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Abstract

Long-term, repeated measurements of individual synaptic properties have revealed that synapses can undergo significant
directed and spontaneous changes over time scales of minutes to weeks. These changes are presumably driven by a large
number of activity-dependent and independent molecular processes, yet how these processes integrate to determine the
totality of synaptic size remains unknown. Here we propose, as an alternative to detailed, mechanistic descriptions, a
statistical approach to synaptic size dynamics. The basic premise of this approach is that the integrated outcome of the
myriad of processes that drive synaptic size dynamics are effectively described as a combination of multiplicative and
additive processes, both of which are stochastic and taken from distributions parametrically affected by physiological
signals. We show that this seemingly simple model, known in probability theory as the Kesten process, can generate rich
dynamics which are qualitatively similar to the dynamics of individual glutamatergic synapses recorded in long-term time-
lapse experiments in ex-vivo cortical networks. Moreover, we show that this stochastic model, which is insensitive to many
of its underlying details, quantitatively captures the distributions of synaptic sizes measured in these experiments, the long-
term stability of such distributions and their scaling in response to pharmacological manipulations. Finally, we show that the
average kinetics of new postsynaptic density formation measured in such experiments is also faithfully captured by the
same model. The model thus provides a useful framework for characterizing synapse size dynamics at steady state, during
initial formation of such steady states, and during their convergence to new steady states following perturbations. These
findings show the strength of a simple low dimensional statistical model to quantitatively describe synapse size dynamics as
the integrated result of many underlying complex processes.
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Introduction

Chemical synapses are sites of cell-cell contact specialized for

the transmission of signals between neurons and their respective

targets. Historically, synapses have been viewed as biological

structures that can change when driven to do so by various

physiological signals, but are otherwise relatively stable (but see

[1]). This view was radically altered, however, by the advent of

techniques which allowed for repeated measurements of individual

identified synapses in living neurons over long time durations.

Such studies have revealed that synapses, in addition to activity-

dependent changes in their morphological and functional prop-

erties, also change spontaneously in the absence of particular

activity patterns, or, for that matter, any activity at all (e.g. [2–11];

see also [12]). These spontaneous changes in synaptic properties

are not surprising in view of the intense dynamics of synaptic

molecules [13–18]

Nearly two decades of intensive studies have uncovered a

bewildering number of molecules and molecular processes

involved in synaptic formation, plasticity and tenacity. While

their involvement in aspects of synaptic biology is undeniable,

principles of synaptic function often become obscured by the

myriad of molecular details (a conundrum raised long ago; see

[19]). On the other hand, by accepting the premise that synaptic

properties are the integrated result of numerous microscopic

processes, which can be heterogeneous, non-stationary, stochas-

tic, and to some extent intractable, repeated measurements of the

properties of individual synapses provide an opportunity for

quantitative, phenomenological study of long-term population
dynamics of synapses. This is essentially a statistical approach in

which the dynamics of the individual synapse are described

probabilistically, while causal or deterministic relations emerge at

the population level. Such studies can uncover overarching

principles that govern synaptic population properties as well as

their relationships with physiological signals such as network

activity [3–5] and neuromodulation [20]. Indeed, recent work

based on such measurements has resulted in several key findings,

described in more detail below: (1) distributions of synaptic sizes

are broad, skewed and remarkably stable over time; (2) individual

synapse sizes exhibit significant spontaneous fluctuations over
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time scales of many hours; and (3) these synaptic dynamics are

size-dependent and constrained by network activity and other

physiological signals.

In the current study we use a simple and well known statistical

model, the Kesten process, to describe effectively synaptic

remodeling dynamics based on the three aforementioned findings.

We use empirical data from continuous, long-term (days) imaging

experiments to show that the model captures the dynamics of

individual synapses and the statistical properties of synaptic

populations, the effects of network activity levels and cholinergic

tone and the dynamics of synapse formation.

Results

Rationale and underlying experimental basis of the
proposed model

We base our model on empirical findings that were obtained in

a previously described system [4,20] in which ex-vivo networks of

rat cortical neurons, automated microscopy, multielectrode array

(MEA) recordings of network activity, fluorescent reporters and

provisions for maintaining optimized environmental conditions

were combined to allow for imaging and tracking of individual

synapses at 10–30 min intervals for many days (as shown in

Figs. 1A–C). Sizes of individual glutamatergic synapses were

estimated by quantifying the fluorescence of enhanced green

fluorescent protein tagged PSD-95 (PSD-95:EGFP). PSD-95 is a

core postsynaptic scaffolding protein in glutamatergic synapses

that is thought to control the number of glutamate receptors at the

postsynaptic membrane through direct and indirect interactions

[21,22]. Therefore PSD-95:EGFP fluorescence can serve as a

proxy of synaptic strength [23]. More conservatively, changes in

PSD-95:EGFP fluorescence reflect synaptic remodeling, changes

in spine head size and PSD area [24,25] (and will be referred to

hereafter as synaptic size). Previous work with this system as well as

studies from other groups using different systems, gave rise to three

key findings that form the basis of our model. We now summarize

these in some detail:

(1) Distributions of synaptic sizes are broad and stable

over time. Imaging based estimations of synaptic sizes (e.g. [3–

5,20]) and electrophysiological measurements of synaptic connec-

tion strengths (e.g. [26,27]) have shown that distributions of

synaptic strengths are broad and highly skewed. It has been

suggested that these are consistent with a log-normal distributions

[3,27,28], a matter that will be revisited later. This distribution is

illustrated in Fig. 1E for PSD-95:EGFP based estimates of synaptic

sizes. Importantly, in spontaneously active networks, this distribu-

tion remains remarkably stable for many days as long as network

activity is not perturbed (Fig. 1E; [4,20]).

(2) Individual synapses exhibit spontaneous

remodeling. When individual synapses are tracked for several

days, it becomes apparent that their sizes fluctuate significantly

(e.g. [2–8], [24]). Moreover, a considerable component of this

spontaneous remodeling appears to be activity independent

[2,4,5]. This is illustrated in Fig. 1D, showing the fluorescence

of individual synapses over time (‘‘synaptic trajectories’’) before

and after application of Tetrodotoxin (TTX), a potent blocker of

voltage dependent sodium channels, which suppresses practically

all spontaneous network activity. All data shown in this figure was

first ‘‘smoothed’’ with a 5 time point low pass filter, and thus the

fluctuations in synaptic size seen here and elsewhere cannot be

solely attributed to measurement noise (for a detailed analysis see

Fig. S1). Interestingly, spontaneous changes in connection

strengths occurring over comparable time scales have also been

observed by electrophysiological recordings (e.g. [11]).

(3) Synaptic change is a decreasing function of synaptic

size. The stable distributions of synaptic sizes and the exuberant

spontaneous remodeling dynamics of individual synapses would

seem to be at odds, unless spontaneous remodeling is somehow

confined. Indeed, when changes in synaptic sizes are plotted as a

function of initial synaptic size it is seen that large synapses tend to

grow smaller on average, whereas small synapses tend to grow

larger [4,5,20]. As shown in Fig. 2, this dependence was observed

when fluorescently tagged molecules (PSD-95, Munc13-1, Ge-

phyrin), targeted specifically to pre- or postsynaptic compartments

or to excitatory or inhibitory synapses, were followed over 15–

24 hours in rat or mouse cortical neurons. The size dependence is

qualitatively robust: in all these experiments plotting the change in

synaptic size as a function of initial size reveals a negative

correlation between the two, which can be fitted to a line that

crosses the abscissa at the average synaptic size (defined to be 1 in

these data by normalization). Here too, similar tendencies were

also observed in electrophysiological measurements of synaptic

strengths repeated at 12 hour intervals [11].

The implication of these data is that synaptic sizes are not just

fluctuating as a simple random walk; changes in synaptic size

depend on current synaptic size. As a result, synaptic sizes are

constrained and distributed around some mean value. In the next

section we use this observation to construct a minimal stochastic

model to describe such a process.

