

NIH Public Access

Author Manuscript

Acta Derm Venereol. Author manuscript; available in PMC 2015 January 16.

Published in final edited form as:

Acta Derm Venereol. 2015 January 15; 95(2): 217–222. doi:10.2340/00015555-1855.

Use of Aspirin, Nonsteroidal Anti-inflammatory Drugs, and Acetaminophen (Paracetamol), and Risk of Psoriasis and Psoriatic Arthritis: A Cohort Study

Shaowei Wu^{1,2}, Jiali Han^{3,4,5,6}, and Abrar A. Qureshi^{1,2,3}

¹Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA

²Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, RI, USA

³Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA

⁴Department of Epidemiology, Fairbanks School of Public Health, Simon Cancer Center, Indiana University, Indianapolis, IN, USA

⁵Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA

⁶Department of Dermatology, School of Medicine, Indiana University, Indianapolis, IN, USA

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) have been reported to induce or exacerbate psoriasis. We aimed to evaluate the association between several widely used analgesics, including aspirin, nonaspirin NSAIDs, and acetaminophen (paracetamol), and risk of psoriasis and psoriatic arthritis (PsA) in a large cohort of US women (1991–2005). Information on regular use of aspirin, NSAIDs, and acetaminophen was collected for 95 540 participants during the follow-up. During 1 321 280 person-years of follow-up, we documented 646 incident psoriasis cases and 165 concomitant PsA cases. Compared to women who reported no use, regular acetaminophen and NSAIDs users with more than 10 years of use had multivariate hazard ratios (HRs) of 3.60 [95% confidence interval (CI): 2.02–6.41] and 2.10 (95% CI: 1.11–3.96) respectively for PsA. There was no clear association between aspirin and risk of psoriasis or PsA. In conclusion, long-term acetaminophen and NSAIDs use may be associated with an increased risk of PsA. Special attention on psoriasis and PsA screening may be needed for those who are prescribed for acetaminophen and NSAIDs.

Competing interests

Corresponding author: Abrar A. Qureshi, MD, MPH, Department of Dermatology, The Warren Alpert Medical School, Brown University, 339 Eddy Street, Providence, RI, USA, abrar_qureshi@brown.edu.

AAQ serves as a consultant for Abbott, Centocor, Novartis and the Centres for Disease Control and Prevention. The other authors state no conflict of interest.

Keywords

acetaminophen; aspirin; inflammation; non-steroidal anti-inflammatory drugs; psoriasis; psoriatic arthritis

Psoriasis is an immune-mediated chronic systemic disease that affects about 3% of the population (1,2). Psoriasis is associated with an inflammatory psoriatic arthritis (PsA) that can be disabling and develop into a deforming erosive arthropathy in some patients (3). Psoriatic arthritis (PsA) occurs in 6–42% of psoriasis cases and affects an estimated of 520,000 individuals in the US population (4,5). Both psoriasis and PsA have been associated with substantial morbidity and economic costs (4,6). Prevention and management of psoriasis and PsA require a better understanding of the disease pathogenesis, whereas prospective evidence on the pathogenesis of these two conditions, especially PsA, is still limited.

Aspirin, nonaspirin nonsteroidal anti-inflammatory drugs (NSAIDs), and acetaminophen (paracetamol), are widely used over-the-counter analgesics and antipyretics. Aspirin and NSAIDs also have anti-inflammatory properties at higher doses whereas acetaminophen only exhibits weak anti-inflammatory activity. The mechanism of action of aspirin and other NSAIDs is probably mediated through inhibition of prostaglandin-endoperoxide synthase or cyclooxygenase (COX) enzymes, though other mechanisms may also exist (7). The mechanism of action of acetaminophen is not completely understood, whereas the main mechanism proposed is also the inhibition of COX(8,9). Along with the medical uses, these medications may also cause a series of adverse effects, such as gastrointestinal ulceration and bleeding, hepato-renal dysfunction and organ failure, and serious cutaneous reactions (7,10). Specifically, a number of previous reports have documented worsening of psoriasis with initiation of NSAIDs therapy (11-17). In a recent prospective study, regular use of NSAIDs but not aspirin is found to be associated with an increased risk of inflammatory bowel disease (Crohn disease or ulcerative colitis) (18). An increased incidence of psoriasis among patients with established inflammatory bowel disease has been reported (19,20), and our previous study also found an increased risk of Crohn's disease associated with psoriasis and PsA (21). A close examination reveals genetic and pathologic connections between psoriasis and Crohn's disease (22). Based on the aforementioned evidence, we infer a potential link between use of these medications and risk of psoriasis and PsA. To address the hypothesis, we investigated the association between use of aspirin, NSAIDs, and acetaminophen, and risk of incident psoriasis and PsA using data from a large cohort of US women, the Nurses' Health Study II (NHS II).

