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ABSTRACT I study N electrons and M protons in a
magnetic field. It is shown that the total energy per particle
is bounded below by a constant independent of M and N,
provided the fine structure constant is small. Here, the total
energy includes the energy of the magnetic field.

A proof of stability of matter in the presence of a magnetic field
is announced here. The problem arises partly because intense
magnetic fields occur in the interior of stars. More importantly,
however, stability of matter with magnetic fields implies sta-
bility of nonrelativistic quantum electrodynamics (QED) with
ultraviolet cutoffs. It was J. Frohlich who discovered this
implication and posed the problem of stability of matter with
magnetic fields. Nonrelativistic QED is a natural setting for the
study of the interaction of matter and radiation under ordinary
conditions. The main result here, Theorem 2 below, was first
conjectured in a series of papers by Frohlich, Lieb, Loss, and
Yau (1-3). These papers proved various special cases, which
are not reproduced here. (See also Avron, Herbst, and Simon,
ref. 4.)

Stability of matter is an estimate for the energy of a
quantum-mechanical system composed ofN electrons and M
nuclei. The nuclei lie at fixed locations YI, Y2, . .. , yMER3. For
simplicity, we take the nuclei to be protons. When there is no
magnetic field, we may set up the problem as follows. The state
of the system is an antisymmetric wave function O(x, ...

XN)EL2(R3N) with norm 1. (For simplicity, we take 4, scalar-
valued when there is no magnetic field.) The energy is given by
(HNMt,, 4,), where (in suitable units)

N

HNM = (-A,xk) + VCoulomb, [1]
k=l

with

Vcoulomb >: IXj -XkI

lsj<ksN
N M

1 jYj Ykl =-E ElX-kYkl-
1:sj<k:SM j=l k=l

[2]

Second, we introduce a vector potentialA = (A(X))jA=1,2,3
for the magnetic field. Without loss of generality, we may work
in the Coulomb gauge-i.e., we may assume that divA = 0.

Next, we bring in the Pauli matrices

(1 0
or, = -1J

The ai, actonC2. Forj = 1, 2, ...,Nand , = 1, 2, 3we set
uy,I = IX ...0I®cr,OI® ..*I, where o-,, is the jth factor and
I is the 2 x 2 identity matrix. Thus, o',, acts on c(2).
The Pauli matrices and the vector potential give rise to a

Dirac operator ai-(iVxf - A(xj)) = Lz=1,2,3ajg(ia/axjjA - A,,(xj))
acting on L2(R3 , C(2N). Here, (Xj,I),=1,2,3 are the coordinates
ofxjeR3. The Hamiltonian that replaces Eq. 1 for electrons and
protons in a magnetic field is

17NM = [oj- (iVxj-A(xj))]2 +
1 5j-N

[3]

and the energy of the particles is (HAN'm, 4,).
In contrast to Theorem 1, the energy of the particles need not

be bounded below, even whenN =M = 1 (see ref. 1). To rescue
stability, one therefore has to bring in the energy of the
magnetic field, which, in our present units and in the Coulomb
gauge, is given by

field energy = Fr IVA12dx. [4]

Here, F is a dimensionless constant; in fact, F = a-2/8ir, where
a is the fine structure constant. Since a = 1/137, we have IF
750. In view of Eqs. 3 and 4, the total energy of the system is
(HNMN,, 4,) + F fR31VAI2dx. The main result on stability of
matter in magnetic fields is as follows.
THEOREM 2. There exist universal constants C, F> 0 such that

(HNM4,, 4,) + F fR3 IVAI2 dX 2-C(N + M). In particular, F and
C are independent of N, M, and A.

It would be very interesting to prove that one can take IF
750 in Theorem 2. The proof of Theorem 2 also gives the
following slight refinement.
THEOREM 3. Let p(x) = minl5ksMIX - ykl be the distancefrom

x to the nearest nucleus. Then

The following result is well known.
THEOREM 1. [Stability ofMatter; see Dyson and Lenard (5, 6)

and Lieb and Thirring (7)]. (HNM4,, 4) ' -C(N + M) for a
universal constant C.
The value of the constant C is important in understanding

how atoms and molecules form from a large collection of
electrons and nuclei (see ref. 8).
When there is a magnetic field present, the Hamiltonian Eq.

1 has to be modified as follows. First of all, because the electron
has spin 1/2, the wave function +,(xi ... XN) takes its values not
in C, but rather in C(2v), regarded as the tensor product C2 0
* * C2 ofN copies of C2.
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(HANm, 4,) + f e-P(x)|VA(x)I2dx . -C(N + M)

for universal constants F and C.
Thus, we need only use the energy of the magnetic field near

the nuclei. It is from Theorem 3 that Frohlich's argument
derives the stability of nonrelativistic QED with ultraviolet
cutoffs.

Finally, note that the proof of Theorems 2 and 3 generalizes
from protons to nuclei of higher atomic number. As conjec-
tured in refs. 1 and 2, one finds stability provided F exceeds
max{Fo, F1Z}, where F0 and r1 are universal constants and Z
is the maximum of the atomic numbers of the nuclei. If F is not
large enough, then examples in ref. 3 show that stability fails.

Abbreviation: QED, quantum electrodynamics.
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