanying text.

Soft thresholding. To more directly examine the role of

edge weight in the value of the maximum modularity, we employ

soft thresholding, which individually raises all entries in the

adjacency matrix to a power r (see the Methods Section for

methodological details and Fig. 1 for a schematic). Small values of

r tend to equalize the original weights, while larger values of r
increasingly emphasize the stronger connections. By varying r, we

can probe similarities and differences in both the weight

distributions and weight geometries. In Fig. 3 we evaluate the

mesoscopic response function (MRF) Qw as a function of r, for

empirical functional (fMRI) brain networks, as well as two

synthetic networks. While the range of r most useful to study in

any particular scientific investigation is an open question, here we

Figure 1. Pictorial schematic of multi-resolution methods for weighted networks. We can apply soft or windowed thresholding, and vary
the resolution parameter of modularity maximization to uncover multiresolution structure in empirical data that we summarize in the form of MRFs of
network diagnostics.
doi:10.1371/journal.pcbi.1003712.g001
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vary r from 10{4 to 104. Our results illustrate that Qw(r) varies

both in shape and limiting behavior for different networks.

In the limit of r?0, the sparse networks (FH and ER) all

converge to a non-zero value of Qw, while the fully connected

fMRI network converges to Qw~0. In the limit of r??, the

networks in which all edges have unique weights (i.e., a continuous

weight distribution, which occurs in the empirical network as well

as the ER network) converge to Qw~0, while the FH network,

where by construction there exists multiple edges with the

maximum edge weight, (i.e., a discrete weight distribution)

converge to a non-zero value of Qw(r). Networks with continuous

rather than discrete weight distributions display a peak in Qw(r),
but the r value at which this peak occurs (rpeak, marked by a dot on

each curve in Fig. 3) differs for each network. The conventional

measurement of weighted modularity Qw is associated with the

value for r~1 (i.e. the original adjacency matrix), marked by the

vertical dashed line in Fig. 3). In comparing curves it is clear that

the conventional measurement (a single point) fails to extract the

more complete structure obtained by computing the MRF using

soft thresholding.

Summary. The results presented in Fig. 2 and Fig. 3 provide

two types of diagnostic curves that illustrate features of the

underlying weight distribution and network geometry. The curves

themselves and the value of rpeak in Fig. 3 could be used to

uncover differences in multiresolution network structure, for

example in healthy versus diseased human brains. However,

because the value of Qw is dominated by a few edges with the

largest weights, the identification of community structure in weak

or medium-strength edges requires an entirely separate mathe-

matical approach that probes the pattern of edges as a function of

their weight, such as is provided by windowed thresholding (see

next section).

Determining Network Differences in Multiresolution
Structure

In this section, we examine Problem 2: Determining Network

Differences in Multiresolution Structure. Determining differences

in multiresolution network structure requires a set of techniques

that quantify and summarize this structure in mesoscopic response

functions of network diagnostics. Windowed thresholding is a

unique candidate technique in that it resolves network structure

associated with sets of edges with different weights. The technique

decomposes a weighted adjacency matrix into a family of graphs.

Each graph in this family shares a window size corresponding to

the percentage of edges in the original network retained in the

graph. A family of graphs is therefore characterized by a control

parameter corresponding to the mean weight g of edges within the

window. As we illustrate below in the context of network

modularity and bipartivity, this control parameter can be

optimized to uncover differences in multiresolution structure of

networks.