MATERIAL AND METHODS

Study population

The NHS II was established in 1989 when 116,430 registered female nurses aged 25–42 years were enrolled using a mailed baseline questionnaire which inquired about medical history and lifestyle practices. Biennially, cohort members receive a questionnaire enquiring about diseases and health related factors. The follow-up rate exceeds 90% for each cycle.

The institutional review board of Partners Health Care System approved this study. The completion and return of the self-administered questionnaire was considered as informed consent.

Ascertainment of psoriasis and PsA cases

In 2005, women in the NHS II were asked if they had personal history of cliniciandiagnosed psoriasis and the date of diagnosis (before 1991, 1991–1994, 1995–1998, 1999– 2002, or 2003–2005) on the biannual questionnaire. During 2008–2011, we confirmed selfreported psoriasis using Psoriasis Screening Tool (PST) questionnaire, which inquired about the type of clinicians making the diagnosis and phenotypes (23). A pilot study using the PST showed 99% sensitivity and 94% specificity for psoriasis screening (23). Diagnosis of psoriasis with concomitant PsA was confirmed using psoriatic arthritis screening and evaluation (PASE) questionnaire, which includes a symptom scale with seven items and a function scale with eight items (24). Women chose one of five categories relating to agreement (strongly agree to strongly disagree) for each item. A total score of 47 or greater has been shown to identify PsA with a high sensitivity and specificity in our pilot studies (24,25). PASE has good test–retest reliability (25), and has been shown to be an effective tool in identifying PsA cases with 77% sensitivity and 79% specificity in the present cohort (26).

Assessment of medication use

Cohort participants were asked about regular use (defined as 2 times/week) of aspirin, other NSAIDs, and acetaminophen (paracetamol) on baseline questionnaire in 1989. Since 1993, regular use of these medications during the past two years was assessed biennially. Information on average weekly dose (0, 1–2 tablets/week, 3–5 tablets/week, 6–14 tablets/ week, and 15 tablets/week) of these medications during the past two years was first collected in 1999, and updated biennially thereafter. In 2001 and 2003, we also asked women about weekly dose of low-dose (baby) aspirin. Intake of 4 baby aspirin was converted to 1 adult standard-dose tablet (325 mg) as previously documented (27). We estimated duration of use by using the starting duration in 1989 and updating this variable according to the duration of use on each subsequent biennial questionnaire (18). We categorized medication use according to regular use status, duration, and weekly dose based on previously defined methods (27–29). We combined the highest 2 categories for duration (11–20 years and 20 years) and weekly dose (6–14 tablets/week and 15 tablets/week) and the second and third categories (1–2 tablets/week and 3–5 tablets/week) for weekly dose because cases in these categories were limited.

Statistical analysis

Among the women who responded to psoriasis questions, we excluded those who selfreported psoriasis but did not respond to the PST or PASE questionnaire or were not confirmed (n=1 007), had prevalent psoriasis/PsA at baseline (n=895), and self-reported psoriasis but with missing diagnosis date (n=34). 95 540 women were included in the present analysis, and they contributed person-years of follow-up from the return date of the baseline questionnaire to the diagnosis date of psoriasis/PsA or the end of follow-up, whichever came first.

We used Cox proportional hazards analyses stratified by age and 2-year follow-up intervals to estimate the age- and multivariate-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between medication use and risk of psoriasis and PsA. Multivariate-adjusted HRs were calculated after adjusting for age, race (White or others), BMI (<25.0, 25–29.9, 30–34.9, and 35 kg/m²), alcohol intake (0, <5, 5–9.9, or 10 g/d), physical activity (<3, 3–8.9, 9–17.9, 18–26.9, and 27 metabolic equivalent hours/week), smoking status (never, past, current smoking with 1–14, 15–24, or 25 cigarettes/day), oral contraceptives use (never, past, or current use), postmenopausal hormones use (premenopausal, never, past, or current use), multi-vitamins use (never, past, or current use), cardiovascular disease (yes or no), type 2 diabetes (yes or no), hypertension (yes or no), and hypercholesterolemia (yes or no). We used the most updated information for time-varying variables (e.g., body mass index) prior to each follow-up interval to take into account potential changes over the follow-up. We also performed secondary analyses with a 4-year (2-cycle) interval between drug exposure and diagnosis of disease. The 4-year lag made it less likely that medication use was related to early disease symptoms.

All statistical analyses were performed using Statistical Analysis System software (SAS, version 9.2; SAS Institute Inc, Cary, NC). All statistical tests were 2-tailed, and the significance level was set at P < 0.05.

RESULTS

During 1 321 280 person-years of follow-up from 1991 to 2005, we documented a total of 646 incident psoriasis cases and 165 concomitant PsA cases. Table I shows the baseline characteristics of the study participants. Compared to nonregular users, regular users of acetaminophen, NSAIDs, and aspirin all tended to have higher BMIs and higher prevalence rates of other medications, and personal histories of chronic diseases.