Synaptic dynamics as a Kesten process
Synaptic size is affected by multiple molecular mechanisms of a

variety of natures: direct and indirect, size-dependent and -

independent, activity dependent and -independent, which collec-

tively span a broad range of timescales [18,29]. The integrated

effect of these various mechanisms support the long-term stability

of synaptic structure but also result in rich dynamics over multiple

timescales. From a practical point of view, changes in synaptic size

can be broadly divided into two types: additive, namely

independent of current synaptic size, and size-dependent, of

which the simplest dependence is linear – namely multiplicative

Author Summary

Synapses are specialized sites of cell–cell contact that serve
to transmit signals between neurons and their targets,
most commonly other neurons. It is widely believed that
changes in synaptic properties, driven by prior activity or
by other physiological signals, represent a major cellular
mechanism by which neuronal networks are modified.
Recent experiments show that in addition to directed
changes, synaptic sizes also change spontaneously, with
dynamics that seem to have strong stochastic compo-
nents. In spite of these dynamics, however, population
distributions of synaptic sizes are remarkably stable, and
scale smoothly in response to various perturbations. In this
study we show that fundamental aspects of synapse size
dynamics are captured remarkably well by a simple
statistical model known as the Kesten process: the
random-like nature of synaptic size changes; the stability
and shape of synaptic size distributions; their scaling
following various perturbations; and the kinetics of new
synapse formation. These findings indicate that the
multiple microscopic processes involved in determining
synaptic size combine in such a way that their collective
behavior buffers many of the underlying details. The
simplicity of the model and its robustness provide a new
route for understanding the emergence of invariants at the
level of the synaptic population.

Synaptic Dynamics as a Stochastic Process
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changes. The question of whether various forms of synaptic

plasticity are additive or multiplicative has received considerable

attention in the literature [28,30–32]. From general biological

considerations, however, it is plausible to expect that over long

enough times synapses will undergo both types of changes. Indeed,

on the basis of plots such as that shown in Fig. 2 it has been

suggested that individual synaptic dynamics are the sum of three

components [20]: two deterministic components - a multiplicative

downscaling and an additive positive term - with an added

stochastic component (see Fig. 5G in [20]). Here, we propose a

model of synaptic dynamics which is inherently stochastic, includes

both additive and multiplicative random components, and relates

to electrical activity through a parametric dependence of the

stochastic processes.

We model the synaptic size trajectories by the following

dynamics:

Figure 1. Synaptic remodeling and synaptic size distributions in long-term experiments. (A) A single neuron expressing PSD-95:EGFP.
Fluorescent puncta represent postsynaptic sites formed on dendritic spines and shafts. (B) A 7-day time-lapse series (30 min intervals, or 48 images/
day) of the region enclosed in a rectangle in A. Only a small subset of the data is shown here. (C) Magnification of region enclosed in a rectangle in B,
demonstrating the actual temporal and spatial resolution of imaging data collected in these experiments. All images in panels A–C are maximal
intensity projections of 9 images collected at 9 focal planes spaced 0.8 mm apart. Bars: A, 20 mm; B, 10 mm; C, 2 mm. (D) Fluorescence of synapses as a
function of time (‘‘synaptic trajectories’’; measurement taken every 30 min) of 16 synapses in a spontaneously active network to which TTX was
added at t = 42 hours. Data is shown after smoothing with a 5 time point window to decrease the effects of measurement noise, and after
normalizing the fluorescence values by the average over the entire experiment. (E) Probability density function (PDF) of PSD-95:EGFP puncta
fluorescence values at 10 hour intervals in a spontaneously active network. Inset: the same data on semi-logarithmic axes.
doi:10.1371/journal.pcbi.1003846.g001

Synaptic Dynamics as a Stochastic Process
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xtz1~etxtzgt ð1Þ

Where xt is the synaptic size at time t and et and gt are random

variables drawn from some distribution. This is a minimalistic model

that includes both additive and multiplicative random events; it is an

effective description in which each variable does not necessarily relate

directly to a microscopic event but rather captures the integrated

effect of many processes as discussed in the Introduction (see

Supporting Information, Text S1, for a more detailed justification). It

is formulated here in discrete time, so that the random variables

represent all processes that occurred in the time between two

measurements; therefore, if measurements are made at a different

time resolution, the effective variables et and gt will generally be

altered. Accordingly, we focus here on general properties of the

model and not on fitting precise, absolute values to the variables.

In the simplest form of the model the variables et, gt are drawn

independently at each time step and independently from one

another, each from a given (fixed) distribution. Note that et is

drawn from a distribution that generally includes values smaller or

larger than 1, so that this factor can either decrease or increase

synaptic strength.

In probability theory the model (1) is known as the Kesten
process [33] and has been used to describe complex systems in

economics and other fields [34,35]. In spite of its seemingly simple

formulation, it can give rise to rich and complex dynamics.

The Kesten process is known to exhibit two qualitatively

different behaviors depending on the regime of the crucial

parameter Æln eæ, the average logarithm of e over its distribution:

For Æln eæ.0 the process diverges and no limiting distribution is

reached. For Æln eæ,0 it is statistically stable and approaches a

limiting distribution f(x) at long times. Some intuition for this

property can be gained by considering the case gt = 0 in (1): the

process then reduces to a purely multiplicative one. In this case, ln

x performs a random walk with steps of size ln e. If the mean step-

size is positive, Æln eæ.0, the mean of the random walk drifts to

infinity; adding gt cannot prevent this runaway. If, on the other

hand, the mean step-size is negative, Æln eæ,0, the logarithmic

random walk tends to -‘ and accordingly the original variable xt

decreases to zero. In this case the ‘‘injection’’ of a positive (on

average) gt in each step can provide the balancing drive away from

zero required to induce a finite average and a stable limiting

distribution [35]. This is indeed the case, and within this region, a

stable limiting distribution exists regardless of the distribution of e

Figure 2. Changes in the fluorescence of individual synapses as a function of their initial fluorescence. Each dot represents one
synapse. DF represents the change in fluorescence after a given time interval. Data were normalized by dividing the fluorescence of each synapse by
the average fluorescence of all synapses at time t = 0 to allow pooling of data from multiple neurons irrespective of some variability in neuron-to-
neuron expression levels. Solid lines are linear fits; vertical dashed lines highlight the average synaptic size ( = 1, after normalization). All data was
obtained under baseline conditions from unperturbed networks. (A) Rat cortical neurons expressing PSD-95:EGFP; 1087 synapses from 10 neurons in
5 separate experiments. Images were collected at 30 min intervals; DF was measured after a 24 hour interval (see ref [20] for further details). (B)
Mouse cortical neurons expressing PSD-95:mTurquoise; 554 synapses from 8 neurons in 6 separate experiments. Images were collected at 25 min
intervals; DF was measured after a 15 hour interval (see ref [63] for further details). (C) Mouse cortical neurons expressing munc13-1:EYFP; 554
synapses from 8 neurons in 6 separate experiments. Imaging was performed as in B (see ref [63] for further details). (D) Rat cortical neurons
expressing mTurquoise2:Gephyrin; 749 synapses from 27 neurons in 4 experiments. Images were collected at 60 min intervals; DF was measured after
a 24 hour interval (Anna Rubinski and Noam E. Ziv, unpublished data).
doi:10.1371/journal.pcbi.1003846.g002
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and g. This limiting distribution is generally non-Gaussian, skewed

and decays asymptotically as a power-law [33]. It follows that in

the stable regime Æln eæ,0 the Kesten process exhibits the

qualitative features of our data: fluctuating individual trajectories

accompanied by skewed, non-Gaussian stable distributions. As Æln
eæ increases and the process approaches the instability transition

from below, although it remains stable, it changes quantitatively:

trajectories exhibit larger and larger excursions to rare values

(‘‘intermittent’’-like behavior), and correspondingly the stable

limiting distribution broadens (as illustrated in Fig. 3).

