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Abstract

The influence of mono-ubiquitylation of histone H2B (H2Bub) on transcription via nucleosome reassembly has been widely
documented. Recently, it has also been shown that H2Bub promotes recovery from replication stress; however, the
underling molecular mechanism remains unclear. Here, we show that H2B ubiquitylation coordinates activation of the intra-
S replication checkpoint and chromatin re-assembly, in order to limit fork progression and DNA damage in the presence of
replication stress. In particular, we show that the absence of H2Bub affects replication dynamics (enhanced fork progression
and reduced origin firing), leading to cH2A accumulation and increased hydroxyurea sensitivity. Further genetic analysis
indicates a role for H2Bub in transducing Rad53 phosphorylation. Concomitantly, we found that a change in replication
dynamics is not due to a change in dNTP level, but is mediated by reduced Rad53 activation and destabilization of the RecQ
helicase Sgs1 at the fork. Furthermore, we demonstrate that H2Bub facilitates the dissociation of the histone chaperone
Asf1 from Rad53, and nucleosome reassembly behind the fork is compromised in cells lacking H2Bub. Taken together, these
results indicate that the regulation of H2B ubiquitylation is a key event in the maintenance of genome stability, through
coordination of intra-S checkpoint activation, chromatin assembly and replication fork progression.

Citation: Lin C-Y, Wu M-Y, Gay S, Marjavaara L, Lai MS, et al. (2014) H2B Mono-ubiquitylation Facilitates Fork Stalling and Recovery during Replication Stress by
Coordinating Rad53 Activation and Chromatin Assembly. PLoS Genet 10(10): e1004667. doi:10.1371/journal.pgen.1004667

Editor: Julian E. Sale, MRC Laboratory of Molecular Biology, United Kingdom

Received June 17, 2014; Accepted August 14, 2014; Published October 2, 2014

Copyright: � 2014 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Experimental data are available on Gene
Expression Omnibus database with accession number GSE61030 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE61030.

Funding: This study was supported by a joint research project (NSC 100-2923-B-001 -001 -MY3) funded by National Science Council (NSC), Taiwan and French
National Research Agency (ANR). CFK was supported by Academia Sinica, Taiwan. LM and AC were supported by the Knut and Alice Wallenberg Foundation, the
Swedish Cancer Society. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: ckao@gate.sinica.edu.tw

. These authors contributed equally to this work.

¤ Current address: Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan

Introduction

Recent evidence suggests that histone modifications can affect

DNA replication, under both normal or stressed conditions,

through effects on nucleosome dynamics and protein recruitment

[1–3]. One such modification is acetylation of nascent histone H3

at lysine 56 (H3K56Ac), which is regulated by the Asf1 histone

chaperone and the Rtt109 acetyltransferase during the cell cycle

[4,5]. Regulation of this modification is important for DNA

replication, as failure to deacetylate H3K56Ac results in impaired

S phase progression [6], sensitivity to replication stress [7], and

spontaneous DNA damage [6]. H3K56Ac appears to facilitate

nucleosome reassembly on daughter strands during S phase [8].

Acetylation of the N terminal lysines of histone H3 by Gcn5 also

contributes to nucleosome assembly during DNA replication [9].

These findings suggest that replication-coupled nucleosome

assembly may impact on both fork progression and the stability

of stalled forks [1,3]. A second histone, H2B, is mono-

ubiquitylated at lysine 123 (K123, K120 in human) by the E2

enzyme Rad6 and the E3 enzyme Bre1 in Saccharomyces
cerevisiae [10–13]. Mono-ubiquitylation of H2B (H2Bub) is best

characterized in terms of its effects on transcriptional regulation in

budding yeast [14,15], which are mediated through downstream

methylation of lysines 4 and 79 of H3 [16–19]. In addition,

H2Bub has been demonstrated to affect transcription indepen-

dently of its regulation of H3 methylation [20,21]. H2Bub

enhances passage of RNA Polymerase II during transcription

elongation by mediating nucleosome reassembly in both yeast and

human [20,22,23]. Furthermore, H2Bub may also affect tran-

scription and DNA repair through influencing chromatin structure

[24,25]. It has been suggested that H2Bub mediates homologous

recombination repair at DNA double-strand break (DSB) sites
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through relaxing chromatin structure in human cells [26,27].

H2Bub has also been shown to maintain replication fork stability

by promoting replication-associated nucleosome formation in

budding yeast, independently of its role in regulating H3K4 and

K79 methylation [28].

During S phase, replication fork progression can be impaired by

low dNTP pools or by DNA damage. Under these conditions, a

sensor-response system activates the DNA replication (intra-S

phase) checkpoint, which prevents fork collapse while controlling

origin firing [29,30]. The mechanism by which the intra-S

checkpoint is activated is still not yet fully understood. It is

hypothesized that decoupling between polymerase and helicase

leads to single strand DNA accumulation and activation of the

kinases Mec1/ATR and their downstream effector, Rad53

[30,31]. Once a stalled fork has been stabilized by activation of

the intra-S checkpoint, the damaged fork can resume DNA

synthesis. The RecQ helicase Sgs1 is recruited to the stalled fork,

where it facilitates its re-initiation through a mechanism involving

the recombination repair pathway [32]. Sgs1 also facilitates the

phosphorylation of Rad53 (possibly through direct physical

interaction), and this process is redundant with the DNA damage

checkpoint proteins Rad24 and Esc2 [33].

Activation of the intra-S phase checkpoint affects DNA synthesis

by altering both the rate of replication fork progression and the

rate of DNA replication initiation events [34]. For instance, a

recent report suggests that Mec1 promotes chromatin accessibility

at or ahead of replication forks via a mechanism independent of its

checkpoint role [35]. The authors argue that a chromatin

regulatory process may serve as a means of restricting fork

progression, in order to control and stabilize fork progression

under replication stress. However, the mechanisms through which

chromatin structure regulates replication progression are still

poorly understood.

In the current study, we used BrdU IP-chip to examine genome-

wide DNA synthesis incorporation in wild type and H2Bub-

deficient cells in the presence of hydroxyurea (HU). We

demonstrate that newly-synthesized DNA in cells lacking H2Bub

displays a broader distribution and enrichment at origin-distal

regions; these findings suggest faster replication fork progression in

the mutant. Surprisingly, this phenomenon is independent of DNA

damage-induced dNTPs, and is accompanied by delayed Rad53

activation and defective chromatin assembly. All of these effects

contribute to replication fork instability and reduced cell viability

under replication stress. Our data indicate that H2Bub is one of

the limiting factors that regulate replication fork progression, and

maintain fork stability in the presence of HU-induced stress.

Results

H2B mono-ubiquitylation regulates fork progression in
HU

The presence of 200 mM HU increased lethality in mutant cells

lacking H2Bub (htb-K123R mutant) (Fig. 1A), confirming the

previously-hypothesized role of H2Bub in maintaining fork

stability [28]. High doses of HU, an inhibitor of the ribonucleotide

reductase, leads to a strong decrease in dNTP pools, that in turn

leads to a decrease in replication speed and intra-S checkpoint

activation [36,37]. In order to investigate the mechanisms by

which H2Bub sustains cell viability during replication stress, we

examined genome-wide origin firing and replication fork progres-

sion under HU in wild type and in htb-K123R cells. This was

achieved by performing BrdU immunoprecipitation followed by

hybridization on a high density oligonucleotide array. Wild-type

(WT) or H2Bub-deficient mutant (htb-K123R) cells were pre-

synchronized in G1 with a-factor (Fig. 1B) and then released into

fresh media containing HU and BrdU. Under such conditions,

BrdU is incorporated at active origins (such as ARS305 and

ARS607), and BrdU track length correlates with the replication

fork progression. Positions of ARS elements were identified by

Mcm2 occupancy [38]; therefore, this assay can be used to

monitor origin usage and replication fork progression on a

genomic scale [37].