Regular acetaminophen users were at a higher risk of developing psoriasis (age-adjusted HR=1.29, 95% CI: 1.08–1.54) or psoriasis with concomitant PsA (age-adjusted HR=2.23, 95% CI: 1.63–3.07) when compared to nonregular users (Table II). These associations persisted in multivariate-adjusted models. However, only the HR of PsA associated with regular acetaminophen use remained significant in fully-adjusted models accounting for aspirin and other NSAIDs (HR=1.78, 95% CI: 1.28–4.46). Regular NSAIDs users were also more likely to develop psoriasis (age-adjusted HR=1.26, 95% CI: 1.06–1.49) or PsA (age-adjusted HR=1.74, 95% CI: 1.26–2.40) when compared to nonregular users. However, these associations did not persist in multivariate models with or without acetaminophen and aspirin. Only HR of PsA associated with regular NSAIDs use was of marginal significance in fully-adjusted models (multivariate HR=1.35, 95% CI: 0.98–1.88). In contrast, there was no clear association between regular aspirin use and disease risk. These findings were consistent in secondary analyses with 4-year lag between exposure and outcome (Supplemental Table SI). Interestingly, regular NSAIDs users had a fully-adjusted HR of 1.71 (95% CI: 1.16–2.52) for PsA after 4 years.

Analyses by duration of regular use suggest a trend towards higher disease risk after longterm acetaminophen or NSAIDs use, especially for PsA (Table III). Compared to women

who reported no use, regular acetaminophen users with use duration of 1–6 years, 7–10 years, and more than 10 years had fully-adjusted HRs of 1.77 (95% CI: 1.19–2.62), 1.66 (95% CI: 0.91–3.02), and 3.60 (95% CI: 2.02–6.41) respectively for PsA, and regular NSAIDs users with use duration of 1–6 years, 7–10 years, and more than 10 years had fully-adjusted HRs of 1.51 (95% CI: 0.98–2.33), 2.09 (95% CI: 1.22–3.58), and 2.10 (95% CI: 1.11–3.96) respectively for PsA. Secondary analyses with 4-year lag between exposure and outcome yielded similar results (Supplemental Table SII).

Analyses by weekly dosage of medications were limited to follow-up period between 1999 and 2005 when dosage information was available. Acetaminophen dosage showed the most robust associations with psoriasis and PsA among the three drugs (Table IV). Compared to women who reported no use, regular acetaminophen users with weekly dosage of 1-5 tablets/week and 6 tablets/week had fully-adjusted HRs of 1.37 (95% CI: 1.01-1.84) and 1.62 (95% CI: 1.11-2.37) respectively for psoriasis, and fully-adjusted HRs of 2.12 (95% CI: 1.20-3.77) and 3.05 (95% CI: 1.63-5.70) respectively for PsA. Regular NSAIDs users with weekly dosage of 6 tablets/week appeared to be more likely to develop PsA, but this risk became insignificant after accounting for the other medications (fully-adjusted HR=1.66, 95% CI: 0.91-3.02).

DISCUSSION

In this large, prospective cohort study, we found that regular acetaminophen (paracetamol) use may be associated with an increased risk of psoriasis with concomitant PsA in women, and women who used this medication more than 10 years were at a substantially increased risk of developing PsA. Although the association between regular NSAIDs use and risk of PsA was of marginal significance, analysis by duration suggested that women who used NSAIDs for long durations were also more likely to develop PsA. In addition, analysis by dosage also suggested an increased risk of psoriasis associated with acetaminophen use. However, we did not observe any clear association between aspirin use and risk of psoriasis or PsA. Secondary analyses with 4-year lag between exposure and outcome yielded very similar findings.

Psoriasis is characterized by T-cell-mediated hyperproliferation of keratinocytes and inflammatory processes, whereas PsA is an inflammatory arthritis that occurs in the presence of psoriasis (1). Initial studies have revealed that abundant T cells are accumulated at sites of inflammation (30). Aspirin and other NSAIDs reduce the inflammatory response by inhibiting COX, which is responsible for the formation of eicosanoids, a group of important inflammatory mediators (31). Of note, aspirin and NSAIDs have different inhibitory effects on the COX isoenzymes. NSAIDs inhibit both the COX-1 and COX-2 isoenzymes, whereas aspirin is relatively COX-1 selective and has only a weak inhibitory effect on COX-2 (31–33). The main mechanism proposed for acetaminophen action is also the inhibition of COX (8), and recent findings suggest that it is highly selective for COX-2 (9). However, acetaminophen has little anti-inflammatory activity (34). In the present study we found that acetaminophen (a COX-2 selective inhibitor) showed the most robust associations with risk of psoriasis and PsA, followed by NSAIDs (non-specific COX inhibitors), and aspirin (a COX-1 selective inhibitor) was not associated with risk of

psoriasis and PsA. Therefore, it seems that the drug effects were closely related to the selectivity of COX inhibition.