We first characterized the regime of parameters of the model

which is in quantitative agreement with our data. Naively, one

might expect that a simple linear regression of the empirical

mapping xt+1 = etxt+gt would give an estimate of the first moments of

the e- and g- distributions. Such estimations, however, prove to be

highly noisy and unreliable, as the small changes in synapse sizes (or

more specifically, PSD-95:EGFP fluorescence levels) measured over

these short time intervals are dominated by measurement noise, as

shown by measuring ‘changes’ in chemically fixed synapses (Fig. S1;

1067 synapses from 4 neurons). Much of this measurement noise is

removed by filtering the data with a 5 time-point low pass filter (Fig.

S1B–D), but this procedure precludes estimates based on single time

steps. We therefore estimated the average values of e and g from

iterated mappings over multiple time steps (i.e. longer time intervals)

and multiple synapses under the assumption that these values are

stationary and similar for all synapses. This estimation is based on

the following observation:

When the Kesten mapping is applied twice consecutively one

finds the relation

xtz2~etz1etxtzetz1gtzgtz1: ð2Þ

Repeated application of this relation and averaging over the

distributions of the random variables given xt results in an explicit

formula for the average k-iterated map

Sxtzk xtj T~SeTkxtzSgT
1{SeTk

1{SeT
: ð3Þ

Estimates of SeT could therefore be obtained by applying linear

regressions to such mappings over an increasing number of time

steps k, and fitting the slopes to a power k of SeT. This procedure is

illustrated in Fig. 4: Fig. 4A depicts a linear fit for a one-step

empirical mapping (k = 1; 1087 synapses tagged with PSD-

95:EGFP; same low pass filtered data as in Fig. 2A), whereas

Figs. 4B–D show mappings for 8, 24 and 48-steps, respectively. As

expected, these mappings become more noisy as the number of

steps increases; at the same time, the slopes of the linear fits

decrease, corresponding to an increasing value of k and the

reduced value of Æeæk (reminder: in the stable regime approxi-

mately SeTv1). As shown in Figs. 4E,F for 1087 synapses

followed for 24 hours (48 time steps of 30 min) this procedure

allowed for a reasonable estimation of SeT, which in this case was

found to be 0.9923. We validated this procedure by using only half

of the data to estimate SeT and then using this estimate (0.9925) to

predict linear fit slope values for increasing k values in the second

half of the data. As shown in Fig. S2A, the prediction was quite

good.

These estimates are very close to 1, indicating that the process

may be near the transition point (formally Æln eæ = 0), consistent

with the distributions being broad and long-tailed. We used the

same procedure on the data of Fig. 2B–D and found similar

estimates (0.9899, 0.9829, 0.9934 for time steps of 25, 25 and

60 min, respectively).

The second parameter in Eq. (3), SgT, sets the scale of the

population average. In the analysis presented in Fig. 4 the data

was normalized to unit mean at t = 0; As the mean synapse size

remains constant (Fig. 1E) the value of SgT in these units is

constrained to be SgT~1{SeT. Consequently, equation 3 is

reduced to

Sxtzk xtj T~SeTkxtz 1{SeTk
� �

: ð4Þ

Indeed the values of the constant term in the aforementioned

linear fits come out very close to (1{SeTk) not only for the four

time points shown in Fig. 4A–D but also for the linear fits

performed at all 48 time points (Video S1).

We next tested the ability of the Kesten process in the estimated

parameter regime to faithfully reproduce the experimentally

measured dynamics of individual synapses, the distribution of

synaptic sizes and the relationships between changes in synaptic

size and initial size. The results are shown in Fig. 5. Using the

initial distribution of synapses from Fig. 2A and the estimate of

SeT derived in Fig. 4, trajectories were simulated for all 1087

Figure 3. Limiting distributions of the Kesten process in the stable regime. (A) Simulations for three different distributions of e
corresponding to different values of Æln eæ with the distribution of g held fixed. Note that as Æln eæ approaches 0 the limiting distribution approaches
the instability boundary and broadens. (B) Same distributions as in A plotted on a semi-logarithmic scale.
doi:10.1371/journal.pcbi.1003846.g003
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synapses for 320 half-hour time steps (160 hours). As shown in

Fig. 5A, the ‘sizes’ of individual simulated synapses fluctuated in a

manner qualitatively similar to that observed for real synapses

(compare with Fig. 1D). Interestingly, in common with experi-

mental observations the simulation was associated with the

‘elimination’ of a small number of synapses, i.e. synapses whose

‘size’ dropped to zero. Such synapses (12 out of 1087 in this

example) were not included in subsequent analysis. The distribu-

tion of simulated synaptic sizes remained stable and similar to the

original, experimentally measured, skewed distribution for the

entire simulation period (Fig. 5B). When the slopes of linear

regressions were used to estimate SeT as explained for Fig. 4, the

resulting estimate (0.9929; Fig. 5C–E) was very close to the one

used for the simulation (0.9923; Fig. 4) validating this approach to

estimate SeT. Finally, when changes in synaptic ‘sizes’ after the

first 24 hours were plotted as a function of their original ‘sizes’ the

resulting dependence was remarkably similar to that observed

experimentally (compare Fig. 5F with Fig. 2A).

While the methods described above can give good estimates of

the first moments (means) of e and g, they do not provide

information on their second moments (variances). In the simula-

tion described above, values for the latter were chosen such that

the decay rate of goodness of fit (R2 values in plots such as those of

Fig. 5C,D) was similar to that observed for the experimental data.

In principal, the standard deviations of e and g could be directly

estimated from the squares of residuals in a linear regression of the

Figure 4. Estimating Kesten parameters in experimental data. An estimate of the parameter SeT can be obtained from k-times iterated
mappings of the data as explained in text. These mappings are shown for 1, 8, 24 and 48 time-steps, corresponding to 0.5, 4, 12 and 24 hours
respectively (A–D); from each such mapping the slope of the linear regression (solid black line) is extracted. (E) The logarithmic values of these slopes
(circles) plotted as a function of iteration number and fit by linear regression (solid black line) to obtain an estimate of SeT. (F) The measured slopes
(circles) with the predicted slope values (red line) over an extended time scale.
doi:10.1371/journal.pcbi.1003846.g004

Synaptic Dynamics as a Stochastic Process
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mapping xt+1 = etxt+gt (see legend of Fig. S2). However, as noted

above, apparent changes in synapse sizes measured over single

time steps were dominated by measurement noise, effectively

ruling out direct estimations of standard deviations in this manner.

Nevertheless, when such estimations were obtained and compared

for low-pass filtered experimental and simulated data sets, they

were quite similar (Fig. S2B,C) indicating that the standard

deviation values used in the simulation above were reasonable.

These results thus show the Kesten process can quantitatively

capture and faithfully reproduce the dynamics of individual

synapses and the distributions of synaptic sizes in large populations

of dynamic synapses.