An unexpected finding was that the BrdU track lengths at most

origins were significantly longer in htb-K123R cells (average

12.73 kb) than in WT cells (average 8.17 kb; Fig. 1C–F and Fig.

S1), indicating extended progression of replication forks. This

finding was corroborated by the observation that DNA content in

the mutant was greater than in WT, as evidenced by FACS

(Fig. 1B). In addition, despite the semi-quantitative aspect of this

technique, BrdU incorporation peaks were clearly reduced at the

majority of firing origins in the mutant. This may be indicative of a

decrease in origin firing. Taken together, these results suggest that

replication fork stalling is reduced in the htb-K123R mutant during

HU-induced stress, and this may lead to fork destabilization.

H2Bub-mediated fork stalling is independent of Dun1-
mediated dNTP regulation

It was previously reported that yeast cells with persistently-

enlarged dNTP pools are prone to DNA damage [39], and exhibit

enhanced fork progression [37,40] under replication stress. Thus,

it is possible that the enhanced HU sensitivity and increased fork

progression in htb-K123R cells may be a consequence of enlarged

dNTP pools; this in turn may be a direct consequence of (i)

increased transcription of ribonucleotide reductase (RNR) genes or

(ii) spontaneous DNA damage, or otherwise via an indirect

mechanism that stimulates ribonucleotide production. To test this

hypothesis, we directly examined the size of dNTP pools in htb-
K123R cells. We observed that the dNTP concentration in htb-
K123R cells is ,40% greater than that of WT cells (shown for

four biological replicates in Fig. S2).

Author Summary

Eukaryotic DNA is organized into nucleosomes, which are
the fundamental repeating units of chromatin. Coordina-
tion of chromatin structure is required for efficient and
accurate DNA replication. Aberrant DNA replication results
in mutations and chromosome rearrangements that may
be associated with human disorders. Therefore, cellular
surveillance mechanisms have evolved to counteract
potential threats to DNA replication. These mechanisms
include checkpoints and specialized enzymatic activities
that prevent the replication and segregation of defective
DNA molecules. We employed a genome-wide approach
to investigate how chromatin structure affects DNA
replication under stress. We report that coordination of
chromatin assembly and checkpoint activity by a histone
modification, H2B ubiquitylation (H2Bub), is critical for the
cell response to HU-induced replication stress. In cells with
a mutation that abolishes H2Bub, replication progression is
enhanced, and the forks are more susceptible to damage
by environmental insults. The replication proteins on
replicating DNA are akin to a train on the tracks, and
movement of this train is carefully controlled. Our data
indicate that H2Bub helps organize DNA in the nuclei
during DNA replication; this process plays a similar role to
the brakes on a train, serving to slow down replication, and
maintaining stable progression of replication under envi-
ronmental stress.

H2Bub Integrates Chromatin Formation and Checkpoint Kinase Activation

PLOS Genetics | www.plosgenetics.org 2 October 2014 | Volume 10 | Issue 10 | e1004667



Figure 1. H2Bub regulates fork stalling in HU. (A) The response of WT (CFK1204) and htb-K123R (CFK1231) cells to acute doses of HU. Log-phase
cells were treated with 0.2M HU for the indicated times, and dilutions were subsequently spread onto YPD plates. The plates were incubated at 30uC
for 2–3 days and viability was estimated based on colony forming units (CFU). Viability was normalized to 0 min of HU treatment, which was set as
100%. (B) Flow cytometry was used to analyze the cell cycle progression of WT (CFK1204) and htb-K123R (CFK1231) cells in the presence of 0.2M HU
for 120 minutes after release from a-factor-induced G1 arrest. DNA content is visualized by propidium iodide incorporation. (C–E) Replication profiles
of replication origins: (C) ARS305 and ARS310, (D) ARS603, ARS606, and ARS607, and (E) ARS1309/1310 and ARS1312, in WT (CFK1419) and htb-K123R
(CFK1421) cells. Cells were synchronized in G1 with a-factor, and then released into media containing 0.2M HU and 200 mg/ml BrdU for 90 minutes.
After DNA extraction and fragmentation, BrdU-labeled DNA was immunoprecipitated and hybridized on high-resolution oligonucleotide tiling arrays.
Orange histogram bars (BrdU) on the y axis represent the average signal ratio on a log2 scale of loci along the reported regions. Positions of ARS
elements are identified by Mcm2 occupancy [72]. (F) The graph depicts the distribution of BrdU track lengths in WT (CFK1419) and htb-K123R
(CFK1421) cells. Box and whiskers indicate the minimum, maximum, and 25–75 percentiles, respectively. Mean BrdU tracks lengths are indicated in kb.
Asterisks indicate the P-value of the statistical test (Mann–Whitney rank sum t-test, ** P-value,0.005).
doi:10.1371/journal.pgen.1004667.g001
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The cellular concentration of dNTP pools is regulated by the

Rad53-Dun1 pathway during both normal and perturbed cell

cycles, through multiple mechanisms [41,42]. Deletion of DUN1
stabilizes the RNR inhibitor Sml1 and decreases the size of the

cellular dNTP pool, while deletion of SML1 increases pool size

[43]. To further investigate whether the effect of H2Bub on fork

stalling during replication stress is dependent on the concentration

of dNTP pools, we deleted the DUN1 gene from WT and htb-
K123R cells. Notably, the dNTP pools of both dun1D and dun1D
htb-K123R were ,50% the size of those in WT cells (Fig. 2A).

Since deletion of DUN1 suppressed the increase of dNTP in

H2Bub mutants, we can conclude that the increase of dNTP level

in H2Bub mutants is mediated by Dun1.We next performed

BrdU-IP chip experiments to determine BrdU track length in

these cells. As expected, the BrdU track length of the dun1D cells

was significantly shorter (6.57 kb; Fig. 2B & C) than that in WT

cells, probably due to the reduced concentration of dNTP [37,39].

Surprisingly, fork progression in dun1D htb-K123R was signifi-

cantly faster than in WT cells (9.86 kb vs. 8.81 kb; Fig. 2B & C),

despite the reduced size of the dNTP pool (Fig. 2A); this finding

indicates that the increase in fork progression and instability in this

mutant does not arise solely from the increase in the dNTP pool.

In addition, we observed that deletion of DUN1, but not SML1,

increased the sensitivity of htb-K123R cells to chronic HU

exposure (Fig. 2D). Therefore, we conclude that H2Bub has a role

in controlling fork progression and cell survival in response to

replication stress, which is independent of the Dun1-mediated

regulation of ribonucleotide production.

H2B ubiquitylation sets replication dynamics and
replication fork integrity under HU stress

Origin firing and fork progression have been reported to be

strongly co-regulated by cells in order to ensure normal

completion of replication. In particular, an increase in replication

speed leads to a decrease in origin firing [37]. Our BrdU

immunoprecipitation and chip hybridization data are consistent

with this reported tendency (Fig. 1). However, since this technique

is only partially quantitative, we decided to confirm this

observation using two-dimensional (2D) gel analysis (Fig. 3A).

Replication intermediates migrate differently depending on their

molecular weight and sterical conformation. In particular, the

bubble arc reflects origin firing. Interestingly, both WT and

H2Bub mutant exhibit similar replication kinetics at two early

origins (ARS305 and ARS607); replication intermediates appear

one hour after alpha factor release in agreement with origin firing,

and start to decrease after 2 hours, reflecting fork progression

outside of the restriction fragment. However, we observed a strong

reduction of replication intermediates in the H2Bub mutant

compared to WT, likely due to a decrease in origin efficiency.