Modularity. The modularity MRF Qb(g) as a function of

weight g distinguishes between different networks in both its shape

and its limiting behavior (see Figure 4A–C). The fractal hierar-

chical model (FH) yields a stepwise increase in modularity, where

each step corresponds to one hierarchical level. The small world

model (SW) illustrates two different regimes corresponding to (i)

the random structure of the weakest 60% of the connections and

Figure 2. Use of rewiring strategies to probe geometric drivers
of weighted modularity. Changes in the maximum modularity as a
given percentage p of the connections are randomly rewired for
synthetic (fractal hierarchical, FR, in blue; Erdös-Rényi, ER, in black; ring
lattice, RL, in cyan) and empirical (Brain DSI in mustard) networks.
Dashed lines show the change of modularity when the p weakest
connections are randomly rewired; solid lines illustrate the correspond-
ing results when the p strongest connections are rewired. For the brain
data and the synthetic networks, the value of the weighted modularity
Qw is most sensitive to the strongest connections in both the synthetic
and empirical networks.
doi:10.1371/journal.pcbi.1003712.g002

Figure 3. Use of soft thresholding strategies to probe
geometric drivers of weighted modularity. Changes in maximum
modularity Qw(r) as a function of the control parameter r for soft
thresholding. MRFs are presented for synthetic (fractal hierarchical, FR,
in blue; Erdös-Rényi, ER, in black) and empirical (Brain fMRI in red)
networks. Dots mark the peak value for different curves, which occur at
different values of r. The vertical dashed line marks the conventional
value of Qw obtained for r~1. The single, point summary statistic
Qw(r~1) fails to capture the full structure of the MRF revealed using
soft thresholding.
doi:10.1371/journal.pcbi.1003712.g003
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(ii) the perfectly modular structure of the strongly connected

elementary groups. The Erdös-Rényi network (ER) exhibits no

weight dependence in modularity, since the underlying topology is

constant across different weight values. The ring lattice exhibits an

approximately linear increase in modularity, corresponding to the

densely interconnected local neighborhoods of the chain. The

structural brain network exhibits higher modularity than ER

graphs over the entire weight range, with more community

structure evident in graphs composed of strong weights.

Bipartivity. The bipartivity MRF b(g) as a function of

weight g also distinguishes between different networks in both its

shape and its limiting behavior (see Fig. 4C–E). The bipartivity of

the Erdös-Rényi network serves as a benchmark for a given choice

of the window size, since the underlying uniform structure is

perfectly homogeneous, and b(g) therefore only depends on the

connection density of the graph. The small world model (SW)

again shows two different regimes corresponding to (i) the random

structure of the weakest 60% of the connections and (ii) the

perfectly modular (or anti-bipartite [48]) structure of the strongly

connected elementary groups. The fractal hierarchical model

shows a stepwise decrease in bipartivity, corresponding to the

increasing strength of community structure at higher levels of the

hierarchy. The regular chain lattice model shows greatest

bipartivity for the weakest 50% of connections and lowest

bipartivity for the strongest 50% of connections. Intuitively, this

behavior stems from the fact that the weaker edges link nodes to

neighbors at farther distances away, making a delineation into two

sparsely intra-connected subgroups more fitting.

Summary: In all model networks, the bipartivity shows the

opposite trend as that observed in the modularity (compare top

and bottom rows of Figure 4), supporting the interpretation of

bipartivity as a measurement of ‘‘anti-community’’ structure [48].

It is therefore of interest to note that the DSI brain data shows very

low bipartivity (close to the minimum possible value of 0:5) over

the entire weight range, consistent with its pronounced community

structure over different weight-based resolutions.

Uncovering differential structure in edge strength &

length. In this section, we examine Problem 3: Uncovering

Differential Structure in Edge Strength & Length. Unlike the

synthetic networks, human brain networks are physically embed-

ded in the 3-dimensional volume of the cranium. Each node in the

network is therefore associated with a set of spatial coordinates and

each edge in the network is associated with a distance between

these coordinates. MRFs for network diagnostics can be used to

compare this physical embedding with the network’s structure,

and, as we show below, could offer particular utility in uncovering

neurophysiologically relevant individual differences in network

architecture.