Figure 5. Properties of the Kesten process in estimated parameter regime. (A) Simulated synaptic trajectories of 14 out of 1075 synapses,
evolved for 160 hours at 30 min intervals. Synapses were sorted according to initial size and then every 76th trajectory was selected for display
(compare with Fig. 1D). The Kesten process parameters used here were based on the estimate shown in Fig. 4 (SeT = 0.992360.05; Ægæ = 0.007760.03)
and values were obtained from Gaussian distributions with these parameters. The initial data set (1087 synapses) was identical to that shown in
Figs. 2A and 4; 12 synapses were ‘lost’ during the simulation (i.e. their values reduced to 0) and were excluded from subsequent analysis. (B) Synaptic
distributions along time, starting from a measured distribution (thick black line) and applying the time evolution of the Kesten process to this initial
population. Four subsequent time points are plotted as indicated. Inset shows the same distributions on a semi-logarithmic scale. (C,D) Examples of
k-times iterated mappings corresponding to 24 and 48 time-steps (compare with Fig. 4C,D). (E) Slope of k-times iterated mappings as a function of k
in simulated trajectories (circles) and in a theoretical prediction based on Eq. (3) (red solid line, red equation). (F) Scatter plot of changes in synapse
size as a function of initial size for simulated trajectories for the period covering first 24 hours of the simulation. Note the strong resemblance with the
experimental measurements of Fig. 2A.
doi:10.1371/journal.pcbi.1003846.g005
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Sensitivity of the Kesten process to parameters
Being a phenomenological model, the question naturally arises

how sensitive is the fit of experimental data to the parameters of

the model. The answer to this question is largely determined by

the sensitivity of the Kesten process itself to the underlying

distributions from which e, g are drawn. In his original work,

Kesten showed that the tail of the limiting distribution, when it

exists in the stable region, always decreases asymptotically as a

power-law [33]:

f (x)jx??*
1

xmz1
ð5Þ

where m is a property of the e-distribution. It is the positive number

that obeys the relation Æemæ = 1; thus m depends on all moments of

the distribution and is not unique, as many different distributions

can have the same value of m satisfying this relation. This suggests

that different e-distributions belonging to the same m-class, when

used in Kesten processes, may give rise to similar limiting

distributions. Indeed, simulations of the Kesten process displayed

in Fig. 6 support the possibility that these limiting distributions are

in fact of identical shape. Fig. 6A shows that three members of

such a m-class, with very different e-distribution types (Uniform,

Gaussian and Gamma distributions), result in limiting distributions

of the Kesten process with identical shapes when scaled linearly

(right panel), not only in their asymptotic tail but over their entire

range. This implies that the distribution shape is robust with

respect to the details of e within a given m-class.

Not only is the Kesten process quite insensitive to the particular

choice of the e -distribution, we found that its limiting distribution

is insensitive also to the additive random variable g, except in

determining the absolute scale. In other words, limiting distribu-

tions of Kesten processes can be effectively scaled merely by

changing the distribution of the random variable g. As explained

above, intuitively the role of this variable is to provide an effective

boundary condition for the multiplicative process, keeping

synaptic sizes from collapsing to zero; accordingly, it does not

affect the distribution shape but only the absolute set-point at

which the ‘‘forces’’ balance each other. This property is illustrated

in Fig. 6B, where the e-distribution was held fixed and different

distributions were assigned to g. This figure shows the resulting

limiting Kesten distributions (left), as well as the same distributions

on a normalized scale (right), showing that they all have the same

shape.

The conclusion from these results is that the same population

distribution can be obtained from the Kesten process with many

underlying sets of microscopic random variables (e and g). On one

hand, this insensitivity to microscopic details strongly justifies its

usefulness as an effective description of the phenomenon studied

here; on the other, this robustness implies that by measuring the

distribution alone one cannot infer much about the details of these

underlying processes [36].

Figure 6. Invariance of Kesten limiting distribution shape to different e- and g- distributions. (A) Simulated limiting distributions of
Kesten processes with the three different e-distributions shown in inset, all belonging to the same m-class 6, that is, Æe6æ = 1. The distribution of g was
held fixed. The same three distributions after scaling are shown on the right. (B) Simulated limiting distributions of Kesten processes with the three
different g-distributions shown in the inset. The distribution of e was held fixed. The same three distributions after scaling are shown on the right.
doi:10.1371/journal.pcbi.1003846.g006
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Scaling of synaptic distributions through changing
conditions

The analysis described so far indicates that synaptic size

dynamics governed by a stochastic Kesten process result in

synaptic populations with limiting size distributions which are

qualitatively and quantitatively similar to empirically measured

distributions of synaptic sizes. Can this statistical framework also

explain changes in synaptic size distributions caused by various

experimental manipulations?

Previous studies have shown that statistical properties of

synaptic populations are affected by changes in network activity

as well as by additional experimental perturbations. In the most

well-known example, pharmacological suppression of network

activity by TTX leads to a broadening of synaptic size

distributions [4,37]; a similar effect was observed following

experimental elevation of cholinergic tone using carbachol

(CCh), which did not strongly alter mean firing rates but changed

the temporal structure of spontaneous activity [20]. Following

TTX application, synaptic distributions were previously shown to

retain their shape in scaled units, and so this phenomenon was

referred to as ‘‘synaptic scaling’’ (reviewed in [38]). This property

is found also in our measurements of synaptic sizes: Fig. 7A shows

the distribution of synaptic sizes measured for one neuron, before

and 24 hours after the application of TTX. Suppression of

spontaneous activity was associated with a broadening of synaptic

size distribution. Fig. 7B shows the same distributions on a scaled

axis:
x{SxT

sx

(this variable, which measures the number of

standard deviations away from the mean, is sometimes referred to

as the z-score). It is seen that the distribution shape remained

intact. The same scaling behavior is seen also following exposure

to CCh (Fig. 8A,B). Thus the scaling of synaptic size distributions

– a change in the distribution scale but not in its shape – is found

also in response to a more general perturbation that does not

significantly change average firing rates.

Scaling, or ‘‘data collapse’’, of distributions is a well-known

phenomenon in the physics of complex systems [39–41], and has

recently been observed also in biological fluctuations [36]. In order

to understand the origin of scaling in synaptic size distributions

following a perturbation, it is helpful to observe individual synapse

dynamics before, during and after the perturbation, as our time-

lapse measurements allow for. We have seen in the previous

sections that individual synapses exhibit what appear to be

stochastic trajectories over time, and our aim is now to reconcile

these dynamics with the rescaling property at the population level.

First, we consider the relation between the initial sizes of

individual synapses and their size change 24 hours after perform-

ing a perturbation Dx = xt = 24 h2xt = 0 h. Figs. 7C and 8C depict

Figure 7. Scaling of synaptic size distributions following application of TTX. (A) Cumulative distribution of synaptic sizes all belonging to a
single neuron, before (blue), and 24 hours after (red) applying TTX, which suppresses all spontaneous network activity. (B) Same distributions shown
in A after scaling. (C) Changes in the fluorescence of individual synapses (DF) during the first 24 hours after TTX addition (averages and standard
deviations of binned data) reveal no particular relationships with their initial size (F). The green line represents the expected relationships between DF
and F had sizes of individual synapses scaled through multiplication by 1.14 (the ratio of mean synaptic size before and after TTX addition). (D)
Scaling of synaptic size distributions does not preserve rank order. Synapses were sorted according to their size before TTX addition and plotted
according to their original sizes (blue dots). The sizes of the same synapses 24 hours after TTX addition are shown as red dots. Note the significant
departure from the original rank order. Expected synaptic rank order vs. new size, had synapse growth followed individual multiplicative scaling, is
shown as green dots. Data from one of the two neurons shown in Figs. 1E–G.
doi:10.1371/journal.pcbi.1003846.g007
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this change averaged over synapses as a function of the initial value

xt = 0 h, showing that there is no correlation between initial

synaptic size and the change in its size induced by the

perturbation. Second, one may use the rank order of individual

synapses before and after the perturbation to investigate the

transformation they have undergone: any deterministic, mono-

tonically increasing transformation acting on individual synapses

would preserve their rank order in the population. Figs. 7D and

8D show the rank orders prior to the perturbations as a function of

value (blue dots), tracing a curve with the same shape as that of the

cumulative probability distribution. In the same figure, the final

values after perturbation are depicted as a function of their

original rank order (red dots); this analysis clearly shows that rank

order is not preserved even though the distribution exhibits

scaling. This result corroborates previous work which quantified

the change in rank order over time within steady experimental

conditions, and showed that the rank order gradually deteriorates

even under conditions where the distribution remains exactly the

same [4].

In principle, one could induce a scaling of the distribution by

simply multiplying all synapses by a constant such that for each

synapse xfinal~axinitial ; this was the interpretation originally given

to the population-level data [37]. At the individual synapse level,

this would imply a synaptic change (Dx) which increases linearly

with the initial value such that Dx~ a{1ð Þxi (with a.1 for a

broadening of the distribution, as in these experiments), and the

preservation of rank order. Both these predictions are inconsistent

with our single synapse measurements (the result of such a

transformation on the original data is illustrated in Figs. 7C,D and

8C,D). What, then, might be a plausible population-level

explanation for the observed scaling of synaptic distributions?

