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Abstract

Objective—The molecular basis of failure to progress in labor is poorly understood. This study

was undertaken to characterize the myometrial transcriptome of patients with an arrest of

dilatation (AODIL).

Study design—Human myometrium was prospectively collected from women in the following

groups: 1) spontaneous term labor (TL; n=29); and 2) arrest of dilatation (AODIL; n=14). Gene

expression was characterized using Illumina® HumanHT-12 microarrays. A moderated student t-

test and false discovery rate adjustment were used for analysis. Quantitative reverse transcription-

polymerase chain reaction (qRT-PCR) of selected genes was performed in an independent sample

set. Pathway analysis was performed on the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway database using Pathway Analysis with Down-weighting of Overlapping Genes

(PADOG). The Metacore knowledge base was also mined for pathway analysis.

Results—1) 42 genes differentially expressed were identified in women with an AODIL; 2) gene

ontology analysis indicated enrichment of biological processes, which included: regulation of

angiogenesis, response to hypoxia, inflammatory response, and chemokine-mediated signaling

pathway. Enriched molecular functions included: transcription repressor activity, Heat shock

protein (Hsp) 90 binding, and nitric oxide synthase (NOS) activity; 3) Metacore analysis identified

immune response chemokine (C-C motif) ligand 2 (CCL2) signaling, muscle contraction

regulation of eNOS activity in endothelial cells, and Triiodothyronine and Thyroxine signaling as

significantly over-represented (FDR<0.05); 4) qRT-PCR confirmed overexpression of Nitric oxide

synthase 3 NOS3; hypoxic ischemic factor (HIF1A), Chemokine (C-C motif) ligand 2 (CCL2);
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angiopoietin-like 4 (ANGPTL4), ADAM metallopeptidase with thrombospondin type 1, motif 9

(ADAMTS9), G protein-coupled receptor 4 (GPR4), metallothionein 1A (MT1A), MT2A, selectin E

(SELE) in an AODIL.

Conclusion—The myometrium of women with arrest of dilatation have a stereotypic

transcriptome profile. This disorder was associated with a pattern of gene expression involved in

muscle contraction, an inflammatory response, and hypoxia. This is the first comprehensive and

unbiased examination of the molecular basis of an AODIL.
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Introduction

Parturition, a key event for the survival of viviparous species, is a complex process

involving myometrial activation, cervical ripening and membrane/decidual activation

[6,25,30–32,36,74,94,107–109,111,129,134,137,139,148,150,157,177,184,189,190,194].

The myometrium is responsible for the contractile force required to propel the fetus through

the birth canal. During pregnancy and active labor, extensive changes in the anatomy,

physiology, and composition of the myometrium have been identified

[28,29,40,43,46,48,54,55,62,67–72,76–78,92,112–

114,117,118,120,136,142,164,166,168,169,176,183,185,186].

Dystocia, broadly defined as slow or abnormal progression of labor [1], is responsible for 18

percent of primary cesarean deliveries, 60 percent of all cesarean deliveries, and is

considered one of the most common indications for intrapartum cesarean delivery

[14,21,75,174]. Moreover, this condition is associated with 8% of maternal deaths

worldwide [75,90,187]. Dystocia includes protraction disorders (slow dilatation) or arrest

disorders (complete cessation of progress). The diagnosis of arrest of dilatation (AODIL)

occurs when a patient in the active phase of labor does not have cervical dilatation for at

least 2 hours [1,66]. The most common cause of an arrest of dilatation is thought to be

cephalopelvic disproportion. However, the observation that patients with an arrest of

dilatation in the first pregnancy often deliver a larger neonate vaginally in a subsequent

pregnancy suggests that the problem is not one of disproportion [24]. Instead, a functional

disorder in myometrial contractility has been postulated to be responsible for such disorder.

High-dimensional biology techniques (such as genomics, transcriptomics, and proteomics)

have been used to gain insight into the molecular basis of parturition in the myometrium

[4,27,34,60,88,124,135], the uterine cervix [85–87], and the chorioamniotic membranes

[131]. Recently, the transcriptome of the myometrium in patients with an “arrest of descent”

[123] and “labor dystocia” have been reported [23]. However, the transcriptome of human

myometrium in AODIL has not yet been investigated. We undertook this study in order to

characterize the transcriptome of the myometrium in patients with this condition.
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Materials and Methods