To further delineate the role of H2Bub in origin firing, we

measured incorporation of BrdU into chromatin, using BrdU-IP

combined with quantitative-PCR. This experiment was performed

at 20uC to slow down DNA replication. We found that replication

efficiency at ARS305 and ARS607 was much lower in mutant

than in WT cells. We did not observe DNA synthesis at a

telomeric region (TEL VI) in either WT or the mutant, owing to

the late onset of DNA replication at telomere. These data strongly

suggest that origin firing is inefficient in cells lacking H2Bub (Fig.

S3).

We subsequently hypothesized that the change in replication

dynamics in cells lacking H2Bub may affect the integrity of the

fork, as previously observed [37]. In particular, cH2A accumu-

lation in the H2Bub mutant confirmed the accumulation of

damage in the absence of H2B ubiquitylation (Fig. 3B). This

accumulation may explain the hypersensitivity to hydroxyurea

that we and others [28] have observed (Fig. 3C).

The Bre1-H2Bub pathway genetically interacts with
components of the intra-S phase checkpoint

Stalled forks are detected by the intra-S phase checkpoint [30].

We reasoned that the instability of replication forks in htb-K123R
cells may result from a defect in the activation of the intra-S phase

checkpoint [34]. As such, we examined whether H2Bub interacts

with factors that stabilize the replication fork during replication

stress, by systematically examining the genetic interactions

between htb-K123R and mutations in key components of this

complex signaling system. Initially, we examined a hypomorphic

allele of pol2-11, which encodes a mutant form of Pole that causes

defects in the intra-S phase checkpoint [44]. The htb-K123R and

pol2-11 double mutant exhibited synthetic growth defects at the

permissive temperature (23uC) (Fig. 4A, top left panel). This

interaction was confirmed to be specific, because double mutants

of htb-K123R and pol1-17, pol3-14, or pri2-1 (replication

defective mutants of DNA polymerase a and d, and RNA

primase, respectively [45]), exhibited subtle additive growth

defects, or sensitivity to 50 mM HU at both the permissive

(23uC; Fig. S4A) and non-permissive (30uC; Fig. S4B) temperature

for growth.

We next examined the effect of HU on strains containing htb-
K123R and mec1-100, an intra-S phase checkpoint defective

allele of Mec1/ATR [46], or deletion of MRC1 or SGS1
(Fig. 4A). Single mutants of htb-K123R and mec1-100 grew in

the presence of 10 and 25 mM HU, but the double mutant was

highly sensitive to these concentrations of HU (Fig. 4A, top right

panel). Interestingly, similar phenotypes were observed upon

combining htb-K123R with deletions of the genes encoding the

checkpoint mediator protein Mrc1 or the RecQ helicase Sgs1

(Fig. 4A, bottom left panel), suggesting that H2Bub stabilizes the

replication fork independently of these proteins. We then

examined whether H2Bub interacts with the kinase checkpoint

effector, Rad53. The rad53-11 mutant is checkpoint defective,

with undetectable Rad53 activity [47]. Intriguingly, the hypersen-

sitivity of rad53-11 to HU was partially reversed by htb-K123R
(Fig. 4A, bottom-right panel). Deletion of the H2Bub-specific E3

ligase Bre1 had similar effects to htb-K123R when combined with

the mec1-100, sgs1D, or rad53-11 mutations (Fig. 4B, S4C),

suggesting that the genetic interactions between H2Bub and

components required for the re-initiation of stalled forks are at the

level of chromatin structure, and are linked to its chromatin

modifying activities. We next examined the effect of H2Bub

deficiency on the viability of mec1-100 and rad53-11 cells in the

presence of HU. The absence of H2Bub exacerbated the lethality

observed in mec1-100 cells in S phase, while enhancing the

viability of rad53-11 cells under the same conditions (Fig. 4C).

Overall, our genetic analyses suggest that H2Bub and the Mec1-

dependent S-phase checkpoint function in parallel to preserve fork

stability under replication stress. However, our finding that htb-
K123R alleviates the rad53-11 growth defect under HU suggest

that that H2Bub may function upstream of Rad53 and participate

in the replication stress response.

H2Bub and Sgs1 play interdependent roles in the
replication stress response

Comparing our data with earlier works [37,48,49] revealed

several lines of evidence which suggest that H2Bub and the RecQ

helicase Sgs1 have overlapping functions in maintaining fork

stability under HU. First, both htb-K123R and sgs1D cells exhibit

H2Bub Integrates Chromatin Formation and Checkpoint Kinase Activation
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Figure 2. H2Bub-mediated fork stalling is independent of dNTP pool size. The size of the dNTP pools in exponentially-growing cultures of
WT (CFK1419), htb-K123R (CFK1421), dun1D (YCL023), and dun1D htb-K123R (YCL025) cells in YPD media. Two independent isogenic strains of each
genotype were analyzed. (B) Graph depicting the distribution of BrdU track lengths in WT (CFK1419), htb-K123R (CFK1421), dun1D (YCL023), and
dun1D htb-K123R (YCL025) mutants, as shown in Fig. 1F. (C) Replication profiles of the replication origins ARS207, ARS208/209, ARS718, ARS719/720,
and ARS1309/1310 in WT (CFK1419), htb-K123R (CFK1421), dun1D (YCL023), and dun1D htb-K123R (YCL025) mutants. The BrdU histogram was
analyzed as described in Fig. 1C–E. (D) Temperature sensitivity and HU resistance of the indicated genotypes (WT (CFK1204), sml1D (CFK1481), dun1D
(YMW069), htb-K123R (CFK1231), and htb-K123R in combination with sml1D (CFK1482) or dun1D (YMW072)). Log-phase cells were serially diluted and
spotted onto YPD plates with or without HU, and incubated at 30uC or 37uC for 2–3 days.
doi:10.1371/journal.pgen.1004667.g002

H2Bub Integrates Chromatin Formation and Checkpoint Kinase Activation
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increased fork progression in HU (Fig. 1F; [37]). Second, the

absence of either Sgs1 or H2Bub reduces the stability of stalled

replication forks under HU (Fig. 1A and 3C; [48]). Third, the

combination of htb-K123R or sgs1D with mec1-100 causes fork

collapse and failure to recover from acute exposure to HU

(Fig. 4C; [49]). To better delineate the role of H2Bub in the

replication stress response, we decided to investigate the interac-

tion between H2Bub and the Sgs1 helicase further. We used ChIP

to measure the recruitment of Sgs1 to the ARS305 and ARS607
early origins in WT and htb-K123R cells (Fig. 5A). While Sgs1

was initially recruited efficiently to ARS305 and ARS607 in both

strains, it failed to accumulate at ARS in the mutant, suggesting

the association of Sgs1 with the replication fork was unstable in the

absence of H2Bub (Fig. 5A). Furthermore, HU-induced phos-

phorylation of Rad53 was unaffected in sgs1D, but delayed in htb-
K123R cells (Fig 5B). Rad53 activation is facilitated by the

retention of Sgs1 at stalled forks [33], and the current results

suggest that H2Bub may be required for such retention, and thus

Rad53 phosphorylation. Interestingly, a recent study demonstrat-

ed that RPA-coated single-stranded DNA replication intermedi-

ates (ssDNA) are reduced at initiated origins in htb-K123R cells

under HU [28]. RPA is postulated to interact with Sgs1 at

replication forks [50]. Thus, the reduced Sgs1 occupancy at

replication forks and delayed Rad53 phosphorylation in the htb-
K123R mutant may be explained by the decreased amount of

ssDNA at replication forks. In addition, Rad53 phosphorylation

was significantly impaired in a sgs1D htb-K123R double mutant

(Fig. 5B). This is also indicative of a Sgs1-independent role for

H2Bub in Rad53 activation. Collectively, these results point to a

functional role for H2B in replication and the checkpoint response,

and are consistent with the observed epistatic interaction between

H2Bub and Rad53 (Fig. 4A–C).