Within the Kesten model, scaling emerges naturally from a

change in the parameters of the underlying stochastic processes.

Specifically, changes in e-distributions and/or g-distributions can

lead to a rescaling of the limiting distribution of synaptic sizes as

shown in Fig. 6. Previous work has shown that, in plots such as

that shown in Fig. 2, application of TTX affects strongly the

slope whereas application of CCh noticeably alters the intercepts

[4,20], reflecting changes in the average values of the random

variables e and g respectively during these periods. Fig. 9 shows

the same analysis as performed in Figs. 7 and 8 starting with the

synapses of Fig. 7. These synapses were first evolved for 24 hours

according to a Kesten process, using fixed statistical parameters.

At the time of a simulated perturbation, one parameter of this

process was altered; in this particular example, only SeT was

changed, but similar results could be obtained by altering the g-

distribution as well. A population-level rescaling results (Fig. 9A–

B), but individual synapse size does not scale multiplicatively

(Fig. 9C) and consequently, rank order is not preserved

(Fig. 9D).

Figure 8. Scaling of synaptic size distributions following application of CCh. (A) Cumulative distribution of synaptic sizes all belonging to a
single neuron, before (blue), and 24 hours after (red) exposure to CCh. (B) Same distributions shown in A after scaling. (C) Changes in the
fluorescence of individual synapses (DF) during the first 24 hours after CCh addition (averages and standard deviations of binned data) reveal no
particular relationships with their initial size (F). The green line represents the expected relationships between DF and F had sizes of individual
synapses scaled through multiplication by 1.17 (the ratio of mean synaptic size before and after CCh addition). (D) Scaling does not preserve rank
order. Synapses were sorted according to their size before CCh addition and plotted according to their original sizes (blue dots). The sizes of the same
synapses 24 hours after exposure to CCh are shown as red dots. Note the significant departure from the original rank order. Expected synaptic sizes,
had synapse growth followed simple multiplicative scaling, are shown as green dots. All data obtained from one neuron.
doi:10.1371/journal.pcbi.1003846.g008
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We thus conclude that changes in population synaptic

distributions induced by two very different pharmacological

manipulations, both of which induce scaling at the distribution

level but not at the individual synapse level, are well captured by

assuming that these manipulations modify the stochastic param-

eters underlying the Kesten process.

Modeling the formation of new synapses as a Kesten
process

Up to this point, the analysis focused on synapses that existed

throughout the entire experiment (or analysis period). Cortical

networks however, both in vivo and in vitro, also exhibit some

degree of synaptic turnover, that is, the formation of new

synapses and the elimination of others. The formation of a new

excitatory synapse involves the formation of a new PSD, which

can be detected as the accumulation of PSD-95:EGFP at a

location at which no such accumulation was present before. An

example of such an event is shown in Fig. 10A,B. Prior studies

have suggested that this accumulation occurs in a gradual

manner, but not necessarily monotonically, with periods of

growth interspersed with pauses and even temporary periods of

shrinkage [42,43]. Fig. 10C shows how fluorescence accumulates

with time at a site that was identified as a newly forming synapse.

Can the dynamics of new PSD formation also be captured by a

Kesten process?

To examine this possibility, we scrutinized time-lapse image

series such as those shown in Fig. 1A–C for synapse formation

events, and measured the evolution of PSD-95:EGFP fluorescence

at these new synapses. Data were collected from spontaneously

active networks (no pharmacological manipulations) after 3–4 days

of baseline imaging. As seen in Fig. 10C, the increase of PSD-

95:EGFP fluorescence was gradual, not entirely monotonic and

quite protracted. To pool data from multiple occurrences of

synapse formation, data was first temporally aligned to the first

time point at which a new synapse was detectable. Note that as

new synapses appeared at different times during time-lapse

sessions of finite duration, this alignment resulted in synaptic

trajectories of varying lengths. When data for all new synapses

(n = 25, 4 neurons from 3 experiments) was normalized and pooled

(see legend of Fig. 10), the average time course of PSD formation

was obtained (Fig. 10D). We then generated simulated trajectories

for 200 synapses based on a Kesten process, using an e-distribution

(and an g distribution constrained by SeT such that SgT~1{SeT
as explained above) that best fit the experimental data. Two

Figure 9. Distribution rescaling with individual rank-order shuffling in the Kesten process. The Kesten process provides a simple
mechanism for population distribution rescaling without individual multiplication by a constant factor. Simulations were performed for 127 synapses
(initial values taken from the synapses of Fig. 7). The synapses were first evolved for 24 hours (48 time points) with a Kesten process that preserved
the original distribution. At this point SeT was slightly increased (from 0.992 to 0.995), and the trajectories were evolved for another 24 hours with the
new parameters. (A) Distributions before (blue) and after (red) changing SeT. (B) Same distributions shown in (A) after scaling. (C) Changes in the
fluorescence of individual synapses (DF) during the first 24 hours after changing SeT (averages and standard deviations of binned data). The green
line represents the expected relationships between DF and F had sizes of individual synapses scaled through multiplication by 1.14 (the ratio of mean
synaptic size before and after changing SeT. (D) Scaling without preserving rank order. Synapses were sorted according to their size before changing
SeT and plotted according to their original sizes (blue dots). The ‘sizes’ of the same synapses 24 hours after changing SeT are shown as red dots. As in
the experiments of Figs. 7 and 8, rank order is not preserved. The expected synaptic ‘sizes’, had scaling occurred multiplicatively, are shown as green
dots.
doi:10.1371/journal.pcbi.1003846.g009
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Figure 10. Kinetics of formation of new postsynaptic densities. A,B) The formation of a new PSD. Left panel: low magnification image of a
dendrite 68 hours after the beginning of a time lapse session (started at 21 days in vitro). Right panels: gradual accumulation of PSD-95:EGFP at a new
site (blue arrowhead). Bar: 10 mm. C) Time course of PSD-95:EGFP accumulation at the new site shown in A. The blue dots indicate the time-points of
the images shown in B. D) Mean time course of new PSD formation in mature (.21 days in vitro) networks (average 6 SEM). Data, pooled from 4
neurons, was aligned to the first time point at which a new PSD was observed. The fluorescence of each new synapse was normalized by subtracting
the fluorescence value measured at its future location before a PSD was first detectable, and then divided by the background corrected mean
fluorescence of the preexisting PSDs of that neuron. The number of new PSDs used to calculate the data points is shown as an orange line. E) Two
simulated trajectories of new synapses, seeded with an initial value of 0.05 and evolved as a Kesten process with parameters SeT = 0.96260.06 and
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exemplary trajectories shown in Fig. 10E appear qualitatively

similar to typical trajectories measured in experiments, such as the

one shown in Fig. 10C.

Plotting the average time course for the simulated data revealed

that the experimental data could be described very well by a

Kesten process (Fig. 10F). Interestingly, the values of SeT which

provided the best fits were slightly smaller (0.962) than estimates

obtained for established synapses in the same neurons. The

observed difference indicates that the molecular dynamics

associated with new synapse formation are somewhat faster than

those occurring at established synapses, in line with a recent

comparison of PSD-95:EGFP fluorescence fluctuations at stable

and transient dendritic spines in vivo [24].

Because the initial size of a new synapse is close to zero, the

average trajectory of a growing synapse can be approximated as a

sum of a geometric series:

xt&SgT
Xt

k~o

SeTk~
SgT

1{SeT
1{SeTt½ � ð6Þ

Under our normalization this is simply 1{SeTt, thus giving an

exponential function with a typical timescale 1=lnSeT>13 h. As

shown in Fig. 10F, calculating equation (6) for the same values of

SeT (and SgT) used in the simulations resulted in an excellent fit

with the experimental and simulated data.