A prospective study was performed in which human myometrium was obtained from

women undergoing primary cesarean delivery at term (≥ 37 week of gestation) in the

following groups: 1) spontaneous term labor (TL) (n=29); and 2) AODIL (n=14). Labor was

diagnosed in the presence of spontaneous regular uterine contractions occurring at a

minimum frequency of 2 every 10 minutes with cervical changes that led to progressive

cervical dilatation. Women in the term labor group underwent cesarean delivery because of

a non-reassuring fetal heart rate tracing (as determined by the physician) or fetal

malpresentation. All patients presented in spontaneous labor and delivered an infant with a

birth weight between the 10th and 90th percentiles [5]. Patients with clinical or histological

chorioamnionitis, underlying medical or obstetrical complications, and those undergoing

labor induction were excluded.

The diagnosis of AODIL was diagnosed in women in the active phase of labor who did not

progress despite adequate contractions after 2 hours [1]. The placentas of all participating

women were examined to exclude histological chorioamnionitis by experienced pathologists

who were blinded to the clinical diagnosis.

All women provided written informed consent prior to the collection of myometrial samples.

The collection and utilization of the samples for research purposes was approved by the

Institutional Review Board of the Eunice Kennedy Shriver National Institute of Child Health

and Human Development (NICHD/NIH/DHHS, Bethesda, Maryland), and the Human

Investigation Committees of Wayne State University (Detroit, Michigan) and the Sotero del

Rio Hospital (Santiago, Chile).

Sample collection

Myometrial tissue samples were obtained from the lower uterine segment at the time of

cesarean delivery, after placenta detachment. Biopsies were obtained from the midpoint of

the superior aspect of the uterine incision using Metzenbaum scissors. Specimens measured

approximately 1.0 × 1.0 × 1.0 cm. Tissue was ground under liquid nitrogen, placed in TRI

Reagent® (Applied Biosystems, Foster City, CA) and kept at −80° Celsius until analysis.

Total RNA extraction

Total RNA was isolated from snap-frozen myometrium using TRI Reagent® combined with

the Qiagen RNeasy Lipid Tissue kit protocol (Qiagen, Valencia, CA) following the

manufacturers’ recommendations. RNA concentrations and the A260nm/A280nm ratio were

assessed using a NanoDrop 1000 (Thermo Scientific, Wilmington, DE). RNA integrity

numbers (RINs) were determined using the Bioanalyzer 2100 (Agilent Technologies,

Wilmington, DE). An A260nm/A280nm ratio of 1.66, a 28S/18S ratio of 0.2, and a RIN of

3.8 were the minimum requirements for inclusion in the expression analysis.

Microarray experiments

The Illumina® HumanHT-12 version 3 expression microarray (Illumina, San Diego, CA)

platform was used to determine the expression levels in each unpooled specimen per
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manufacturer’s instructions. In brief, after purification of RNA using an RNeasy Mini Kit

(Qiagen), 500 ng of total RNA was amplified and biotin-labeled with the Illumina®

TotalPrep RNA Amplification Kit (Ambion, Austin, TX). Labeled complementary RNAs

were hybridized to the Illumina HumanHT-12 version 3 expression BeadChip and imaged

using a BeadArray Reader. Raw data was obtained using the BeadStudio Software

(Illumina).

Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR)

A larger set of specimens for each group (spontaneous TL: n= 31; AODIL: n=18) were

obtained for qRT-PCR assays of a selected group of genes found to be differentially

expressed by microarray analysis. Total RNA (3 µg) was reverse transcribed using the

SuperScript® III First-Strand Synthesis System and oligo(dT)20 primers (Invitrogen,

Carlsbad, CA). qRT-PCR analyses were performed with TaqMan® Gene Expression Assays

(HIF1A: Hs00936368_m1, GPR4: Hs00947870_m1, EXOG: Hs00270782_m1, ID1:

Hs00357821_g1, ID3: Hs00171409_m1, NOS3: Hs01574659_m1, MT1A: Hs00831826_s1;

MT2A: Hs02379661_g1; and SBNO2: Hs00209130_m1; Applied Biosystems, Foster City,

CA, USA). Human 18S, GAPDH, and ACTIN were used as reference genes. The gene

specific TaqMan® assays and the RPLPO housekeeping gene were run in triplicate (50 ng)

for each case to allow for the assessment of technical variability.

Statistical analysis

Clinical data—Student's t tests and Fisher exact tests were used for comparisons of

continuous and discrete demographic variables, respectively. The tests were conducted using

the R statistical language and environment (R Development Core Team 2012). A p-value <

0.05 was considered significant.