In clinical practices, NSAIDs are commonly used as initial therapy for PsA which may provide well symptomatic control (35,36). However, data regarding the usefulness of NSAIDs in PsA treatment are limited and only a few controlled studies have assessed their efficacy (37). A previous controlled study confirmed an NSAID's (nimesulide) superiority to placebo on tender/swollen joint counts, and pain scores, but show no effect on rash (assessed by Psoriasis Area and Severity Index score) or on the erythrocyte sedimentation rate to suggest disease modification (38). An early double-blind controlled trial found limited efficacy of ibuprofen in the treatment of PsA (39), and another randomized controlled trial also confirmed that symptomatic therapy using NSAIDs and/or prednisone was less efficacious than cyclosporine (40). A more recent randomized, double-blind, placebo-controlled study found that celecoxib (a COX-2 selective inhibitor) was efficacious and well tolerated in treating the signs and symptoms of PsA in flare after 2 weeks of treatment, however, there were no differences relative to placebo treatment at week 12 (41). In contrast, worsening of psoriasis with initiation of NSAIDs therapy has been observed for both non-specific and COX-2 specific NSAIDs (11–17).

Arachidonic acid can be metabolized to form either prostaglandins (members of eicosanoids) via the COX pathway or leukotrienes via the 5-lipoxygenase pathway (42). Possible mechanisms for worsening of psoriasis associated with NSAIDs may include an increased migration of leukocytes associated with use of nonspecific COX inhibitors (43). This migration of leukocytes may result from a diversion of arachidonic acid metabolism toward the 5-lipoxygenase pathway and thus lead to accumulation of leukotrienes. The increased migration of leukocytes could lead to their infiltration into the epidermis, thereby stimulating the psoriatic eruption (44). Furthermore, it has been reported that some NSAIDs (e.g., indomethacin and salicylates) do nothing to reverse the underlying causes of chronic inflammatory diseases (45). This may be due to use of the drugs at doses which give good symptomatic control but actually potentiate the accumulation of inflammatory cells.

A few points may help explain the effect difference between these medications. COX-2 is involved in the synthesis of proinflammatory eicosanoids, and it is likely that selective antagonism of this enzyme by COX-2 inhibitors (e.g., rofecoxib) would also lead to a compensatory increase in leukocyte migration as nonspecific NSAIDs (16). Acetaminophen has little anti-inflammatory activity (34), may inhibit the metabolism of arachidonic acid by the COX pathway like COX-2 selective inhibitors, and finally leads to an accumulation of leukotrienes associated with psoriasis development (42,44). In contrast, the adverse effects of aspirin mediated through COX inhibition may be counterbalanced by aspirin-specific anti-inflammatory effects. For example, aspirin may promote the production of local anti-inflammatory lipoxins (46), and aspirin inhibition of platelet thromboxane attenuates release of sphingosine-1-phosphate, a bioactive immunomodulatory lipid that plays an important role in lymphocyte trafficking and monocyte chemotaxis (47).

Our study has several strengths. First, because we collected detailed, updated information on medication use during 14 years of follow-up, we were able to evaluate long-term use across

a broad range of intake. Second, we were also able to examine the effects of three major analgesics and antipyretics (acetaminophen, NSAIDs, and aspirin) simultaneously. Third, we obtained medication data prospectively, prior to diagnosis, and thus our study avoided the potential recall bias of case-control studies that collect exposure data after diagnosis of disease. Any errors in recall would be likely to attenuate rather than exaggerate true associations. Fourth, we were able to estimate medication effects using several distinct measures of drug use, including status, duration, and dosage. Thus, our findings are less prone to internal confounding because of correlations between these parameters. Fifth, the results of secondary analyses with a 4-year lag between exposure and outcome are consistent with the primary analyses, suggesting that the associations between exposure and outcome were unlikely to be entirely explained by protopathic bias. Sixth, our participants were all registered nurses, and the accuracy of self-reported medication use is likely to be high and to reflect actual consumption of these largely over-the-counter medications. Previous studies from a similar cohort (Nurses' Health Study) have demonstrated good applicability of such medication data in identifying associated disease and mortality risk (18,27–29). Finally, based on detailed and validated cohort follow-up information, we were able to control for a number of potential confounders (e.g., hypercholesterolemia) which may have affected the association of interest. Hypercholesterolemia has been associated with risk of psoriasis and PsA in our previous study (26). The associations between regular acetaminophen and NSAIDs use and risk of PsA are essentially changed before and after adjusting for hypercholesterolemia, whereas the associations between hypercholesterolemia and risk of psoriasis and PsA are also consistent before and after adjusting for acetaminophen and NSAIDs use (26). These results suggest that the potential biological linkages between cholesterol and psoriasis/PsA and between acetaminophen and NSAIDs use and psoriasis/PsA may be independent of each other.