To illustrate the utility of this approach, we extract MRFs using

two different measures of connection weight g for structural DSI

brain data (see Figure 5). In one case g is the density of fiber tracts

between two nodes, and in the other case g is the length of the

Figure 4. Mesoscale diagnostics as a function of connection weight. (A–C) Modularity as a function of the average connection weight g (see
Methods Section) for fractal hierarchical, small world (B), Erdös-Rényi random, regular lattice (C) and structural brain network (D). The results shown
here are averaged over 20 realizations of the community detection algorithm and over 50 realizations of each model (6 subjects for the brain DSI
data). The variance in the measurements is smaller than the line width. (D–F) Bipartivity as function of average connection weight of the fractal
hierarchical, small world, Erös-Rényi random model networks and the DSI structural brain networks. We report the initial benchmark results for a
window size of 25% but find that results from other window sizes are qualitatively similar (see the Supporting Information).
doi:10.1371/journal.pcbi.1003712.g004
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connections, measured by Euclidean distance or tract length. High

density and short length edges tend to show more prominent

community structure (higher Qb(g)), with communities tending to

be isolated in separate hemispheres (higher L(g)). Low density and

long edges tend to show less prominent community structure

(lower Qb(g)), with communities tending to span the two

hemispheres (lower L). Bipartivity peaks for long fiber tract arc

lengths, corresponding to the separation of the left and right

hemisphere which is even more evident in smaller window sizes

(see Supplementary Information). These results suggest a relation-

ship between spatial and topological structure that can be

identified across all edge weights and lengths.

The shapes of the MRFs are consistent across individuals. The

small amount of inter-individual variability in Qb(g) and b(g) is

observed in graphs composed of weak edges. Weak connections

may be (i) most sensitive to noise in the experimental measurements,

or (ii) most relevant to the biological differences between individuals

[15]. Further investigation of individual differences associated with

weak connections is needed to resolve this question.

Identifying Physical Correlates of Multiresolution
Structure

In this section, we examine Problem 4: Identifying Physical

Correlates of Multiresolution Structure. Windowed thresholding

enables us to separately probe the organization of edges according

to specific properties that define their weights (e.g., weak versus

strong, long versus short, etc.). This prevents strong edge weights

from dominating the measurements. However, an important

limitation of this method is that network diagnostics are restricted

to a particular class of nodes within each window, and thus this

method potentially misses important structure associated with the

topology connecting different geometrical scales. Here we illustrate

methods to combine these sources of information, and demon-

strate that small communities in human anatomical brain

networks tend to be geographically localized while large commu-

nities tend to be geographically distributed.

To probe community structure at different geometrical scales,

we employ a complementary approach. By tuning the resolution

parameter c in the optimization of the modularity quality function

(Equations 1 and 2), we can identify partitions of the network into

both many small (high c) and a few large (low c) communities (see).

Compared to our other control parameters, the resolution

parameter tunes the output of a diagnostic (e.g. the number of

communities), rather than acting directly in the edge weights

themselves.

Varying c allows us to probe several features of the network.

First, we can uncover the fragmentation profile of a network, as

illustrated in Fig. 6A. For example, in brain DSI networks, the

Figure 5. Effect of connection density and length on mesoscale diagnostics. (A–B) Modularity Qb , (C–D) laterality L and (E–F) bipartivity b as
a function of the fiber tract density density (A,C,E), fiber tract arc length (B,D,F, blue curve) and Euclidean distance (B,D,F, orange curve). Orange curves
correspond to the mean diagnostic value over DSI networks; blue curves correspond to the diagnostic value estimated from a single individual. The
orange curves in panels B, D, and F represent the Euclidean distance between the nodes; the blue curve represents the average arc length of the fiber
tracts. The insets illustrate partitions of one representative data set (see the Methods Section), indicating that communities tend to span the two
hemispheres thus leading to low values of bipartivity. All curves and insets were calculated with a window size of 25%.
doi:10.1371/journal.pcbi.1003712.g005
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number of non-singleton communities peaks at approximately

c~100, after which the network fragments into isolated nodes.