Microarray analysis—The Illumina BeadStudio software suite (Illumina, Inc., San

Diego, CA, USA) was used to extract gene expression values from the array images. The

data quality was assessed based on Illumina’s positive and negative control probes on each

array as well as by inspection of the distributions of probe intensities. Data was normalized

using the quantile normalization method [18]. Probes that were considered present

(detection p-value <0.1) in at least 5 samples were retained for further analysis. A moderated

t-test implemented in the limma library of Bioconductor (Fred Hutchinson Cancer Research

Center, Seattle, WA, USA) was applied to test differential expression, and a false discovery

rate (FDR) adjustment of the p-values was performed to correct for multiple testing[173].

Probes were considered significant different if their adjusted p-value were < 0.25 and the

fold change difference was at least 1.5.

Gene ontology analysis was performed using an over-representation approach implemented

in the GO stats software package[61]. Pathway analysis was performed on the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway database using Pathway Analysis

with Down-weighting of Overlapping Genes (PADOG) [181], which computes and

enrichment score for each pathway from moderated t-scores of all genes in the pathway

while giving more weight to genes that are pathway-specific. Metacore pathway analysis

Chaemsaithong et al. Page 4

J Perinat Med. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(Thomson, Reuters, NY, USA) was also performed using their proprietary pathways

database and over-representation method.

qRT-PCR assays—Quantitative RT-PCR was performed for 9 genes selected among the

top candidates from the microarray results and biological function. Data analysis was

performed using an equal variance two-sample one-tailed t-test based on the hypothesis

provided by the microarray data. Confirmation of microarray data with qRT-PCR was

considered significant using a 0.05 threshold.

Results

Demographic, clinical and obstetrical characteristics are displayed in Table 1 according to

study group: 1) pregnant women with spontaneous TL microarray (n=29); 2) patients with

AODIL microarray (n=14); 3) spontaneous TL qRT-PCR (n=31); and 4) patients with

AODIL qRT-PCR (n=18). Among samples used in microarray analysis, there was a

significantly higher mean body mass index (BMI) in the spontaneous TL group than in the

AODIL group (p = 0.0028).

Microarray analysis

Table 2 lists 42 differentially expressed genes (43 probes) between (spontaneous TL and

AODIL) ranked by P values. Differential expression results are depicted in Figure 1. The

volcano plot (Figure 1) shows the magnitude (fold change) of the changes in the x-axis an

the significance of gene expression changes in the y-axis.

Gene ontology (GO) meta-analysis was used to gain insight into the biology related to the

stereotypic differences between the myometrial transcriptome of AODIL and spontaneous

TL. Significant enrichment of 106 distinct biological processes includes regulation of

angiogenesis, response to hypoxia, inflammatory response and regulation of nitric-oxide

synthase activity (Table 3). Pathway Analysis with PADOG ranked the TGF-β signaling

pathway and Protein processing in endoplasmic reticulum pathways with a nominal p-value

<0.01 (non-significant after adjusting for the 227 pathways tested). The MetaCore database

was also mined (Table 4). The three pathways ranked at the top by Metacore were

Regulation of metabolism were: 1) Immune response chemokine (C-C motif) ligand 2

(CCL2) signaling (p=0.001); 2) Muscle Contraction - Regulation of eNOS Activity in

Endothelial Cells (p=0.01); and 3) Triiodothyronine and Thyroxine signaling (p=0.009).

Figure 2A depicts immune response CCL2 signaling with CCL2 regulating the transcription

of HIF1A. Figure 2B demonstrates the Muscle Contraction - Regulation of eNOS Activity in

Endothelial Cells pathway with the eNOS regulating the transcription of HIF1A. CCL2,

eNOS, and HIF1A were upregulated in the myometrium of patients with AODIL.

Quantitative RT-PCR (qRT-PCR)

Confirmation of microarray results was performed using qRT-PCR. An extended set of

myometrium samples was used to perform qRT-PCR assays on 9 selected genes based upon

the microarray data and biological significance.
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qRT-PCR confirmed differential expression of all 9 genes identify with microarray analysis.

Significantly overexpressed genes in AODIL included nitric oxide synthase 3 (NOS3),

Angiopoietin-like 4 (ANGPTL4), ADAM metallopeptidase with thrombospondin type 1

motif, 9 (ADAMTS9), chemokine (C-C motif) ligand 2 (CCL2), G protein-coupled receptor 4

(GPR4), metallothionein (MT1A), MT2A, selectin E (SELE), hypoxia inducible factor 1

alpha subunit (HIF1A) (Figure 3). A comparison of the PCR results with the microarray data

of the selected genes is shown in Table 5.