Our study has several limitations. First, case ascertainment could be a concern due to misclassification. We ascertained PsA diagnosis using the PASE questionnaire among selfreported women with psoriasis. PASE picks up individuals with active disease who are potentially more likely to have inflamed joints and increased systemic inflammation, and therefore it probably underestimates the number of real cases (48). However, the psoriasis self-reports reached a confirmation rate of 92% (23), and pilot studies suggested that PASE questionnaire was a valid and reliable tool for PsA screening (24,25). Our previous studies have established associations between PsA and several potential risk factors (i.e., hypercholesterolemia, obesity, and smoking) (26,49,50) and Crohn's disease (21) using data from the same cohort. Therefore, we expect a high validity of PsA confirmation among the well educated nurses. Second, we lack information on which specific NSAIDs were used, although most women reported using ibuprofen. Third, our cohort consisted entirely of women, most of whom were whites, and thus the generalizability of the results to other gender and ethnicities may be limited. Finally, our study was observational, although we were able to adjust a number of potential confounders, we cannot completely exclude residual confounding by unmeasured or imperfectly measured factors.

In conclusion, our findings suggest that regular acetaminophen use may be associated with an increased risk of psoriasis and concomitant PsA. In addition, long-term NSAIDs use also appeared to be associated with an increased risk of PsA. These associations were generally

consistent in secondary analyses with a 4-year lag between exposure and outcome. However, the biological mechanism linking these drugs and development of psoriasis and concomitant PsA is plausible, and further work is warranted to replicate our findings and to explore the underlying biological evidence. Based on the previous evidence as well as our results, the efficacy of NSAIDs in treating PsA may need to be assessed more thoroughly, and special attention on psoriasis and PsA screening may be needed for those who are prescribed for acetaminophen and NSAIDs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are deeply indebted to the participants and staff of the Nurses' Health Study II for their valuable contributions. This work was supported by the Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts and NIH grant R01 CA50385. The funding sources did not involve in the data collection, data analysis, manuscript writing and publication.

References

- Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007; 370:263–371. [PubMed: 17658397]
- 2. Schon MP, Boehncke WH. Psoriasis. N Engl J Med. 2005; 352:1899–1912. [PubMed: 15872205]
- Gladman DD, Shuckett R, Russell ML, Thorne JC, Schachter RK. Psoriatic arthritis (PSA)—an analysis of 220 patients. Q J Med. 1987; 62:127–141. [PubMed: 3659255]
- Gelfand JM, Gladman DD, Mease PJ, Smith N, Margolis DJ, Nijsten T, et al. Epidemiology of psoriatic arthritis in the population of the United States. J Am Acad Dermatol. 2005; 53:573–577. [PubMed: 16198775]
- Nograles KE, Brasington RD, Bowcock AM. New insights into the pathogenesis and genetics of psoriatic arthritis. Nat Clin Pract Rheumatol. 2009; 5:83–91. [PubMed: 19182814]
- Javitz HS, Ward MM, Farber E, Nail L, Vallow SG. The direct cost of care for psoriasis and psoriatic arthritis in the United States. J Am Acad Dermatol. 2002; 46:850–860. [PubMed: 12063481]
- Rainsford KD. Profile and mechanisms of gastrointestinal and other side effects of nonsteroidal antiinflammatory drugs (NSAIDs). Am J Med. 1999; 107:278–358. [PubMed: 10628591]
- Aronoff DM, Oates JA, Boutaud O. New insights into the mechanism of action of acetaminophen: Its clinical pharmacologic characteristics reflect its inhibition of the two prostaglandin H2 synthases. Clin Pharmacol Ther. 2006; 79:9–19. [PubMed: 16413237]
- 9. Hinz B, Cheremina O, Brune K. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J. 2008; 22:383–390. [PubMed: 17884974]
- Friedman ES, LaNatra N, Stiller MJ. NSAIDs in dermatologic therapy: review and preview. J Cutan Med Surg. 2002; 6:449–459. [PubMed: 12202973]
- 11. Meyerhoff JO. Exacerbation of psoriasis with meclofenamate. N Engl J Med. 1983; 5:309-496.
- Ben-Chetrit E, Rubinow A. Exacerbation of psoriasis by ibuprofen. Cutis. 1986; 38:45. [PubMed: 3731868]
- Ellis CN, Fallon JD, Kang S, Vanderveen EE, Voorhees JJ. Topical application of nonsteroidal anti-inflammatory drugs prevents vehicle-induced improvement of psoriasis. J Am Acad Dermatol. 1986; 14:39–43. [PubMed: 3950112]
- Powles AV, Griffiths CEM, Seifert MH, Fry L. Exacerbation of psoriasis by indomethacin. Br J Dermatol. 1987; 117:799–800. [PubMed: 3426958]