Figure 3. H2Bub preserves replication fork stability under HU stress. (A) Analysis of replication intermediates (RIs) at ARS305 and ARS607 in
WT (CFK1204) and htb-K123R (CFK1231) mutants. Cells were synchronized at G1 phase and released into media containing 200 mM HU for
120 minutes. DNA was prepared from cells collected at the indicated times, cut with HindIII (ARS305) or SacI and ApaL1 (ARS607), and analyzed by 2D
gel using the ARS305 or ARS607 probe, as described in the Materials and Methods. (B) Accumulation of damaged DNA in H2Bub-depleted cells. WT
(CFK1204) and htb-K123R (CFK1231) cells were arrested in G1 and released into fresh media containing 0.2M HU for 90 minutes at 30uC. Whole cell
lysates were prepared at the indicated time points, and analyzed by Western blot using antibodies against c-H2A, a marker of DNA damage. G6PDH
was used as a loading control. Asy: Asynchronized cells. (C) Cells lacking H2Bub are more sensitive to replication stress. Ten-fold serial dilutions of
yeast cells (WT (CFK1204) and htb-K123R (CFK1231)) were spotted onto nonselective YPD plates under different temperatures or YPD containing 100
or 150 mM HU for a period of several days.
doi:10.1371/journal.pgen.1004667.g003

H2Bub Integrates Chromatin Formation and Checkpoint Kinase Activation
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H2Bub and Sgs1 cooperatively control replication fork
stalling under HU

To further elucidate the interaction between Sgs1 and H2Bub,

we used BrdU IP-chip to monitor fork progression in sgs1D and

sgs1D htb-K123R mutant cells in the presence of HU. Consistent

with a previous report [37], the average BrdU track length in

sgs1D cells was significantly increased as compared to WT cells

(11.35 kb vs. 8.17 kb, respectively; Fig. 6A and 6B), similar to the

increase observed in htb-K123R cells (Fig. 1F). Remarkably, track

lengths in the sgs1D htb-K123R double mutant (20.36 kb) were

even greater, being almost 2.5-fold longer than those in WT

(8.17 kb; Fig. 6A and 6B). Flow cytometry was used to confirm

that the double mutant contained greater amounts of DNA in the

presence of 200 mM HU (Fig. 6C). Increased fork progression in

the absence of Sgs1 is believed to be a consequence of dNTP

accumulation [37]. We confirmed that the dNTP concentration

was increased in sgs1D (,2.3 fold as compared to WT; Fig. 6D),

but no additional increase was observed in the sgs1D htb-K123R
double mutant, suggesting that elevated dNTP production does

not underlie the defect in fork stalling in the double mutant.

Figure 4. The Bre1-H2Bub pathway genetically interacts with components of the intra-S-phase checkpoint. (A) H2Bub functions in
parallel with DNA polymerase (pol2-11) and intra-S-phase checkpoint cascades (Mec1, Sgs1, and Mrc1). WT and pol2-11 cells carrying HTB1 or the
htb1-K123R allele on a HIS3 vector were transformed with HTB1 on a URA3 vector. The strains containing both URA3 and HIS3 (CFK2000, CFK2002,
CFK2004, and CFK2006) were streaked onto 5-FOA plates to select for cells lacking H2Bub (htb1-K123R). Ten-fold serial dilutions of the indicated
strains were spotted onto YPD plates in the absence or presence of different doses of HU at 30uC (WT (CFK1204, CFK2352, and CFK2414), htb-K123R
(CFK1231 and CFK2416), mec1-100 (CFK2346), sgs1D (CFK1447), mrc1D (CFK1444), rad53-11 (CFK2347), and double mutants (CFK2356, CFK1453,
CFK1450, and CFK2358)). (B) The H2B ubiquitin E3 ligase, Bre1, functions in parallel with intra-S-phase checkpoints under HU stress. Ten-fold serial
dilutions of the indicated strains (WT (CFK2351), bre1D (YMW093), mec1-100 (CFK2346), mec1-100 bre1D (YMW095), sgs1D (CFK2371), bre1D sgs1D
(CFK2373), rad53-11 (CFK2347), and rad53-11 bre1D (CFK2378)) were spotted onto YPD plates with and without HU as described in (A). (C) The
response of double mutants of htb-K123R and mec1-100 or rad53-11 to acute exposure to HU. Logarithmically-growing cells were treated with 0.2M
HU as described in Fig. 1A.
doi:10.1371/journal.pgen.1004667.g004
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We have demonstrated that the replication fork becomes

unstable and vulnerable to replication stress in H2Bub-deficient

cells (Fig. 1A & 3B), which could be due to continuous DNA

synthesis under conditions of dNTP depletion. Thus, we

reasoned that the rapidly moving replication fork may become

highly unstable in the absence of both H2Bub and Sgs1, a

Figure 5. H2Bub and Sgs1 play interdependent roles in Rad53 phosphorylation. (A) Sgs1 occupancy at replication origins is unstable in
htb-K123R cells exposed to HU. WT (CFK1764) or htb-K123R (CFK1765) cells were synchronized in G1 and then released into fresh YPD containing 0.2M
HU for 60 minutes at 30uC. Chromatin immunoprecipitation (ChIP) was performed using antibodies against Sgs1-36Myc. DNA was quantified by
qPCR using primers adjacent to ARS305 and a region 3.5 kb distal. Sgs1 occupancy at each time point was normalized to that of G1. (B) Activation of
Rad53 is impaired in the absence of both H2Bub and Sgs1. WT (CFK1204), htb-K123R (CFK1231), sgs1D (CFK1447), and sgs1D htb-K123R (CFK1453) cells
were arrested in G1 and released into fresh media containing 0.2M HU for 90 minutes at 30uC. Whole cell lysates were prepared at the indicated time
points, and analyzed by Western blot using antibodies against Rad53 (EL7), phospho-Rad53 (F9), H2B, and mono-ubiquitylated H2B (anti-FLAG).
G6PDH was used as a loading control.
doi:10.1371/journal.pgen.1004667.g005

H2Bub Integrates Chromatin Formation and Checkpoint Kinase Activation

PLOS Genetics | www.plosgenetics.org 8 October 2014 | Volume 10 | Issue 10 | e1004667



hypothesis supported by the observation that the double mutant

was more sensitive to acute treatment with HU than either

single mutant (Fig. 6E). Taken together, our results so far

suggest that H2Bub is involved in stalling the replication fork

and maintaining its stability in response to HU-induced S phase

block; furthermore, this function is performed in cooperation

Figure 6. H2Bub and Sgs1 cooperatively control replication fork stalling and stability under HU. (A) Replication profiles of the early
origins ARS305 and ARS607 in sgs1D (YCL007) and sgs1D htb-K123R (YCL008) mutants. The BrdU histogram was analyzed as described in Fig. 1C–E. (B)
Graph depicting the distribution of BrdU track lengths in WT (CFK1419), sgs1D (YCL007), and sgs1D htb-K123R (YCL008) mutants, as shown in Fig. 1F.
(C) Cell cycle progression of these mutants in the presence of 0.2M HU was analyzed by flow cytometry. (D) The size of the dNTP pools in
exponentially-growing cultures of WT (CFK1419), htb-K123R (CFK1421), sgs1D (YCL007), and sgs1D htb-K123R (YCL008) cells in YPD media. Two
independent isogenic strains of each genotype were analyzed. (E) Survival of WT (CFK1204), htb-K123R (CFK1231), sgs1D (CFK1447), and sgs1D htb-
K123R (CFK1453) cells in response to acute doses of HU, as shown in Fig. 1A.
doi:10.1371/journal.pgen.1004667.g006
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with Rad53 kinase activity and in parallel with Mec1 and Sgs1

during S phase.