Discussion

Principal findings of the study

1) the myometrial transcriptome of patients with an AODIL has been characterized;

differential expression of 42 genes was identified; 2) Gene Ontology analysis revealed

enrichment of multiple biological processes and molecular functions impacting regulation of

angiogenesis, response to hypoxia, inflammatory response, chemokine-mediated signaling

pathway, apoptosis, stress response, and muscle contraction in an AODIL; 3) using

Metacore pathway analysis, we identified enrichment of the immune response CCL2

signaling pathway, muscle contraction - regulation of eNOS Activity in the Endothelial

Cells pathway, and Triiodothyronine and Thyroxine signaling; and 4) qRT-PCR performed

in an independent sample group confirmed overexpression of NOS3, ANGPTL4, ADAMTS9,

CCL2, GPR4, MT1A, MT2A, SELE, HIF1A in an AODIL. This is the first study to describe

the transcriptome of myometrium in patients with AODIL.

Differentially expressed genes related to muscle contraction

Although action potentials in myometrium are initiated by a cellular influx of Ca2+ ions,

repolarization depends on K+ ion efflux combined with inhibition of Ca2+ ion channels. A

growing body of evidence supports the essential role of ion channels in uterine contractility

[9,13,16,19,20,35,37,53,68,79,101,103,105,126,132,140,144,160,166,172,193,200,202].

Microarray analysis showed significant overexpression of NOS3 and HIF1A in patients with

an AODIL (P<0.001); confirmatory qRT-PCR assays were also significant (P<0.05). A role

for these 2 genes in the regulation of myometrial contractility has been proposed. During

pregnancy, the placenta [42,50,147,161,182,201], myometrium [57,127,147,182], and

chorioamniotic membranes [49,50] produce nitric oxide (NO) to maintain uterine quiescence

[38,106,130,133,170,171,195–198] by stimulation of guanylate cyclase, leading to the

production of cGMP and a reduction in intracellular Ca2+

[26,51,52,104,110,125,133,170,197]. Previous studies have demonstrated that uterine NO

production has been up-regulated during pregnancy and down-regulated during term and

preterm labor [130,171,196–198]. Overexpression of NO synthase in AODIL may change

the availability of NO in parturition.

Hypoxia is associated with the reduction of blood flow to the uterus during contractions

[22,80,96]. Moreover, hypoxia/ischemia of the myometrium has been linked to decreased

uterine contractility, a potential cause for dysfunctional labor [84,141,145,178,179,191,192].

HIF1A is an oxygen-sensitive transcription factor that allows adaptation to hypoxic

environments and response to metabolic, hypoxic or inflammatory stress [165]. In human

Chaemsaithong et al. Page 6

J Perinat Med. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



pregnancy, HIF1A plays a role in the survival of hematopoietic precursors, embryonic

vasculature [146] and trophoblast differentiation [3,44,119] during development [2]. Mittal

et al [123] demonstrated a higher expression of HIF1A in the myometrium of patients with

an arrest of descent (AOD) than in those with spontaneous term labor. Our findings suggest

that during the course of failure to progress in labor (AODIL or AOD), a change in the

expression of factors responsible for sensing tissue hypoxia occurs.

Differentially expressed genes related to inflammatory and immune response signaling in
arrest of dilatation

CCL-2, also known as monocyte chemoattractant protein 1 (MCP1), is a member of a large

chemokine family of soluble chemoattractant cytokines, which locally mediate leukocyte

migration into various tissues [82,115]. CCL-2 is produced by endothelial cells, fibroblasts,

monocytes, lymphocytes, and smooth muscle cells [47,89]. Recent evidence suggests that

CCL-2 is up-regulated in human myometrium and amniotic fluid [58,91] as well as rat

myometrium during labor [167]. Esplin et al. demonstrated that the amniotic fluid

concentration of CCL-2 increased in women with preterm labor [59]. Moreover, mechanical

strain caused by the growing fetus and experimental mechanical stretch of rat myometrial

smooth muscle cells induces the release of CCL-2, and promotes chemotaxis of rat

monocytes [167,168]. Hua et al [91] also reported that stretch and inflammatory cytokines

(IL-1β and TNF α) induce marked increases in the expression of CCL-2 and CXCL-8 (IL8)

in human term myometrium. We have previously reported that IL-8 [154] and IL-1

[155,156] were increased in the amniotic fluid of women in spontaneous labor at term. Our

findings indicate that patients with an AODIL have overexpression of CCL-2 in

myometrium. qRT-PCR confirmed a significant increase in CCL-2 expression in AODIL.