Second, we can probe the relationship between community

structure and physical network embedding. We observe a

polynomial relationship between community radius and the

resolution parameter (see Fig. 6B) and by extension the number

of nodes in the community (Fig. 6C), highlighting the interdepen-

dence of geometrical and spatial structure in the brain. Small

communities tend to be geographically localized while large

communities tend to be geographically distributed, suggestive of

efficient embedding [54]. Modular networks that are not efficiently

embedded into physical space would demonstrate no such

relationship. The interaction between space and topology could

enhance the organization of information transmission and

computing: smaller information processing tasks could be com-

pleted by local circuits while larger tasks might make use of more

extensive connectivity patterns.

Demonstrating Clinical Relevance
In this section, we examine Problem 5: Demonstrating Clinical

Relevance. A primary goal of the analysis of human brain

networks is to identify changes in network architecture that relate

to neurodegenerative diseases or mental disorders. In this section,

we investigate the potential applications of multi-resolution

techniques to group comparisons by comparing the MRFs for

functional brain networks extracted from healthy controls to those

extracted from people with schizophrenia. We demonstrate

surprisingly that group differences can be located in graphs

composed of weak edges.

Functional brain network architecture at rest [15,55,56] and

during task performance [8,57,58] is known to be altered in

schizophrenia [9,59], supporting the hypothesis that schizophrenia

stems from large-scale brain dysconnectivity [60,61,62]. Indeed, we

observe that the weighted modularity Qw (obtained at the default

resolution of c~1) is significantly higher in people with

schizophrenia than it is in healthy controls (nonparametric

permutation test: p ¼: 0:001; see Fig. 7A).

MRFs can be used to probe these dysconnectivies in novel ways.

By varying c, we demonstrate that this group difference is evident

over a range of resolutions, corresponding to partitions with both

somewhat smaller and somewhat larger communities (nonpara-

metric permutation test of group differences between these curves:

pv0:001; see Fig. 7B). The MRF also shows that the community

structure over very small and very large communities is not

different between the two groups, indicating that signatures of

dysconnectivity can be constrained to specific resolutions.

To determine whether the patterns of relatively weak or

relatively strong edges are most relevant to disease-related

alterations in mesoscale brain network architecture, we use the

windowed thresholding technique (see Fig. 7C). In both groups,

graphs composed of strong edges display higher modularity Qb(g)
than graphs composed of weak edges. However, group differences

are predominantly located in graphs composed of either the

strongest (high modularity) or weakest (low modularity) edges. No

group difference is evident in the bulk of graphs constructed from

edges with medium weights, which display modularity values

similar to those of the Erdös-Rényi model at the same connection

density. The surprising utility of weak connections in uncovering

dysconnectivity signatures has been noted previously in the context

of schizophrenia [15] and could potentially be of use in the study

of other neuropsychiatric disorders and brain injury.

The organization of weak and strong edges is further elucidated

by the MRFs for bipartivity b(g) as a function of the connection

weight g (see Fig. 7D). In both groups, bipartivity values are

smallest for edges with large weights. This finding is consistent

with those presented in Fig. 7C, indicating that strong edges tend

to be well localized within functional communities. In general, we

observe significantly larger values of bipartivity in people with

schizophrenia than in controls (nonparametric permutation test:

p~0:004). This difference is spread approximately evenly across

the entire range of connection weights, in contrast to the group

differences in modularity which were localized to a specific

resolution range.