H2Bub promotes chromatin assembly in response to
replication stress

H2Bub has been shown to be required for nucleosome

reassembly during RNA Polymerase II elongation [20,23] and

DNA replication [28]. We therefore hypothesized that defective

fork stalling in htb-K123R cells under replication stress may be a

consequence of incomplete nucleosome assembly. We first

confirmed that histone assembly on newly-synthesized DNA is

defective in htb-K123R under HU. In WT cells, histone H3 was

associated with the early firing origins ARS305 and ARS607 at all

times post-G1 release into HU. H3 occupancy at these early

origins was reduced upon entry into S phase in htb-K123R cells,

but occupancy at the late origin ARS501 was unaffected (Fig. 7A).

These data suggest that in the absence of H2Bub, histone assembly

is less efficient at firing origins.

Mec1 was recently reported to increase chromatin accessibility

at or ahead of replication forks, and promote fork progression in

HU [35]. Thus, the mechanism promoting nucleosome assembly

during DNA replication may inhibit fork progression under

replication stress. We reasoned that if this were the case, deletion

of genes encoding proteins involved in replication-coupled histone

assembly (such as the histone chaperones CAF-1 and Asf1) should

sensitize htb-K123R cells to replication stress. Asf1 has dual roles;

it associates with the RCF complex and MCM helicase and

facilitates nucleosome disassembly during replication [51,52], and

it assists acetylation of H3 lysine 56 (H3K56ac) by presenting

newly-synthesized H3/H4 dimers to the Rtt109 acetyltransferase

[4,53]. Acetylation increases the affinity of H3 for CAF-1 [53] and

promotes efficient chromatin assembly onto nascent DNA [8]. As

a control, we deleted Hir1; this protein is implicated in replication-

independent H3/H4 deposition [54]. We found that deletion of

ASF1 or RTT109 greatly increased the HU sensitivity of htb-
K123R cells, but deletion of CAC1 (the largest subunit of CAF-1)

or HIR1 had no such effect (Fig. 7B). This suggests that H2Bub

and Asf1-Rtt109 function synergistically to promote cell survival

during replication stress. Moreover, deletion of Asf1 increased the

sensitivity of htb-K123R cells to acute HU treatment (Fig. 7C),

suggesting that the stability of the replication fork was decreased

further.

H2Bub-mediated Rad53 activation promotes the
dissociation of histone chaperone Asf1 from the Rad53
complex

Rad53 and Asf1 form a dynamic complex that dissociates in

response to Rad53 phosphorylation under replication stress.

Rad53 acts as a regulator of Asf1 availability and indirectly

controls its chromatin assembly activity [55,56]. Our results

suggest that H2Bub may affect Rad53 phosphorylation (Fig. 5B).

We hypothesized that H2Bub may contribute to nucleosome

assembly by influencing the dynamic association between Asf1 and

Rad53, in addition to possessing a direct role in nucleosome

assembly. To test this hypothesis, we tagged the genomic ASF1
gene with a triple HA tag, thereby enabling immunoprecipitation

of Asf1 with an anti-HA antibody (Fig. 7D, lanes 2, 4, 6, and 8).

Rad53 co-precipitated with HA-tagged Asf1 efficiently in WT

lysates (Fig. 7D, lane 2) but not with un-tagged Asf1 (Fig. 7D,

lanes 1, 3, 5, and 7). Consistent with previously published results

[55,56], Rad53 association with Asf1 was reduced in the presence

of HU in WT cells (Fig. 7D, lane 6). However, the association of

Rad53 with Asf1 remained stable in htb-K123R cells in the

presence of HU (Fig. 7D, compare lanes 6 and 8). These results

suggest that H2Bub coordinates nucleosome assembly in response

to replication stress by directly contributing to nucleosome

formation, and by indirectly regulating the availability of Asf1,

which in turn deposits histones behind the advancing replication

fork (Fig. 7E).

Discussion

Here, we report that replication fork stalling is regulated by the

Bre1-H2Bub pathway in the presence of HU-induced stress. We

demonstrate that elimination of H2Bub enhances replication fork

progression and instability in HU. Importantly, this process is

independent of Dun1-mediated regulation of dNTP pools.

Instead, H2Bub promotes Rad53 activation and mediates

dissociation of phosphorylated Rad53 and Asf1, which may

contribute to nucleosome assembly and promote cell survival in

HU. These findings lead us to suggest that H2Bub plays a more

direct role in fork stalling and stability under replication stress.

Chromatin state facilitates tight regulation of fork
progression during replication stress

How does the Bre1-H2Bub pathway modulate the cellular

response to HU-induced replication block? Interestingly, H2B

ubiquitylation has been proposed to promote unwinding of the

DNA chromatin complex ahead of the replication fork, and

thereby stimulate fork progression in HU [28]. However, our

results support an alternative role for H2Bub in restricting

replication fork progression under conditions of HU stress.

We found that histone occupancy around early origins in htb-
K123R cells is reduced upon S phase entry in the presence of HU

(Fig. 7A). In addition, we also showed that the removal of both

Asf1-Rtt109 and H2Bub synthetically increases the sensitivity to

replication stress (Fig. 7B and C). Moreover, we provide evidence

that H2Bub controls the availability of Asf1 during replication

stress (Fig. 7D), which potentially contributes to histone deposition

behind the advancing replication fork [55,56]. Thus, we propose

that enhanced chromatin assembly on nascent DNA during

replication stress may facilitate replication fork stalling in response

to nucleotide depletion imposed by HU (Fig. 8), akin to the brakes

on a train (the replisome). Mec1 slows S phase progression by

delaying late origin firing through intra-S phase checkpoint

activation [30,34], but it also promotes sustained replication fork

progression at early origins [35]. The chromatin state seems to

facilitate tight regulation of fork progression at early origins during

replication stress.

We cannot exclude the possibility that continuous DNA

synthesis in the htb-K123R mutant may reflect the movement of

DNA polymerase through inappropriately-assembled chromatin.