Biological functions of a select group of differentially expressed genes

Angiopoietin-like protein 4 (ANPTL4) is a multifunctional signal protein and expressed in

the liver [102], adipose tissue [56], intestine [12] and placenta [100,188,199,203].

ANGPTL4 has been recognized as a central molecule in energy homeostasis. One of its

actions is to inhibit lipoprotein lipase (LPL). This molecule also activates specific integrins

to facilitate wound healing, modulate vascular permeability, and regulates reactive oxygen

species (ROS) to promote tumorigenesis [81,204]. ANPTL4 is considered a positive acute

phase protein since its expression in liver, heart, muscle and adipose tissue, and plasma are

up regulated after LPS, TNF alpha, IL-1β, and interferon gamma treatment in mice [116].

We found a significantly higher expression of ANPTL4 in the myometrium of pregnant

women with an AODIL than in those with spontaneous TL, and this finding was confirmed

by qRT-PCR data.

We also found a significantly higher expression of metallothionein (MT1A) and MT2A in the

myometrial of patients with an AODIL than in those with spontaneous TL. Metallothioneins

have been recognized to protect against oxidative stress [93,97,162,163]. Prior studies have

demonstrated increase oxidative stress in the human placenta during labor [39]. Moreover,

there is an increase in pro-inflammatory cytokines/chemokines

[11,17,33,45,83,99,128,138,158,175,180] and eicosanoids [73,98,121,122] and

lipooxygenase arachidonate products [143,151–153] during labor. These changes
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accompany the increase in PMN migration and increased production of ROS in the

myometrium [41,95,149]. Overexpression of MT1A and MT2A in the myometrium of

patients with AODIL is consistent with previous studies demonstrating that Metallothionein

genes are transcriptionally activated in cells and tissues in response to oxidative stress

[7,8,159]. This overexpression in AODIL may be attributed to an increase in ROS

production.

Pathway analysis

Most gene set analysis methods treat genes equally, regardless of how specific they are to a

given gene set. PADOG is a new gene set analysis method that computes a gene set score as

the mean of absolute values of weighted moderated gene T-scores. The gene weights are

designed to emphasize the genes specific to a given pathway [181]. PADOG significantly

improves gene set ranking and boosts sensitivity of analysis compared to methods that treat

genes equally [181]. Using PADOG we identified enrichment of the TGF- Beta signaling

Pathway and Protein processing in endoplasmic reticulum having unadjusted p-values

<0.01. However, the adjusted p value was not significant (q-value=0.81 for both pathways).

The Metacore database demonstrated a significantly enriched pathway; “immune response

CCL2 signaling” and “muscle contraction-regulation of eNOS activity in endothelial cells”

in the myometrium from patients with AODIL.

Muscle contraction-Regulation of eNOS activity in endothelial cells

Endothelial nitric oxide synthase (eNOS), one of the three distinct isoforms of nitric oxide

synthases, is expressed in endothelial cells, cardiac myocytes, platelets, neurons of the brain,

syncytiotrophoblasts of human placenta and kidney tubular epithelial cells [63,65]. eNOS

plays a role in blood vessel vasodilatation, blood pressure regulation, platelet and leukocyte

adhesion to endothelium and myometrial contractility [10,15,63]. Batlett et al reported

eNOS expression (immunoblot, mRNA and protein) in the vascular endothelium of human

pregnant myometrium, but not in cultured myometrial smooth muscle cells [15]. The

diffusion of NO generated within the endothelium of the myometrial vasculature has

implicated in uterine relaxation [15]. eNOS activity is regulated by mechanical forces such

as shear stress [63] and humoral factors including estrogen, vascular endothelial growth

factor, insulin and bradykinin [63]. eNOS is calcium-dependent; therefore, a higher

concentration of intracellular calcium leads to eNOS activation [64].

Comparison with previous reports of functional genomics in labor dystocia

Our findings indicate that AODIL is associated with changes in the genes involved in

inflammatory processes. These findings are consistent with prior reports from our group that

focus on arrest of descent. [123]. Mittal et al. [123] first characterized the myometrial

transcriptome of patients with an arrest of descent; 400 genes were differentially expressed.