Discussion

Functional and structural brain network organization displays

complex features such as hierarchical modularity [20,23,54] and

scaling relationships in both topological [28,63,64] and physical

space [54]. However, the identification of these structures has

largely depended on a binarization of inherently weighted

networks. In this paper, we explore several complementary

analytical techniques — including soft thresholding, windowed

thresholding, and modularity resolution — to identify structure at

varying scales in weighted brain graphs. We find that brain

network structure is characterized by modularity and bipartivity

mesoscopic response functions that are shaped unlike those of

Figure 6. Effect of the resolution parameter on measured community structure. (A) Number of non-singleton communities and (B) mean
community radius rA as a function of the resolution parameter c. (C) Mean number of nodes per (non-singleton) community SNcT as a function of
rA. Results are presented for networks extracted from the DSI data of six individuals, illustrating consistency across subjects.
doi:10.1371/journal.pcbi.1003712.g006
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several synthetic network models. Moreover, the organization of

these networks changes appreciably over topological, geometric,

and spatial resolutions. Together, our results have important

implications for understanding multiresolutions structure in

functional and structural connectomes.

Multi-Resolution Topological Structure
Mesoscale structures—including modularity and bipartivity—

display organization that is dependent on the weight of

connections included in the network. The strongest connections

in high resolution structural brain networks display stronger

community structure, more lateralization of communities to the

two hemispheres, and less bipartivity than the set of weakest

connections. However, even the weakest connections display a

modularity that is greater than expected in a random graph,

suggesting the presence of nontrivial structure that might provide

important insights into brain organization and function. These

results are interesting in light of the fact that such connections have

previously been thought to be driven purely by noise and are often

removed from the network for statistical reasons [65]. Our results

that weak connections retain structure are consistent with recent

evidence demonstrating the potential utility of studying the

topology (binary) and geometry (weighted) of weak connections

for diagnostic purposes [15].

Non-random structure in weak connections could stem from

multiple factors – some more biologically interesting than others.

First, experimental noise that is preferentially located in particular

brain regions (e.g., fronto-temporal susceptibility artifacts) could

lead to non-homogeneous network structure. Second, weak

connections could be driven by different neurophysiological

mechanisms than those driving strong connections (e.g., phase-

lagged interactions would be measured as weak connections in

correlation-based functional networks). In this case, the meso-

scopic response functions would map out a transition between one

mechanism for weak connections and another for strong

connections. This latter possibility is potentially interesting from

a clinical perspective because it could help to disambiguate the role

of multiple mechanisms that could drive the altered connectivity

Figure 7. Multiresolution mesoscale structure in functional networks. Functional brain networks were extracted from resting state fMRI data
acquired from 29 people with schizophrenia and 29 healthy controls [15] (see Methods Section). (A) Weighted modularity for healthy controls (left)
and people with schizophrenia (right). Box plots indicate range and 25% (75%) quartiles over the individuals in each group. The structural resolution
parameter is c~1. (B) MRFs for the weighted modularity as a function of the resolution parameter c. (C) MRFs for binary modularity as a function of
connection weight. (D) MRFs for bipartivity as a function of connection weight. In panels (C) and (D), diagnostic values were estimated using a
window size of 5%. In all panels, p-values for group differences in summary statistics (panel (A)) and MRFs (panels (B–D)) were calculated using a non-
parametric permutation test [15]; resolutions displaying the strongest group differences are highlighted by gray boxes. In panels (B–D), error bars
show the standard deviation of the mean for healthy controls (blue) and people with schizophrenia (green).
doi:10.1371/journal.pcbi.1003712.g007
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patterns evident in many disease states [8,66,67]. In this work, we

have simply noted the presence of non-random structure in weak

connections but we cannot disambiguate the role of these factors.

Multi-Resolution Spatial Structure
In addition to weight dependence, mesoscale structures also

display organization that is dependent on the length of connections

included in the network. Networks composed of relatively long

connections show weaker community structure than networks

composed of relatively short connections. This distributed nature

of long connections is consistent with their hypothetical role in

connecting disparate functional modules [68]. Furthermore, our

results show that communities composed of long connections are

more likely to span both hemispheres and display high bipartivity

while those composed of shorter connections tend to be more

lateralized and display weaker bipartivity, suggesting their role in

both inter-hemispheric and inter-lobe communication.