- Lazarova AZ, Tsankov NK, Zlatkov NB. Psoriasis induced by topically applied indomethacin. Clin Exp Dermatol. 1989; 14:2601.
- Clark DW, Coulter DM. Psoriasis associated with rofecoxib. Arch Dermatol. 2003; 139:1223. [PubMed: 12975177]
- Cohen AD, Bonneh DY, Reuveni H, Vardy DA, Naggan L, Halevy S. Drug exposure and psoriasis vulgaris: case-control and case-crossover studies. Acta Derm Venereol. 2005; 85:299–303. [PubMed: 16191849]
- Ananthakrishnan AN, Higuchi LM, Huang ES, Khalili H, Richter JM, Fuchs CS, et al. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann Intern Med. 2012; 156:350–359. [PubMed: 22393130]
- Lee FI, Bellary SV, Francis C. Increased occurrence of psoriasis in patients with Crohn's disease and their relatives. Am J Gastroenterol. 1990; 85:962–963. [PubMed: 2375323]
- Yates VM, Watkinson G, Kelman A. Further evidence for an association between psoriasis, Crohn's disease and ulcerative colitis. Br J Dermatol. 1982; 106:323–330. [PubMed: 7066192]
- Li WQ, Han JL, Chan AT, Qureshi AA. Psoriasis, psoriatic arthritis and increased risk of incident Crohn's disease in US women. Ann Rheum Dis. 2013; 72:1200–1205. [PubMed: 22941766]
- Najarian DJ, Gottlieb AB. Connections between psoriasis and Crohn's disease. J Am Acad Dermatol. 2003; 48:805–821. [PubMed: 12789169]
- 23. Dominguez PL, Assarpour A, Kuo H, Holt EW, Tyler S, Qureshi AA. Development and pilottesting of a psoriasis screening tool. Br J Dermatol. 2009; 161:778–784. [PubMed: 19566664]
- Husni ME, Meyer KH, Cohen DS, Mody E, Qureshi AA. The PASE questionnaire: pilot-testing a psoriatic arthritis screening and evaluation tool. J Am Acad Dermatol. 2007; 57:581–587. [PubMed: 17610990]
- Dominguez PL, Husni ME, Holt EW, Tyler S, Qureshi AA. Validity, reliability, and sensitivity-tochange properties of the psoriatic arthritis screening and evaluation questionnaire. Arch Dermatol Res. 2009; 301:573–579. [PubMed: 19603175]
- 26. Wu S, Li WQ, Han J, Sun Q, Qureshi AA. Hypercholesterolemia and risk of incident psoriasis and psoriatic arthritis in US women. Arthritis Rheum. 2013 Dec 18. Epub ahead of print. 10.1002/art. 38227
- Chan AT, Giovannucci EL, Meyerhardt JA, Schernhammer ES, Curhan GC, Fuchs CS. Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA. 2005; 294:914–923. [PubMed: 16118381]
- Chan AT, Manson JE, Feskanich D, Stampfer MJ, Colditz GA, Fuchs CS. Long-term aspirin use and mortality in women. Arch Intern Med. 2007; 167:562–572. [PubMed: 17389287]
- 29. Huang ES, Strate LL, Ho WW, Lee SS, Chan AT. Long-term use of aspirin and the risk of gastrointestinal bleeding. Am J Med. 2011; 124:426–433. [PubMed: 21531232]
- Fearon U, Veale DJ. Pathogenesis of psoriatic arthritis. Clin Exp Dermatol. 2001; 26:333–337. [PubMed: 11422185]
- Khanapure SP, Garvey DS, Janero DR, Letts LG. Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr Top Med Chem. 2007; 7:311–340. [PubMed: 17305573]
- Martínez-González J, Badimon L. Mechanisms underlying the cardiovascular effects of COXinhibition: benefits and risks. Curr Pharm Des. 2007; 13:2215–2227. [PubMed: 17691994]
- 33. Takeuchi K, Smale S, Premchand P, Maiden L, Sherwood R, Thjodleifsson B, et al. Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2006; 4:196–202. [PubMed: 16469680]
- Botting R, Ayoub SS. COX-3 and the mechanism of action of paracetamol/acetaminophen. Prostaglandins Leukot Essent Fatty Acids. 2005; 72:85–87. [PubMed: 15626590]
- Lubrano E, Scarpa R. Psoriatic arthritis: treatment strategies using anti-inflammatory drugs and classical DMARDs. Reumatismo. 2012; 64:107–112. [PubMed: 22690387]
- Nash P, Clegg DO. Psoriatic arthritis therapy: NSAIDs and traditional DMARDs. Ann Rheum Dis. 2005; 64:ii74–77. [PubMed: 15708943]