In this scenario, chromatin structure at or ahead of the fork would

be altered in the absence of H2Bub due to defective chromatin

assembly during the previous round of replication. Mec1 and

Bre1-H2Bub may have antagonistic effects on chromatin dynam-

ics ahead of the replication fork; thus in the absence of H2Bub,

forks may be inclined to move faster because of Mec1-induced

chromatin accessibility [35]. Although the scenario outlined above

is formally possible, our molecular and genetic analyses favor a

second model in which nucleosome formation on nascent DNA

serves as a negative feedback mechanism to regulate the

progression of the replication fork under stress. Thus, we suggest

that Mec1-mediated signaling and the Bre1-H2Bub pathway

synergistically interact to ensure that replisomes travel in a

controlled manner, thereby maintaining fork stability under

replication stress.
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Figure 7. H2Bub promotes chromatin assembly in response to replication stress. (A) H2Bub is required for nucleosome assembly near
replication forks under replication stress. WT (CFK1204) or htb-K123R (CFK1231) cells were arrested in G1 phase using a-factor, and were then released
into 200 mM HU at 30uC for 60 minutes. At the indicated time, cells were collected and histone occupancy at two early origins (ARS305 and ARS607)
and one late origin (ARS501) was determined by ChIP using antibodies against H3. IP signals at ARS sequences were normalized to IP signals at TELVI-
R. The results are the mean +/2 SEM of three replicates. (B) Genetic interactions between H2Bub and histone chaperones (Cac1, Asf1, and Hir1) or a
histone acetyl-transferase (Rtt109). Ten-fold serial dilutions of the indicated strains (WT (CFK1204), htb-K123R (CFK1231), cac1D (CFK1206), cac1D htb-
K123R (CFK1237), asf1D (CFK1208), asf1D htb-K123R (CFK1233), rtt109D (CFK1212), rtt109D htb-K123R (CFK1241), hir1D (CFK1202), and hir1D htb-K123R
(CFK1235)) were spotted onto YPD plates containing HU (0 or 50 mM), and cell growth was monitored for 2–3 days. (C) The survival of asf1D
(CFK1208) and asf1D htb-K123R (CFK1233) cells in response to acute treatment with HU, as described in Fig. 1A. (D) H2Bub modulates the interaction
between Asf1 and Rad53 under HU stress. Asynchronous cultures of WT (YMW105) or htb-K123R (YMW104) cells were untreated (2) or treated (+)
with 0.2M HU for 90 minutes. Protein extracts were prepared and incubated with pre-bound anti-HA-protein G beads to pull down Asf1-36HA, and
the immune-precipitates were resolved by SDS-PAGE, before being probed with either anti-HA or anti-Rad53 antibodies. (E) A working model
depicting the role of H2Bub in nucleosome assembly under HU stress. H2Bub coordinates nucleosome assembly in response to replication stress by
directly contributing to nucleosome formation and by indirectly regulating the availability of Asf1 during HU stress.
doi:10.1371/journal.pgen.1004667.g007
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H2Bub is a regulator of the DNA replication stress
signaling pathway

Checkpoint kinases Mec1 and Rad53 are essential for the

maintenance of cell viability when replication is perturbed [30,31].

Our genetic analyses reveal the unexpected finding that H2Bub

maintains fork stability in parallel with the Mec1-mediated intra-S

checkpoint, but its effect is epistatic to that of a second checkpoint

kinase, Rad53. Our results support the hypothesis that Rad53

stabilizes replication forks independently of Mec1 [57,58].

Furthermore, our findings suggest a possible mechanism for the

role of H2Bub in Rad53 activation (Fig. 8 upper panel). We report

that the stable association of Sgs1 with the replication fork is not

only replication-dependent [48], but also H2Bub-dependent

(Fig. 5A). It was previously demonstrated that Sgs1 helps recruit

Rad53 to stalled forks via an interaction with RPA [50].

Intriguingly, it has been postulated that fork collapse followed by

origin firing in yeast cells lacking H2Bub results in reduced levels

of single-stranded DNA (ssDNA) and RPA during a G1 to HU

shift [28], consistent with our observation of reduced replication

intermediates and increased DNA damage in htb-K123R cells

(Fig. 3). However, it is also possible that the failure to accumulate

RPA in htb-K123R cells may be caused by an increase in the rate

of nascent DNA synthesis, thereby reducing the accumulation of

ssDNA at stalled forks; this in turn reduces Sgs1 retention and

Figure 8. A model for how H2B mono-ubiquitylation facilitates fork stability under replication stress. Upon HU-induced stress, H2Bub
promotes nucleosome assembly, which assists replication fork stalling, Sgs1 recruitment, and Rad53 phosphorylation. The reassembly of chromatin
on nascent DNA restricts fork progression and promotes replication fork stability and its recovery after the removal of HU. In the absence of H2Bub
(bre1D/htb-K123R), replication fork movement is faster than even that observed under nucleotide depletion by HU, which results in shorter tracts of
RPA-coated-single-stranded DNA. This in turn reduces retention of Sgs1 at the forks, and delays phosphorylation of Rad53.
doi:10.1371/journal.pgen.1004667.g008
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delays Rad53 phosphorylation (Fig. 8, bottom panel). The

reduced activity of Rad53 may have a negative feedback effect,

thereby further compromising fork stability. The absence of both

H2Bub and Sgs1 therefore further disrupts Rad53 activation and

fork integrity.

The mechanism by which chromatin assembly regulates
fork progression and stability

In support of our model that chromatin assembly serves as a

negative feedback signal to regulate the progression of replication

forks, several reports in budding yeast have established that

chromatin assembly at replication forks is necessary to stabilize

replication forks and prevent their collapse [52,59,60]. A recent

report in mammals demonstrated that replication fork speed is

dependent on the supply of new histones and efficient nucleosome

assembly during an unperturbed cell cycle [61]. Human Asf1 has

been shown to associate with the MCM complex through histone

H3/H4 dimers [51]. In addition, Asf1 extracted from human cells

exposed to HU exhibits an enhanced ability to assemble

chromatin [62]. Thus, there may be two pools of Asf1 in cells.

One is coupled to replication forks, while the other is sequestered

by Rad53. Replication stress triggers the release of the sequestered

pool of Asf1 (which occurs at least in part through H2Bub) to

promote chromatin formation (Fig. 7E) and restrict fork progres-

sion (Fig. 1C–F) under replication stress. However, defects in

nucleosome assembly mediated by CAF-1 trigger DNA damage

checkpoint activation and delay fork progression in human cells

during an unperturbed cell cycle [63–65]. Our genetic analysis

shows that Cac1, unlike H2Bub and Asf1, is not required by yeast

cells to maintain growth under HU stress; hence chromatin

assembly regulated by H2Bub and Asf1 under replication stress

(Fig. 7B) likely occurs through pathways distinct from those

mediated by CAF-1 [66].

In summary, we have provided evidence that H2Bub coordi-

nates chromatin assembly and Rad53 activation during HU stress

in parallel with other mechanisms that maintain fork stalling and

stability during replication stress, including the intra-S phase

checkpoint and the Sgs1 helicase. Our data indicate that H2Bub

maintains genomic stability by creating an environment that

integrates chromatin formation and checkpoint kinase activation,

thereby maintaining stable replication and facilitating recovery

from replication stress in concert with other components that

mediate faithful DNA replication.

Materials and Methods

Yeast strains, plasmids, and phenotypic screening
Yeast strains and plasmids used in this study are shown in

supplementary tables S1 and S2. All yeast cells were cultured in

yeast extract peptone supplemented with 2% dextrose at 30uC. All

analyses were performed during the log phase of growth. Cells

were arrested in G1 by the addition of a-factor to a final

concentration of 100 ng/ml (bar1D strain) for at least 3 hours (the

exact time differed depending on the strain). Cells were released

from G1 arrest by washing with sterilized H2O three times, before

being re-suspended in fresh media containing hydroxyurea (HU;

Sigma).

For phenotypic screening, mid-log (0.4–0.8) phase cultures were

collected and counted. Ten-fold serial dilutions were spotted onto

YPD plates containing different doses of HU. Plates were

subsequently incubated at 30uC for several days.

Two different strain backgrounds were used in this study. With

the exception of the strains used in the genetic analysis shown in

Fig. 4, all strains were in the YS131 background. The YS131

parental strain is derived from W303, but both genomic copies of

HTA1-HTB1 and HTA2-HTB2 are deleted, and cell viability is

maintained by a plasmid-derived HTA1-HTB1 or HTA1-htb1-

K123R. Earlier studies established that deletion of HTA2-HTB2

has negligible effects on mitotic growth and stress responses, and

that the HTA1-HTB1 gene pair can compensate for the absence

of the HTA2-HTB2 [67,68]. Therefore, we predict that hta2-

htb2D would not affect the htb-K123R mutation.

For the genetic analysis with the checkpoint mutants, we were

conscious of an earlier report that the rad53 mutant is sensitive to

histone dosage [69]. To prevent unexpected pleiotropic effects, we

introduced genomic htb-K123R mutations [HTA1-htb1-
K123R::NAT+ HTA2-htb2-K123R::HIS+] [70] into mec1-100

and rad53-11 for genetic analysis. We also compared the HU

sensitivity of the htb-K123R mutants in both strain backgrounds to

ensure that they give rise to the same replication defects, as shown

in Fig. S5.

Gene replacement
For gene disruptions, the indicated gene was deleted by high

efficiency transformation, using a PCR product in which the target

was replaced with the KanMX gene (deletion library from SGD).