To complement these analyses, we investigated the relationship

between community structure and connection distance by

employing the structural resolution parameter in the optimization

of the modularity quality function. Our results demonstrate that

modules composed of few nodes (i.e., community structure at fine-

scale structural resolutions) have small spatial radii while those

composed of more nodes (i.e., larger-scale structural resolutions)

have larger spatial radii. Importantly, this mapping between

structural and spatial resolutions would not be expected from a

network randomly embedded into physical space [54]. Further-

more this relationship between structural resolution and spatial

dimension of modules suggests a non-random but rather

hierarchical organization within modules, since we find the sub-

modules of each module to be have a smaller radius than the

super-module. This would not be expected if the sub-structure of a

module was randomly organized.

These results highlight the relationship between the geometry of

a network (based on edge weights) and the physical embedding of

that network into 3-dimensional space, a relationship which is of

interest in a wide variety of complex systems [69]. Such a

relationship is consistent with a large body of prior work

demonstrating that brain networks extracted from a range of

species tend to have near-minimal wiring [5,20,55,70,71,72],

implicating a density of connections in local geographic neigh-

borhoods and a sparsity of connections bridging those neighbor-

hoods. In contrast to these previous studies that link physical

distance to global (path-length and efficiency) and local (clustering

coefficient and local efficiency) network diagnostics, our work

uncovers the complementary influence of physical space on meso-

scale structures (modularity and bipartivity).

The interaction between space and topology in brain systems

could be driven by energetic and metabolic constraints on network

development [3,20,54,73]. Such constraints might also play a role

in the fine-grained spatial geometry of white matter fiber tracts,

which cross one another at 90 degree angles [74], thereby

potentially minimizing electromagnetic interference. Moreover,

such constraints likely have important implications for system

function, where short connections are potentially easier to

maintain and use than long connections [75]. If such a functional

consequence of physical constraints existed, it might partially

explain the functional deficits observed in disease states associated

with large-scale disconnectivity [59,64,75,76]. However, converse

evidence from normal human development indicates that some

distributed processing based on long distance connections is

necessary for healthy cognitive function [77]. Future work is

necessary to better understand the role of physical constraints on

brain development and organization.

Brain Symmetries
While community structure in functional and structural brain

networks has been examined in a number of studies [22,23,54,78],

other types of mesoscale properties have been less studied. Here

we employ two diagnostics – bipartivity and community laterality

– that could capture signatures of one of the unusual properties of

the brain compared to other complex systems: the physical

symmetry between the two hemispheres. Our data suggest that

such symmetry is observable in the organization of brain networks.

The lateralization of communities is greatest for strong, local

connections and smallest for weak, long-range connections,

consistent with the preference for small modules to contain nodes

in a local geographic neighborhood. Conversely, the bipartivity is

greatest for mid-strength and long-range connections respectively

and the two parts of the bipartite structure appear to map out both

anterior-posterior and left-right axes of brain development. The

putative functional role of these network symmetries is at least

preliminarily supported by our finding that bipartivity of resting

state functional brain networks in people with schizophrenia is

significantly higher than that in healthy controls. Such whole-brain

network signatures could derive from local asymmetries in white

matter microstructure [79] and decreased interhemispheric white

matter connectivity previously observed in schizophrenia [80].

Combining Multiresolution Techniques
In this paper, we have described several complementary

techniques for uncovering multi-resolution structure in weighted

networks. Each method has advantages and disadvantages and

enables one to capture different features present in the network

data. Here, for example, we have illustrated these techniques in

probing the geometry (weak versus strong edges), embedding

(short versus long edges), and structural resolution (small versus

large communities) of network architecture. However, in some

cases one might wish to probe multiple features of the network

architecture simultaneously.

In Figure 8, we illustrate the combined use of the structural

resolution parameter and windowed thresholding to elucidate the

fragmentation profiles of empirical and synthetic network models.