The average growth trajectory shows that the time course of

PSD-95:EGFP accumulation at new sites occurred over many

hours. This is much slower than the time course (1–2 hours)

previously reported for PSD-95:EGFP accumulation in cultured

hippocampal neurons at 8–12 days in vitro [42] but in good

agreement with the time course of synaptic maturation measured

in the barrel cortex of adult (.1 month old) mice [44,45]. This

difference may relate to the different developmental stage of the

networks used in these studies. To examine this possibility, we

measured PSD-95:EGFP accumulation at new sites in cortical

networks grown and imaged in an identical fashion to those

described throughout this study, except that here, week-long

imaging sessions were initiated at days 9–10 in vitro instead of

days 18–21 (this dataset is mentioned briefly in [4], and is

exemplified in Video S1 in that study). We found that PSD-

95:EGFP accumulation at new sites at days 10–13 in vitro (79

synapses, 3 neurons) was dramatically faster (Fig. 10G), concur-

ring with rapid spine maturation in cultured slices of similar age

[46]. Here too, the data could be very well fit to simulated

trajectories based on a Kesten process as well as to the analytical

approximation of equation (6) (Fig. 10H), except that in this case,

the values of SeT required for such fits were radically smaller

(,0.405) than those used so far (Figs. 4,5,9). This indicates that

synaptic molecular dynamics during early developmental stages

are faster than those occurring later on, in agreement with the

extraordinary axonal and dendritic dynamism and high synapse

formation and elimination rates observed in such networks

(compare Video S1 in [4], to Video S1 in [20]; for review, see

[23,47]).

Discussion

We have proposed a population dynamics approach for

studying synapse remodeling dynamics based on a stochastic

model known as the Kesten process. The basic premise of our

approach is that synaptic size evolves over time due to a

combination of multiplicative and additive processes, in which

both multiplicative factors (et) and additive components (gt) are

effectively stochastic and taken from distributions that are

parametrically affected by physiological signals. We show that

this seemingly simple model can generate rich dynamics which are

qualitatively similar to the remodeling dynamics of preexisting and

new synapses measured in long-term time-lapse experiments.

Specifically, both the shape and the long-term stability of

experimentally-measured synaptic size distributions are captured

remarkably well by the Kesten process, and these properties are

relativity insensitive to the details of the particular underlying e-

and g- distributions. External perturbations applied to the network

affect mainly the scale of synaptic distributions while their shape

remains intact. At the same time, the sizes of individual synapses

exhibit stochastic changes with no deterministic transformation

caused by the perturbation. These characteristics of synaptic

distribution rescaling are congruent with a Kesten process in

which e- and g- distributions are altered by the external signals,

providing a picture in which synaptic scaling at the population

level coexists with disordered fluctuations at the individual synapse

level.

Robustness of the Kesten process
In the approach taken here the dynamics of the single synapse

were assumed to reflect the integrated result of many microscopic

processes, with their unknown dynamics represented by effectively

random variables. As we have no prior knowledge of the statistical

properties of these effective variables, an important consideration

is the model’s sensitivity to these statistics. We have found that the

Kesten process shows a high degree of robustness with respect to

these statistics: the shape of the distribution is completely

insensitive to the properties of the additive variable (Fig. 6); the

insensitivity of the distribution tail is ensured by the Kesten

theorem, and our results extend this to show insensitivity of the

distribution shape in the entire range. The dependence on the

multiplicative variable is weak, and here too, the known

dependence of the tail on its properties seems to apply to the

entire distribution shape. These properties render the Kesten

model an attractive candidate for effective modeling of synapse

size dynamics.

Why is the Kesten process so generic and robust in its

properties? Let us consider some global properties of the neural

network in which the synapses are embedded. We know that the

system is homeostatic, adaptive, and maintains itself around a

stable state for some length of time while still fluctuating around it.

Ægæ = 0.03860.03 (Gaussian distributions). The resulting trajectories were normalized as the experimental data shown in D. F) Mean time course of
synapse formation calculated analytically by equation (5) (green) and averaged over 200 simulated Kesten trajectories (red, average 6 SEM) evolved
and normalized as described in E. Open circles represent the experimentally measured data shown in D. G) Synapse formation in developing
networks: mean time course of new PSD formation in developing networks (10–13 days in vitro; average 6 SEM). Data, pooled from 3 neurons, was
normalized as in D. The number of PSDs used to calculate the data points is shown as an orange line. H) Mean time course of synapse formation in
developing networks calculated analytically based on equation (5) (green) and averaged over 79 simulated Kesten trajectories (red, average 6 SEM).
The parameters used for these simulations and calculations were Æeæ = 0.7460.06 and Ægæ = 0.2660.03 (Gaussian distributions; Ægæ was constrained by
SeT as explained in main text). Note that these reflect values for 10 minute steps (equivalent to SeT = 0.405 for half hour steps). Open circles
represent the experimentally measured data shown in G.
doi:10.1371/journal.pcbi.1003846.g010
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Therefore the effective single-synapse dynamics must contain a

‘‘restoring’’ component in addition to an additive random

component. If the value of the restoring component is allowed

to be random as well, then to first (linear) approximation the

Kesten process is obtained (see Text S1 for details). This proximity

to a stable self-organized state may be at the core of the robustness

of this model.

An interesting result supporting the emergence of Kesten-like

dynamics as a result of network self-organization can be found in

recent simulations which included the realization of multiple

plasticity mechanisms [48]. In these simulations the effective

dynamics of individual synapse were computed directly, and it was

found that a multiplicative element in these dynamics emerged

although it was not explicitly incorporated into the ingredients of

the simulation. Thus, notwithstanding the debate concerning the

additive or multiplicative nature of synaptic changes, their

embedding in a network with both positive and negative feedback

resulted in effectively stochastic changes that were both additive

and multiplicative. It is worth noting in this regard that the Kesten

process is, arguably, the simplest stochastic model that includes a

state-dependent component (etxt) and a state-independent compo-

nent (gt); other models, in which the dependence on xt is nonlinear,

may be equally plausible.

A statistical model for synapse dynamics and its relation
to microscopic processes

Why should synapse dynamics be described by a statistical

model, when so much is known about synaptic plasticity? A useful

analogue in this respect is the description of neurotransmitter

release as a stochastic process, modeled according to well-known

statistical models, namely binomial or Poisson processes [49,50].

Here synaptic vesicle release is characterized by a small number of

parameters such as the number of release sites and the probability

of release, both of which can vary as a function of history and

stimuli in the network. Thus statistical models provide a compact,

useful description which allows their parameters to change in

response to physiological signals and perturbations. In contrast to

this accepted statistical view of neurotransmitter release, changes
in synaptic strength are usually described by deterministic rules

that depend on detailed firing patterns of the connected neurons.

The existence of a simple statistical model that reliably captures

many aspects of the dynamics exhibited by individual synapses and

synaptic populations is thus an interesting finding as it extends the

stochastic view of the synapse to the realm of synaptic plasticity

and tenacity.

The formulation of synaptic dynamics as a compact, low

dimensional statistical model, essentially a combination of

multiplicative and additive components, would seem to invite

attempts to map each component to a specific biophysical process.

For example, et might be considered to represent a rate constant in

a first order reaction in which synaptic molecule loss (and

accumulation) rates are proportional to synapse size [51].

Similarly, gt might be viewed as an additive process related to

diffusion (or synthesis) of scarce synaptic molecules. Such specific

mappings imply that synaptic remodeling is ultimately dictated by

a very small number of dominant processes, with the rest of the

molecules and processes playing only secondary or modulatory

roles. Indeed, it has recently been suggested that in spite of the

hundreds of molecules and processes implicated in Long Term

Potentiation, this form of synaptic plasticity mainly depends on a

very small number of factors, such as an adequate pool of surface

glutamate receptors [52].