The mutant alleles, pol1-17 [45], pri2-1 [45], pol2-11 [71] and

pol3-14 [45], were introduced into strain CFK1204 or CFK1231

through the gene replacement technique of Scherer and Davis

[72], thereby generating ts mutants. The plasmid used for gene

replacement consisted of a 9-kb pol1(Ts), 3.3-kb pri2(Ts), 13-kb

pol2(Ts), or 4-kb pol3(Ts) fragment cloned into the XhoI site of

YlP, HpaI site of YlPA16, AgeI site of pRS306, or KpnI site of

pMJ14.

BrdU-IP chip analysis
S. cerevisiae strains were designed in order to allow BrdU

incorporation (TK repeats) (Tables S1 and S2). S. cerevisiae
oligonucleotide microarrays were obtained from Affymetrix.

BrdU-IP chip analysis was carried out as previously described

[73,74]. Briefly, cells were synchronized with a-factor and then

released into fresh YPD containing 0.2M HU and 200 mg/ml

BrdU for 90 minutes. The collected cells were arrested in ice-cold

buffer containing 0.1% Na-azide, and genomic DNA was

extracted from 26109 cells as described in the ‘‘QIAGEN

Genomic DNA Handbook’’. DNA was sheared to 300 bp by

sonication, denatured, and mixed with 4 mg anti-BrdU monoclo-

nal antibody (MBL M1-11-3) as previously described [75,76].

Antibody-bound and unbound fractions were subsequently puri-

fied, and then amplified using the WGA2 GenomePlex Complete

Genome Amplification Kit. A total of 2 mg of amplified DNA was

digested with DNaseI to a mean size of 100 bp; the fragments were

subsequently end-labeled with biotin-N11-ddATP [77], and

hybridized to the DNA chip.

Flow cytometry analysis
For DNA content analysis, approximately 16107 cells were

collected at each time point, and resuspended in 1 ml 70% ethanol

(ice-cold), before being stored at 280uC for at least one night

(samples were stored up to a maximum of 3 days). The cells were

then washed twice with 1 ml 50 mM Tris-HCl (pH 8.0) followed

by RNAase A digestion (1 mg ml21 of RNAase A in 50 mM Tris-

Cl, pH 8.0) and proteinase K digestion (16 units ml21 in 30 mM

Tris-Cl, pH 8.0). Finally, cells were stained with SYBR GREEN I

buffer (in 50 mM Tris-Cl, pH 8.0) at 4uC overnight. The cell size

and DNA contents of 50,000 cells were examined on a

FACSCanto II (BD).
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Two-dimensional (2D) electrophoresis and Southern blot
Total genomic DNA was extracted according to the protocol of

the QIAGEN Genomic DNA Handbook, using genomic-tip 100/

G columns. 2D gel electrophoresis was carried out as originally

described by Brewer and Fangman [78]. The DNA samples were

digested with HindIII or SacI/ApaL1, for ARS305 and ARS607
detection respectively, and then blotted onto a Nylon Gene Screen

Plus membrane (NEN). Membranes were probed with the

BamHI-NcoI 3.0 kb fragment which spans ARS305 and was

purified from plasmid A6C-110 (kindly provided by C. Newlon,

uMDNJ, Newark, NJ), or probed with a 3.0 kb PCR product that

spans ARS607. Signals were detected using a PhosphorImager

Typhoon FLA 7000 (GE Healthcare).

HU survival assay
To determine viability in response to acute doses of HU, cells

were grown in culture media until they reached log phase. The

cells were then arrested in G1 for 3 hours by the addition of a-

factor, before being released into rich media containing 200 mM

HU. Aliquots were removed from each culture at the indicated

time point, plated onto YPD plates, and allowed to grow at 30uC
for 2–3 days. Viability was estimated based on colony forming unit

(CFU) counts, and was adjusted to that of wild-type at each time

point.

Western blot
Yeast cell lysates were prepared using the TCA method [79].

Briefly, equivalent numbers of cells (1.56108) were collected,

resuspended in 200 ml TCA buffer (1.85 M NaOH and 7.4% b-

mercaptoethanol), and placed on ice for 10 minutes. Following

the addition of 200 ml of 20% TCA, the lysates were incubated

on ice for 10 minutes. Pellets were subsequently collected, washed

with 1 ml acetone, dried, and dissolved in 200 ml 0.1 M NaOH.

The concentration of each sample was determined, and equal

amounts were separated by SDS-PAGE, before being transferred

to PVDF membranes for immunoblotting. The following

antibodies were used: anti-GAPDH (Sigma), anti-Flag (Sigma)

and anti-phospho-Rad53 (produced and characterized by A.

Pellicioli and the IFOM antibody facility, and kindly provided by

Dr. Foiani [80]). Secondary antibodies conjugated to horseradish

peroxidase were detected using enhanced chemiluminescence

(Amersham Biosciences).

Determination of dNTP pools
The dNTP pools were analyzed as described by a recent study

[81]. At a density from 0.4 to 0.86107 cells/ml, ,3.76108 cells

were collected onto a 0.8 mm nitrocellulose filter (Millipore AB,

Solna, Sweden). The filters were immersed in 700 ml of ice-cold

extraction solution (12% w/v trichloroacetic acid, 15 mM

MgCl2) in Eppendorf tubes. The following steps were carried

out at 4uC. The tubes were vortexed for 30 s, incubated for

15 min, and vortexed again for 30 s. The filters were removed,

and the solutions were centrifuged at 20,0006g for 1 min. After

centrifugation, 700 ml of supernatant was added to 800 ml of

ice-cold Freon–trioctylamine mixture [10 ml of 99% Freon

(1,1,2-trichlorotrifluoroethane; Aldrich, Sigma-Aldrich Sweden

AB, Stockholm, Sweden)], and 2.8 ml of.99% trioctylamine

(Fluka, Sigma-Aldrich Sweden AB, Stockholm, Sweden). The

samples were vortexed and centrifuged for 1 min at 20,0006 g.

The aqueous phase was collected and added to 700 ml of an ice-

cold Freon–trioctylamine mixture. Aliquots (475 and 47.5 ml) of

the resulting aqueous phase were collected. The 475 ml aliquots

were pH adjusted with 1M NH4HCO3 (pH 8.9), loaded onto

boronate columns [Affi-Gel 601 (Bio-Rad)], and eluted with

50 mM NH4HCO3, pH 8.9, 15 mM MgCl2 to separate dNTPs

and NTPs. The eluates with purified dNTPs were adjusted to

pH 3.4 with 6M HCl, and separated on a Partisphere SAX-5

HPLC column (125 mm64.6 mm, 5 mm, Hichrom, UK) using

the Hitachi HPLC EZChrom system. Nucleotides were iso-

cratically eluted using 0.36M ammonium phosphate buffer

(pH 3.4, 2.5% v/v acetonitrile). The 47.5 ml aliquots were

adjusted to pH 3.4 and used to quantify NTPs by HPLC in the

same way as dNTPs. The nucleotides were quantified by

measuring the peak heights and comparing them to a standard

curve.

Chromatin immunoprecipitation (ChIP)
Yeast strains were grown to an OD600 of 0.4–0.8, and fixed with

1% formaldehyde at room temperature (RT) for 20 min. Fixation

was stopped by the addition of glycine to a final concentration of

125 mM for 5 min, and the cells were then collected and washed

twice with ice-cold TBS (100 mM Tris at pH 7.5, 0.9% NaCl).