In the fractal hierarchical network, we observe that the banding of

the number of communities as a function of the mean connection

weight g is evident for small but not large values of the structural

resolution parameter �c, indicating that the structural organization

of the network can be hidden if one studies communities of small

size. The remainder of the models and the empirical network data

display a relatively constant number of communities over a broad

range of mean connection weights for a given value of the

structural resolution parameter c. This consistency suggests, not

surprisingly, that the number of communities is driven more by �c
than by the underlying network topology, which for each of these

networks (with the exception of the Erdös-Rényi model) varies

over different mean connection weights. The band structure in the

ER model is similar to the band structure in the SW model for

weak edges (g less than approximately 0:70) because both sets of

edges are randomly distributed: for the ER model, all connections

are randomly distributed, and for the SW model, long-range

connections (which are the weak edges in our weighting scheme)

are randomly distributed. Therefore, both networks display the

same geometry for weak edge weights but differ in the geometry of

their strong edge weights. Unlike both the SW and ER models, the

brain DSI network shows a decreasing number of communities as

for stronger edge weights over a range of the resolution parameter.

More similar to the fractal hierarchical network, this finding

suggests that the human brain network displays hierarchical

structure, with a few strong and large communities become
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composed of many more weaker communities [54]. All networks

completely fragment (zero non-singleton communities at high

values of the structural resolution parameter) at similar but not

identical values of c, making comparisons across topologies for

fixed c difficult. We plan to investigate the combined use of these

multi-resolution methods in more detail in future work.

Methodological Considerations
Models of brain structure. In this work we compared

observed multi-resolution organization in brain networks to the

organization expected in 4 synthetic networks. While many

synthetic network models exist for such a comparison, we chose

two benchmark networks with local (ring lattice) and global (Erdös-

Rényi) properties and two networks with mesoscale structures

including community structure and hierarchical community struc-

ture. Our results show that none of these models displays similar

modularity or bipartivity MRFs to those of the brain. An important

area of investigation for future work is the generation of alternative

synthetic network models that conserve additional network prop-

erties of brain systems or employ more biologically realistic growth

mechanisms (see for example [28]). Moreover, we assigned the edge

weights in these models in the simplest possible manner and these

Figure 8. Simultaneously probing structural resolution and network geometry. Color plots of the number of non-singleton communities
as function of both average connection weight g and resolution parameter c for the (A) fractal hierarchical, (B) small world, (C) Erdös-Rényi, and (D)
ring lattice, and for (E) one representative DSI anatomical network. The window size is 25%. For results of the total number of communities
(singletons and non-singletons), see the Supporting Information.
doi:10.1371/journal.pcbi.1003712.g008

Figure 9. Weighted connection matrices for the synthetic benchmark networks and an empirical brain DSI network (N = 1000
nodes). Because network topologies can be difficult to decipher in large networks, here we illustrate the connections between only 100 of the total
1000 nodes. In each network, the topology changes as a function of edge weight (i.e., color) in the adjacency matrix. The windowed thresholding
technique isolates topological characteristics in the subnetworks of nodes of similar weight. We report the initial benchmark results for a window size
of 25% but find that results from other window sizes are qualitatively similar (see the Supporting Information).
doi:10.1371/journal.pcbi.1003712.g009
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models therefore produce weight-dependent changes in topology by

construction. Alternative weighting schemes could provide more

sophisticated generative models of network geometries that more

closely mimic brain structure.
Distance bias in anatomical networks. The diffusion

spectrum imaging network contains an inherent distance bias

[17], meaning that long distance connections have a lower

probability of being included in the network than short distance

connections. While Hagmann and colleagues did use a distance

bias correction in the preprocessing of these networks, the most

complete correction method remains a matter of ongoing debate

[17]. It is possible that some distance bias remains in the current

DSI data sets that might artifactually inflate the observed

relationship between space and topology. Indeed, an important

area of future work remains to understand the effect of local wiring

probabilities (both real and artifactual) on observed network

organization [81].