Impacted pathways included inflammation and muscle function. qRT-PCR confirmed the

overexpression of HIF1A, IL-6 and prostaglandin-endoperoxide synthase 2 or

cycloozygenase-2(COX2) in patients with an arrest of descent. However, our results are

different from those of Brennan et al [23] who reported that 70 genes were differentially

expressed in nulliparous women with dystocia (n=4) and women in spontaneous TL (n=4).
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Enrichment was observed in genes involved in immune response, transcription, and DNA

replication [23]. Technical validation with qRT-PCR confirmed overexpression for

endoplasmic reticulum aminopeptidase 2 (ERAP2), major histocompatibility complex, class

II, DQ beta 1; (HLADQB1), cluster of differentiation (CD) 28, and leukocyte

immunoglobulin-like receptor, subfamily A, member 3 (LILRA3) [23]. Potential

explanations for the apparent differences include: 1) the criteria to diagnose labor disorders

were different between our study and that of Brennan et al. We focused on AODIL, while

Brennan et al studied “labor dystocia”. Yet, the two conditions are different; and 2) the

sample sizes between the two studies were also different [23].

Strengths and Limitations

Strengths of this study include its prospective design, the use of a large sample set, stringent

inclusion and exclusion criteria, and qRT-PCR confirmation in an independent set of

specimens (biological replication).

A potential limitation of the study is that the frequency of nulliparous women was higher in

the group with spontaneous labor at term than in patients with an AODIL. Yet, there was no

effect modification of parity on gene expression by clinical groups (AODIL vs. TL), with

one exception: KIF5C: kinesin family member 5C. Another limitation was that women in

the AODIL group had lower BMI and received intrapartum oxytocin more frequently than

women in spontaneous term labor [71.4% (10/14) vs. 27.6% (8/29), p=0.006]. However, we

did not detect a significant interaction between AODIL and BMI or oxytocin treatment in

myometrium gene expression. Lastly, the myometrial samples in the current study were

taken from the lower uterine segment. It has been reported that gene expression of the lower

uterine segment may be different from that of upper uterine segment [27].

Conclusion

The myometrial transcriptome of patients with an arrest of dilatation has been characterized.

This disorder has been associated with a pattern of gene expression involved in muscle

contraction, an inflammatory response, and hypoxia. The findings reported herein provide

insight into the molecular basis, biological processes, and pathway associated with an arrest

of dilatation.
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Figure 1. Microarray analysis of the gene expression profiles of myometrium in spontaneous
term labor (TL) and arrest of dilatation (AODIL)
A Volcano plot shows differentially gene expression between AODIL and TL. Dots in the

upper right and left quadrants represent genes with a fold change greater than 1.5 and a false

discovery rate corrected p-value < 0.25. With these criteria, 42 genes were differentially

expressed between the myometrial transcriptome of the two groups.
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Figure 2.
A: Display of differentially expressed genes in the arrest of dilatation group on the most

significantly over-represented MetaCore pathway: chemokine (C-C motif) ligand 2 (CCL2)

signaling

B: Display of differentially expressed genes in the arrest of dilatation group on the most

significantly over-represented MetaCore pathway: Muscle Contraction Regulation of eNOS

activity in endothelial cells

Chaemsaithong et al. Page 23

J Perinat Med. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Boxplot of qRT-PCR data for all 9 tested genes in an expanded sample set including those

used in the microarray experiment. The data is presented as the −ΔCt values (surrogate of

log2 expression). The boxes encompass 50% of the data from the 1st quartile to the 3rd

quartile. The middle line represents the median value (50%) quartile. The whiskers extend to

the most extreme data point, but do not exceed values >1.5 times the interquartile range

from the box. The circles represent outliers. TL=spontaneous term labor; AODIL= arrest of

dilatation.
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Table 4

Pathways enriched in an arrest of dilatation as determined by Metacore pathway

Pathway Ratio p-value q-value

Immune response-CCL2 signaling 3 38 0.0003 0.001

Regulation of metabolism_Triiodothyronine and Thyroxine signaling 2 28 0.005 0.009

Muscle contraction-Regulation of eNOS activity in endothelial cells 2 36 0.0078 0.01

Development VEGF signaling via VEGFR2 - generic cascades 2 51 0.015 0.015

CCL2 = chemokine (C-C motif) ligand 2;
eNOS = endothelial nitric oxide synthase;
VEGF=Vascular endothelial growth factor;
VEGFR2 = Vascular endothelial growth factor receptor 2
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