Cell pellets were stored at 280uC or resuspended immediately in

500 ml of FA lysis buffer (50 mM HEPES, pH 7.5, 140 mM NaCl,

1 mM EDTA, 1% sodium deoxycholate, 0.1% SDS) supplement-

ed with fresh protease inhibitor cocktail (Sigma), and lysed by

vortexing with glass beads for 30 min at 4uC. Cell lysates were

sonicated in a cooling water bath four times for 10 min each using

a SONICATOR 3000 (MISONIX), with each cycle consisting of

30 sec sonication on and 30 sec off. The average size of the

resulting DNA fragments was between 200 and 500 base pairs.

Following centrifugation at 13.5K for 30 min at 4uC, the

solubilized chromatin was collected and adjusted to 500 ml with

FA lysis buffer. Twenty microliters were removed for use as input

chromatin.

For immunoprecipitation, 10 OD equivalents of solubilized

chromatin were incubated overnight at 4uC, together with 20 ml

of protein G dynabeads (Invitrogen) that had been pre-bound

with anti-H3 or anti-Myc (Sgs1-13Myc). Immunoprecipitates

were collected by a step-wise washing protocol, consisting of

1.5 ml FA-lysis buffer, 1.5 ml WASH I (FA lysis buffer+0.5 M

NaCl), 1.5 ml WASH II (10 mM Tris-Cl, pH 7.5, 1 mM

EDTA, 0.25 M LiCl, 0.5% NP-40, 0.5% sodium deoxycholate),

and 1.5 ml TE (pH 8.0) for 5 min each at room temperature.

The immuno-complexes were eluted by adding 0.25 ml Elution

buffer (50 mM Tris-Cl, pH 7.5, 10 mM EDTA, 1% SDS), and

incubated first at 65uC for 20 minutes, and then at room

temperature for 10 minutes with vortexing. DNA was purified

using Qiaquick PCR purification spin-columns (Qiagen), and

used as template for quantitative-PCR. All the primers used is

listed in Table S3. The primers used in the histone H3 ChIP

experiment were designed to amplify DNA fragments present at

nucleosomes, as depicted in Figure S6.

Co-immunoprecipitation (Co-IP)
For immunoprecipitations [56], log phase WT or htb-

K123R cells untreated (2) or treated (+) with 0.2M HU were

collected, resuspended in buffer containing 50 mM Tris7.5,

150 mM NaCl, 5 mM EDTA, 0.5% Triton X-100, and

proteinase inhibitors, and broken open by bead beating. A

total of 5 mg of protein extract was diluted in 1 ml of the same

buffer, and incubated with pre-bound anti-HA-protein G

beads at 4uC for 2.5 hours, and then rotated at 4uC overnight.

Beads were then washed with 1 ml buffer four times. SDS-

loading dye was added, and samples were boiled and resolved

on SDS-PAGE.
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Statistical analysis
Results are expressed as the mean 6 SEM from the number of

experiments indicated in the figure legends. Student’s t-test was

used to analyze statistical significance.

Supporting Information

Figure S1 (A–D) Replication profiles in WT (CFK1419) vs. htb-
K123R (CFK1421) cells. Cells were synchronized in G1 with a-

factor, and then released into media containing 0.2M HU and

200 mg/ml BrdU for 90 minutes. After DNA extraction and

fragmentation, BrdU-labeled DNA was immunoprecipitated and

hybridized on high-resolution tiling arrays. Orange (BrdU-IP)

histogram bars on the y axis show the average signal ratio on a

log2 scale of loci along the reported regions on (A) chromosome II,

(B) chromosome V, (C) chromosome IX, and (D) chromosome

XVI. The positions of potential ARS elements are identified by

Mcm2 loading.

(TIFF)

Figure S2 The size of each dNTP pool in exponentially-growing

WT (CFK1419) and htb-K123R (CFK1421) cells. Four indepen-

dent isogenic strains of each genotype were analyzed as described

in the Materials and Methods.

(TIFF)

Figure S3 H2Bub is required for efficient origin firing. htb1-
K123R mutants exhibit reduced BrdU incorporation during S

phase. Cells were arrested at G1 using a-factor at 23uC, and

released synchronously into S phase at 20uC in YPD supplement-

ed with BrdU. Samples were collected at the indicated times and

genomic DNA was then extracted. Monoclonal BrdU antibody

was used to immunoprecipitate BrdU-incorporated DNA. DNA

synthesis at replication origins (ARS305 and ARS607) or telomere

was detected by quantitative-PCR. Cell cycle progression was

monitored by FACS at 20uC under BrdU incorporation

conditions.

(TIFF)

Figure S4 (A) The growth of htb-K123R and DNA polymerase

ts double mutants are not affected by HU at the permissive

temperature (23uC). Ten-fold serial dilutions of the indicated

strains (WT (CFK1204), htb-K123R (CFK1231), pol1-17
(CFK1984), pol1-17 htb-K123R (CFK1986), pri2-1 (CFK1988),

pri2-1 htb-K123R (CFK1990), pol3-14 (CFK1992) and pol3-14
htb-K123R (CFK1994)) were spotted onto YPD containing

different doses of HU (0–50 mM) at 23uC for several days.

Growth at the restrictive temperature (37uC) is presented as a

control for ts mutants. (B) The genetic interaction between H2Bub

and DNA pol1, pol3, or primase. Ten-fold serial dilutions of the

indicated strains were spotted onto YPD, and growth was

monitored at 33uC or 30uC, or under conditions of replication

stress (50 mM HU) at 30uC. (C) The histone H2B ubiquitin E3

ligase Bre1 functions in parallel with the RecQ helicase Sgs1 under

replication stress. Ten-fold serial dilutions of the indicated strains

(WT (CFK1204), bre1D (CFK1443), sgs1D (CFK2371) and bre1D

sgs1D (CFK2373)) were spotted onto YPD containing different

doses of HU (0–100 mM) at 30uC.

(TIFF)

Figure S5 The growth of WT and htb-K123R cells of two

different backgrounds under conditions of replication stress at

30uC. Ten-fold serial dilutions of the indicated strains (WT

(CFK1204), htb-K123R (CFK1231), WT (CFK2414), and htb-
K123R (CFK2416)) were spotted onto YPD containing different

doses of HU (0–150 mM) for 2 days. Genotypes of the strains

used: CFK1024: W303 hta1-htb1D hta2-htb2D ,pZS145-HTA1-
Flag-HTB1 CEN HIS3. CFK1031: W303 hta1-htb1D hta2-
htb2D ,pZS146-HTA1-Flag-htb1-K123R CEN HIS3.

CFK2414: W303 CFK2416: W303 HTA1-htb1-K123R::NAT+
HTA2-htb2-K123R::HIS+.

(TIFF)

Figure S6 (A) A schematic description of the nucleosome

position surrounding ARS305, and the primers used in Fig. 7A to

amplify ARS305 for histone chromatin immunoprecipitation.

ARS305 (nuc.) (39,349–39,455) primer sequence: (F): att tca gag

cct tct ttg gag, (R): atg aaa ctg gac ata ttt gag gaa. (B) A schematic

description of the nucleosome position surrounding ARS607, and

the primers used in Fig. 7A to amplify ARS607 for histone

chromatin immunoprecipitation. ARS607 (nuc.) (199,539–

199,630) primer sequence: (F): aca cat tat tcg gca cag tag, (R):

tcg cag tcc ata gaa gga g. (C) A schematic description of the

nucleosome position surrounding ARS501, and the primers used

in Fig. 7A to amplify ARS501 for histone chromatin immuno-

precipitation. ARS501 (nuc.) (549,785–549,858) primer sequence:

(F): ctcct catca tcatc cc, (R): cgtac actag cccgt tg. Image created

using the following software available at the Penn State Genome

Cartography Project http://atlas.bx.psu.edu/cj/nucl_retrieval.

html [82]

(TIFF)

Table S1 Yeast strains used in this study.

(PDF)

Table S2 Plasmids used in this study.

(PDF)

Table S3 Primers used in this study.

(PDF)
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