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Abstract

This note is devoted to a short, but elementary, proof of Hadamard’s determinant inequality.

Let X be an n × n matrix with complex entries and columns x1, …, xn. Hadamard’s

determinant inequality [2] reads

Horn and Johnson [1] supply at least a half dozen proofs for this classical result.

Hadamard’s inequality is obviously true if any xi = 0. If we assume otherwise and divide

both sides by the right-hand side, then Hadamard’s inequality reduces to the inequality |

detX| ≤ 1 subject to the Euclidean length constraints ||xi||2 = 1. Equality is attained by taking

X to be the identity matrix I or any unitary matrix. Recall that a unitary matrix X has

orthonormal columns and consequently satisfies

In view of Weierstrass’ theorem, the necessarily positive maximum of |detX| is attained on

the compact set defined by the constraints. Suppose X has columns of unit length and yields

the maximum value, but two columns of X, say the first two, are not orthogonal. Let us

demonstrate that |detX| can be increased by replacing the first column by the linear

combination y1 = ax1+bx2 for carefully chosen complex scalars a and b. The determinant of

the new matrix Y satisfies

We force y1 to be a unit vector by imposing the constraint
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The Cauchy-Schwarz inequality implies |s| ≤ 1. Furthermore, s ≠ 0 by assumption, and |s| ≠

1, for otherwise x1 and x2 are collinear and detX vanishes. The reader can check that we

may choose

Since a > 1, the identity detY = a detX shows that |detY| > |detX|. This contradiction proves

that X has orthonormal columns, so it is unitary and |detX| = 1.
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