- 37. Ash Z, Gaujoux-Viala C, Gossec L, Hensor EM, FitzGerald O, Winthrop K, et al. A systematic literature review of drug therapies for the treatment of psoriatic arthritis: current evidence and meta-analysis informing the EULAR recommendations for the management of psoriatic arthritis. Ann Rheum Dis. 2012; 71:319–326. [PubMed: 21803753]
- Sarzi-Puttini P, Santandrea S, Boccassini L, Panni B, Caruso I. The role of NSAIDs in psoriatic arthritis: evidence from a controlled study with nimesulide. Clin Exp Rheumatol. 2001; 19:S17– S20. [PubMed: 11296544]
- Hopkins R, Bird HA, Jones H, Hill J, Surrall KE, Astbury C, et al. A double-blind controlled trial of etretinate (Tigason) and ibuprofen in psoriatic arthritis. Ann Rheum Dis. 1985; 44:189–193. [PubMed: 3883917]
- Salvarani C, Macchioni P, Olivieri I, Marchesoni A, Cutolo M, Ferraccioli G, et al. A comparison of cyclosporine, sulfasalazine, and symptomatic therapy in the treatment of psoriatic arthritis. J Rheumatol. 2001; 28:2274–2282. [PubMed: 11669169]
- 41. Kivitz AJ, Espinoza LR, Sherrer YR, Liu-Dumaw M, West CR. A comparison of the efficacy and safety of celecoxib 200 mg and celecoxib 400 mg once daily in treating the signs and symptoms of psoriatic arthritis. Semin Arthritis Rheum. 2007; 37:164–173. [PubMed: 17570469]
- 42. Fry L, Baker BS. Triggering psoriasis: the role of infections and medications. Clin Dermatol. 2007; 25:606–615. [PubMed: 18021899]
- 43. Higgs GA, Eakins KE, Mugridge KG, Moncada S, Vane J. The effects of non-steroidal antiinflammatory drugs on leukocyte migration in carrageenin induced inflammation. Eur J Pharmacol. 1980; 66:6681–6686.
- 44. Davies, DM.; Ferner, RE.; de Glanville, H., editors. Davies's textbook of adverse drug reactions. 5. London: England Chapman & Hall; 1998. p. 566-584.
- 45. Woodbury, DM.; Fingl, E. Analgesic-antipyretics, anti-inflammatory agents, and drugs employed in the therapy of gout. In: Goodman, LS.; Gilman, A., editors. The Pharmacological Basis of Therapeutics. 5. Macmillan; New York: 1975. p. 325
- Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res. 2010; 107:1170–1184. [PubMed: 21071715]
- Ulrych T, Böhm A, Polzin A, Daum G, Nüsing RM, Geisslinger G, et al. Release of sphingosine-1phosphate from human platelets is dependent on thromboxane formation. J Thromb Haemost. 2011; 9:790–798. [PubMed: 21251196]
- Haroon M, Kirby B, Fitzgerald O. High prevalence of psoriatic arthritis in patients with severe psoriasis with suboptimal performance of screening questionnaires. Ann Rheum Dis. 2013; 72:736–740. [PubMed: 22730367]
- 49. Li W, Han J, Qureshi AA. Obesity and risk of incident psoriatic arthritis in US women. Ann Rheum Dis. 2012; 71:1267–1272. [PubMed: 22562978]
- Li W, Han J, Qureshi AA. Smoking and risk of incident psoriatic arthritis in US women. Ann Rheum Dis. 2012; 71:804–808. [PubMed: 22067198]

nuscript
NIH-P,
-PA Author I
Manuscript

NIH-PA Author Mar

Table I

Age-adjusted baseline characteristics of the study participants by status of acetaminophen, NSAIDs, and aspirin use^a

Wu et al.

	Acetaminophen (Paracetamol)	(Paracetamol)	NSAIDs	Ds	Aspirin	rin
	Nonregular users (n=74 996)	Regular users (n=20 544)	Nonregular users (n=77 300)	Regular users (n=18 240)	Nonregular users (n=84 866)	Regular users (n=10 674)
Age, years, mean (SD)	36.2(4.6)	36.1(4.7)	36.0(4.6)	36.9(4.6)	36.0(4.7)	37.5(4.4)
White race, %	95.1	95.9	94.9	96.7	95.0	97.2
Body mass index, kg/m ² , mean (SD)	24.4(5.2)	25.2(5.6)	24.3(5.1)	25.6(5.9)	24.5(5.2)	24.9(5.5)
Alcohol intake, g/d, mean (SD)	3.2(6.1)	3.0(6.1)	3.1(5.9)	3.5(6.7)	3.0(5.9)	4.0(7.1)
Physical activity, met-hrs/week, mean (SD)	21.0(26.9)	19.9(26.2)	20.7(26.7)	21.1(27.4)	20.7(26.7)	21.3(27.4)
Current smoking, %	11.1	12.9	10.9	14.2	11.1	15.3
Medications						
Acetaminophen use, %	,		19.2	31.4	20.8	27.9
NSAIDs use, %	16.8	27.6			18.5	24.4
Aspirin use, %	10.3	14.2	10.5	14.1		
Oral contraceptives use, %	10.3	10.7	10.1	11.9	10.3	11.9
Postmenopausal hormones use, %	82.5	84.6	81.4	87.5	82.5	85.9
Multi-vitamins use, %	43.4	46.7	43.2	47.8	43.5	49.0
History of chronic diseases						
Cardiovascular disease, %	0.02	0.06	0.03	0.03	0.03	0.02
Type 2 diabetes, %	0.1	0.2	0.1	0.2	0.1	0.2
Hypertension, %	5.7	8.4	5.6	8.9	6.0	8.5
Hypercholesterolemia, %	13.6	17.3	13.6	17.8	14.0	17.1