Alternatively, the insensitivity of the model to many underlying

details may suggest that it is better viewed as an effective

description of a large collection of processes, generally correlated

with one another, combining in such a manner that their overall

outcome is effectively a sum of multiplicative and additive

variables. If this is the case, the relative insensitivity to underlying

details (as exemplified in Fig. 6), indicates that it may not be

possible, even in principle, to ‘‘reverse engineer’’ the population

dynamics in order to infer their underlying microscopic processes.

Interestingly, a similar biological buffering effect was suggested to

underlie protein distributions measured in cells and to induce

universal distributions across microorganisms and conditions [36].

We propose that the general question of the relation between

multiple correlated microscopic stochastic processes and emergent

behavior at the population level of organization poses fundamental

questions in Neuroscience as well as in cell biology that merit

further investigation, both experimental and theoretical.

Previous models
Several groups have recently addressed the modeling of synaptic

size dynamics by stochastic processes; we mention here two

notably different approaches and compare them to ours. In the

work of Yasumatsu and coworkers (2008) spontaneous synaptic

size fluctuations were modeled by a generalized Fokker-Planck

equation. Under this framework, different assumptions on the

dependence of the moments on the synaptic volume lead to

different distributions; thus to fit the data in various conditions (for

example inhibitors), separate realizations of the model are needed.

This reflects the fact that in the Fokker-Planck equation essentially

any distribution can be obtained by assuming the appropriate

potential and a Gaussian noise term. However there is no

justification to choose a particular potential; moreover the steady-

state distribution is highly sensitive to this choice.

A second approach was proposed by Loewenstein and

coworkers (2011) in which spine remodeling is viewed as a purely

multiplicative process, such that the log of the spine size is a sum of

two Ornstein–Uhlenbeck processes and a white noise component.

This model provides a good fit to the spine-size distribution and

the timescales of the two processes can be fit from the correlation

function, but is hard to justify biophysically beyond its successful

fitting results. It should be noted that with finite data sets, broad

distributions can often be fit equally well to several different

functions. The reason is that the tails, which distinguish between

different skewed distributions, are poorly sampled. Indeed our

data can also be described by a log-normal distribution, as

illustrated in Figure S3. Interestingly, the low end of the

distribution seems to be better described by the Kesten model

than by the log-normal distribution (Fig. S3 C,D).

The non-uniqueness of steady-state distributions in determining

underlying stochastic models has been raised also in other areas of

biophysics [36,53]. It highlights the need for experiments that

introduce perturbations and measure the system’s transient

dynamics, in addition to steady state measurements. The merit

of different models should then be assessed based on properties

other than fits to distributions. In this regard the Kesten model

framework has two advantages: First, the inherent rescaling

symmetry of the Kesten distribution under a change of underlying

microscopic random variables, reflects nicely the measured

property of synaptic distribution rescaling in response to pertur-

bations; second, a compound process with two types of accumu-

lation – sum and product – can be justified as a generic, effective

stochastic description for a large number of correlated processes.

Functional implications of stochastic synaptic dynamics
Operationally, if one accepts the premise that synaptic

remodeling is governed by a vast number of complex,
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interconnected and to some extent, intractable molecular

processes, then the model proposed here may provide a useful

framework for characterizing synaptic dynamics and predicting

their outcome irrespective of underlying details. However, it is

also worth considering the functional implications of this

perspective.

In the context of learning theories, synapse remodeling has been

traditionally viewed as a process dictated by physiological signals,

and interpreted in the context of synapse-specific ‘‘learning rules’’

or global homeostatic processes. Such learning rules are expected

to ultimately provide a link between individual synapse behavior

and the systems property, namely learning and memory. The

approach proposed here, to view synaptic dynamics as stochastic,

seems to represent a major departure from this deterministic view.

Several caveats regarding these two views should be considered,

however.

Starting with the data used here, it is important to note that

these were obtained in networks devoid of external input, and

thus, perhaps, in the absence of strong instructive forces.

Moreover, the forms of spontaneous activity observed in these

networks are strongly reminiscent of cortical activity forms

observed during deep sleep and anesthesia (e.g. [20,54]). Thus,

it may be argued that the remodeling dynamics observed and

analyzed here might be more representative of ‘‘baseline’’

synaptic dynamics in the absence of meaningful input. However,

it is noteworthy that fluctuations in PSD size [24,55], spine

volume [3,56] and presynaptic bouton size [10] of comparable

magnitude are also observed in vivo. For example, recent

measurements of synaptic size fluctuations in cortical neurons of

8 week old mice based on PSD-95:EGFP fluorescence (as done

here) reveal that the magnitude of such fluctuations is very

considerable (,48% change on average over periods of 0.25 to 4

days [24]; for comparison, changes induced in organotypic rat

hippocampal slice cultures by protocols that drive long-term

potentiation are ,33% on average [25]). While these spontane-

ous fluctuations might be driven by the animal’s behavioral

experiences, it should be noted that in cell culture [2,4] and in

organotypic cultures [5], fluctuations persist even when all

activity is blocked. It would thus seem that our empirical

observations are not limited to the setting of cell culture;

furthermore, if spontaneous size fluctuations are as large as the

aforementioned studies suggest, a framework which brings into

account baseline size dynamics is needed.

Second, suggestions for the governance of synaptic remodeling

by selective, rather than instructive processes have been previously

put forward (for example [4,23,56–60]). The underlying notion is

that remodeling occurs stochastically, and that favorable changes

are selected by physiological signals. According to this view, even

though synaptic remodeling is driven by stochastic processes, on

the whole it is also governed by instructive processes in the form of

feedback and reinforcement.

Third, it is assumed that physiologically-relevant manipulations

might lead to parametric changes in e- and g- distributions; such

changes could occur at select sets of synapses (for example,

synapses that undergo directed potentiation or depression) or at

larger sets of synapses (in response to global changes in input or

activity level, for example). Thus, while individual synapse

remodeling may appear to be effectively stochastic, statistical

properties of select or large synaptic populations may still change

in a manner determined by signals in the environment [32]. It

remains to be seen how sizes of such populations relate to the

relatively small number of connections formed between any two

neurons [61] and at what organizational level, if any, invariance

and determinacy emerge [62].

Materials and Methods

Time-lapse imaging of excitatory synapses in primary
cultures of cortical neurons

The data presented here is mainly taken from two prior studies

([4,20]) and [63]. Detailed descriptions of the methodologies used

during those studies, which can be found in the aforementioned

references, are summarized briefly below.

Primary cultures of rat cortical neurons were prepared from

cortices of 1–2 days-old rats (either sex) which were dissected,

dissociated and plated on thin glass Multielectrode array (MEA)

dishes (MultiChannelSystems MCS, Reutlingen, Germany). Cells

were plated in media containing minimal essential medium

(MEM, Sigma), 25 mg/l Insulin (Sigma), 20 mM Glucose (Sigma),

2 mM L-Glutamine (Sigma), 5 mg/mL Gentamycin sulfate

(Sigma) and 10% NuSerum (Becton Dickinson Labware, Bedford,

Massachusetts, United States). Preparations were then transferred

to a humidified tissue culture incubator and maintained at 37uC in

a gas mixture of 5% CO2, 95% air. Half the volume of the culture

medium was replaced 3 times a week with feeding media,

essentially identical to seeding media, except for the omission of

NuSerum, lower L-Glutamine concentrations (0.5 mM) and the

addition of 2% B-27 supplement (Invitrogen, San Diego, CA).

Expression of enhanced green fluorescent protein (EGFP)-

tagged PSD-95 was carried out by transduction on day 5 in-vitro

with third generation lentiviral particles prepared and used as

described elsewhere [20].

Imaging was performed on a custom designed confocal laser

scanning microscope using a 406, 1.3 N.A. Fluar objective (Zeiss).