Conclusions
Our work demonstrates several benefits to the employment of

multiresolution network analysis techniques. Such techniques

enable statistically meaningful assessments of the organization of

weighted spatial networks as a function of edge density, length,

and location in Euclidean space. The ability to resolve mesoscale

properties – like modularity and bipartivity – over spatial and

geometric scales facilitates a deeper understanding of network

organization than is possible in the examination of any single

resolution alone. Moreover, it enables more focused mechanistic

hypotheses for altered connectivity profiles in clinical states where

network organization might be perturbed in one resolution (weak

or local connections) more than in another (strong or long

connections).

Supporting Information

Figure S1 Optimization and realization variance. The

optimization variance versus the realization variance in the (A)
binary modularity and (B) number of communities for the

ensembles of fractal hierarchical (blue), modular small-world

(green), Erdös-Rényi (gray), ring lattice (cyan), and DSI brain (gold)

networks. The dashed gray line indicates the the line of equivalence

between the optimization and randomization variance.

(PDF)

Figure S2 Effect of multiresolution network geometry
on community structure. (A) Weighted adjacency matrices

depicted for 10% of nodes in the synthetic network models and

structural brain networks extracted from DSI data. (B-D)
Modularity Qb as a function of the average connection weight g
of the edges retained in the graph for the (B) fractal hierarchical,

small world, (C), Erdös-Rényi, regular lattice, and (D) structural

brain network. Window size is 15%. Values of Qb are averaged

over 20 optimizations of the binary modularity quality function for

each of 50 realizations of a synthetic network model or 6 subjects

for the brain DSI network. The standard error of the mean is

smaller than the line width.

(PDF)

Figure S3 Effect of multiresolution network geometry
on bipartite structure. (A) Bipartivity as function of average

connection weight g of the edges retained in the graph for the (B)
fractal hierarchical, small world, (C), Erdös-Rényi, regular lattice,

and (D) structural brain network. Window size is 15%. Values of b
are averaged over 50 realizations of a synthetic network model or

6 subjects for the brain DSI network. The standard error of the

mean is smaller than the line width.

(PDF)

Figure S4 Role of singletons in community number and
modularity. (A) Number of communities as a function of

average connection weight g. (B) Number of singletons versus

number of communities. Data points correspond to each graph in

the family which captures network organization at different mean

connection weights. (C) Number of non-singleton communities as

a function of average connection weight g. (D) Binary modularity

as a function of the number of singletons. The gray line shows the

modularity of an Erdös-Rényi random network, when successively

disconnecting nodes from the network and randomly adding the

same number of connections in the rest of the network. Data

points correspond to each graph in the brain DSI family which

captures network organization at differen mean connection

weights. Color indicates mean connection weight g. Window size

is 15%. In panels (A) and (C), error bars indicate the standard

deviation of the mean; for the model networks this error is smaller

than the line width.

(PDF)

Figure S5 Simultaneously probing structural resolution
and network geometry. Colorplots of the total number of

communities (singletons and non-singletons) as function of both

average connection weight g and resolution parameter c for the

(A) fractal hierarchical, (B) small world, (C) Erdös-Rényi, and (D)
regular lattice models and for (E) one representative DSI

anatomical network. The window size is 25%.

(PDF)

Table S1 Description of network ensembles. The number

of networks (size) in the ensemble, number of nodes, number of

edges K given in units of ½103� edges for the two types of ensembles

studied. Network Type I contains the brain DSI, Erdös-Rényi,

Regular Lattice, Fractal Hierarchical, and Small World networks

with N~1000 nodes. Network Type II contains the brain fMRI,

Erdös-Rényi, Regular Lattice, Fractal Hierarchical, and Small

World networks with N~90 nodes.

(PDF)

Text S1 Supplementary document including supplemen-
tary results on (i) Optimization and Realization Variance,
(ii) Effects of Window Size, and (iii) Relationship Between
the Number of Communities and Singletons.
(PDF)
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