The system was controlled by software written by one of us (NEZ)

and includes provisions for automated, multisite time-lapse

microscopy. The MEA dishes were mounted on a commercial

60-channel headstage/amplifier (MultiChannelSystems) attached

to the microscope’s motorized stage, and covered with a custom

designed cap containing inlet and outlet ports for perfusion media

and air mixtures, a reference ground electrode and a removable

transparent glass window. The MEA dish was continuously

perfused with feeding media (described above) at a rate of 2.5–

5 ml/day by means of a custom built perfusion system based on an

ultra-slow peristaltic pump (Instech Laboratories Inc., Plymouth

Meeting, PA, USA) using an imbalanced set of silicone tubes. The

tubes were connected to the dish through appropriate ports in the

cap. A 95% air/5% CO2 mixture was continuously streamed into

the dish at very low rates through a third port with flow rates

regulated by a high precision flow meter (Gilmont Instruments, IL,

USA). The base of the headstage/amplifier and the objective were

heated to 37uC and 36uC respectively using resistive elements,

separate temperature sensors and controllers, resulting in temper-

atures of 36–37uC in the culture media.

EGFP was excited using the 488 nm line of an argon laser.

Fluorescence emissions were read through a 500–545 nm

bandpass filter (Chroma Technology, Brattleboro, VT). Time-

lapse recordings were usually performed by averaging six frames

collected at each of 7 to 26 focal planes spaced 0.8–1 mm apart. All

data were collected at a resolution of 6406480 pixels, at 12 bits/

pixel, with the confocal aperture fully open. Data was collected

sequentially from up to 12 predefined sites, using the confocal

microscope robotic XYZ stage to cycle automatically through

these sites at intervals of 10 minutes (Fig. 10G,H), 60 minutes

(Fig. 2D) 25 minutes (Fig. 2B,C) or 30 minutes (all other data).

Focal drift during the experiment was corrected automatically by

using the microscopes’ ‘‘autofocus’’ feature.

Experiments performed in chemically fixed neurons [4], were

performed as described above except that here preparations were
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first fixed with 4% paraformaldehyde in phosphate buffered

solution (PBS), washed several times with PBS, placed in growth

medium, mounted on the microscope, heated, connected to the

sterile air and perfusion systems and imaged at 30 minute intervals

as described above for live neurons.

Chemical perturbations
Tetrodotoxin (TTX, Alomone labs, Israel) and CCh (Carba-

chol, Carbamoylcholine) were applied by diluting them into

100 mL of medium drawn from the culture dish while on the

microscope. The mixture was subsequently returned to the dish

and mixed gently. Applications to the dish were complemented by

simultaneous addition to the perfusion media. Final concentrations

in the dish and media were 1 mM (TTX) and 20–50 mM (CCh).

Image analysis
Data analysis of image time series was performed using custom

written software (‘‘OpenView’’) written by one of us (NEZ).

Special features of this software allow for automated/manual

tracking of objects in 3D time series of confocal images as

described elsewhere [20]. 868 or 969 pixel (,1.361.3 mm) areas

were then centered on the centers of such objects and mean pixel

intensities within these areas were obtained from maximal

intensity projections of Z section stacks. For tracking identified

puncta, areas were placed initially over all puncta and then a

smaller subset (typically 100–150 per site) was thereafter tracked.

For tracking newly forming puncta, new puncta were manually

identified in time-lapse movies and then tracked from the

movement of their appearance for as long as they were present,

as long as tracking was unambiguous, or the end of the time series

was reached. As the reliability of automatic tracking was not

absolutely perfect, all tracking was verified and, whenever

necessary, corrected manually. Puncta for which tracking was

ambiguous were excluded.

Microscopy images for Figs. 1 and 10 were processed by

contrast enhancement and low-pass filtering using Adobe Photo-

shop.

All data were exported to Matlab or Microsoft Excel and

analyzed using custom written scripts. Final graphs were prepared

using Excel. All final figures were prepared using Microsoft

PowerPoint.

Supporting Information

Dataset S1 This Microsoft Excel file contains the raw

fluorescence values measured from individual synapses. Each

page is marked by the corresponding figure number and rows and

columns are titled with the relevant variable (e.g. ‘‘time’’, ‘‘synapse

#’’, etc.).

(XLSX)

Figure S1 Measurement noise analysis. (A) A single neuron

expressing PSD-95:EGFP that was chemically fixed before the

experiment (as explained in Materials and Methods) and imaged

for 43 hours at 30 min intervals. The right hand side shows a

higher magnification of the region enclosed in a rectangle at 5 time

points. All images are maximal intensity projections of 9 images

collected at 9 focal planes spaced 0.8 mm apart. Bars: Left - 10 mm;

right 5 mm. (B) PSD-95:EGFP fluorescence levels of 10 arbitrary

synapses from live neurons. Top – raw data; bottom – after

filtering with a 5 time-point low pass filter. (C) PSD-95:EGFP

fluorescence levels of 10 arbitrary synapses from fixed neurons.

Top – raw data; bottom – after filtering with a 5 time-point low

pass filter. (D) Means and standard deviations of Coefficient of

Variations (CV) of PSD-95:EGFP fluorescence values measured

for each synapse over a 24 hour period (live neurons: 1087

synapses; fixed neurons: 1067 synapses). Values are shown for CVs

computed for raw fluorescence measurements and for the same

synapses after filtering the fluorescence measurements with a 5

time-point low pass filter. (E) Estimating SeT from all possible pairs

of measurements made from each synapse from all synapses in the

live neuron data set (1087) at different time-step intervals ranging

from 1 step (0.5 hour) to 12 time steps (6 hours). Note that the

estimate of SeT improves with longer time intervals, as the

contamination by measurement noise become gradually less

significant. This improvement is much more apparent for the

unfiltered data but still observable even after filtering the data with

a 5 time-point low pass filter.

(TIF)

Figure S2 Validation of the Kesten model. (A) Testing the

estimation procedure on two halves of the data. The estimation

for SeT described in Fig. 4 was performed on half of the synapses

and the resulting line shown here was based on the other half of

the data. (B,C) In the Kesten process, variance of the residuals in

a linear fit of a one-step scatter-plot (i.e. plotting xt+1 as a function

of xt for all synapses at all time-points) should lie on a parabola

whose second order coefficient reflects the variance Æd2eæ = Æ(e-

Æeæ)2æ. The first order coefficient should be zero if e and g are

independent. The analysis shown here was performed on (B)

experimental data (1087 synapses) and (C) simulated data (same

number of points as data; same parameters as in Fig. 5). Although

these one-step plots should be treated with caution because of

measurement noise (Fig. S1), the fits for the data and simulations

are generally similar.

(TIF)

Figure S3 ‘‘Log-normality’’ of the data. Comparison of fits of a

synaptic size histogram to a log-normal distribution and to a

Kesten distribution. (A)–(C) Synaptic histograms (blue circles) and

corresponding fits to Kesten simulation (red line) and log-normal

distribution (green line), in three different axes systems. The semi-

logarithmic axes highlight the distribution tail. The double

logarithmic axes highlights the power-law-like behavior of the

tail; the dashed line is a power law of (25). Note that although the

log-normal distribution behaves asymptotically as a power law of

(21), the region relevant to the data is still far from the asymptotic

regime. (D) A scatter plot of the Cumulative Probability Density

(CDF) avoids the need to bin the data and highlights the left hand

tail of small synapses, indicating that the Kesten model provides a

slightly better fit in this regime.

(TIF)

Text S1 Heuristic justification for the Kesten process. We

develop an approximate argument based on expansion around as

statistically stable steady state of a complex system, to suggest how

the Kesten process might arise as effective dynamics projected

onto a single degree of freedom in such a system.

(PDF)

Video S1 Evolution of slopes and intercepts in experimental

data. Changes in the slope, intercept and goodness of fit (R-

square) over a period of 24 hours (48 time steps) when the size of

each synapse is compared to its size at time step 1. Note the

gradual decrease in the slope, the gradual increase in the

intercept value, and the gradual reduction in R-square values.

Note the tendency of small synapses to grow larger, the tendency

of large synapses to grow smaller, and the apparent rotation of

the regression line around an imaginary pivot point at x = 1.

Same data as in Fig. 4.

(AVI)
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