Acta Derm Venereol. Author manuscript; available in PMC 2015 January 16.

 a All values other than for age have been directly standardized according to the age distribution of the study population.

Table II

Risk of psoriasis and PsA according to regular use of acetaminophen, NSAIDs, and aspirin in the Nurses' Health Study II (1991–2005)

	Nonregular users	Regular users
Acetaminophen		
Psoriasis		
No. of cases/person-years	411/904 444	183/280 671
Age-adjusted HR (95% CI)	1.00	1.29 (1.08, 1.54)
Multivariate HR (95% CI) a	1.00	1.19 (1.00, 1.42)
Multivariate HR (95% CI) b	1.00	1.17 (0.97, 1.39)
PsA		
No. of cases/person-years	89/904 444	68/280 671
Age-adjusted HR (95% CI)	1.00	2.23 (1.63, 3.07)
Multivariate HR (95% CI) a	1.00	1.86 (1.35, 2.56)
Multivariate HR (95% CI) b	1.00	1.78 (1.28, 2.46)
NSAIDs		
Psoriasis		
No. of cases/person-years	343/765 167	254/420 137
Age-adjusted HR (95% CI)	1.00	1.26 (1.06, 1.49)
Multivariate HR (95% CI) a	1.00	1.15 (0.97, 1.36)
Multivariate HR (95% CI) b	1.00	1.12 (0.94, 1.33)
PsA		
No. of cases/person-years	78/765 167	79/420 137
Age-adjusted HR (95% CI)	1.00	1.74 (1.26, 2.40)
Multivariate HR (95% CI) a	1.00	1.47 (1.06, 2.03)
Multivariate HR (95% CI) b	1.00	1.35 (0.98, 1.88)
Aspirin		
Psoriasis		
No. of cases/person-years	474/1 003 279	119/182 107
Age-adjusted HR (95% CI)	1.00	1.13 (0.92, 1.39)
Multivariate HR (95% CI) ^a	1.00	0.99 (0.80, 1.22)
Multivariate HR (95% CI) b	1.00	0.97 (0.79, 1.20)
PsA		
No. of cases/person-years	119/1 003 279	37/182 107
Age-adjusted HR (95% CI)	1.00	1.28 (0.88, 1.88)
Multivariate HR (95% CI) a	1.00	0.99 (0.67, 1.46)
Multivariate HR (95% CI) b	1.00	0.94 (0.64, 1.39)

^aMultivariate HRs were adjusted for age, race, BMI, physical activity, smoking status, oral contraceptive use, postmenopausal hormones use, multi-vitamins use, cardiovascular disease, type 2 diabetes, hypertension, and hypercholesterolemia.

 b HRs were further adjusted for the other drugs (depending on the model) listed in the table.

Table III

Risk of psoriasis and PsA according to regular use duration of acetaminophen, NSAIDs, and aspirin in the Nurses' Health Study II (1991–2005)

Wu et al.

	0	1–6 y	7–10 y	11 y
Acetaminophen		- -		
Psoriasis				
No. of cases/person-years	303/688 413	154/268 733	49/80 609	33/32 300
Age-adjusted HR (95% CI)	1.00	1.26 (1.03, 1.53)	1.26 (0.92, 1.71)	1.54 (1.06, 2.23)
Multivariate HR (95% CI) ^a	1.00	1.16(0.96,1.42)	1.12 (0.82, 1.53)	1.33 (0.91, 1.94)
Multivariate HR (95% CI) b	1.00	$1.14\ (0.94,1.39)$	$1.09\ (0.80,1.50)$	1.29 (0.89, 1.89)
PsA				
No. of cases/person-years	57/688 413	48/268 733	15/80 609	19/32 300
Age-adjusted HR (95% CI)	1.00	2.16 (1.47, 3.19)	2.23 (1.23, 4.04)	5.22 (2.96, 9.21)
Multivariate HR (95% CI) ^a	1.00	1.83 (1.24, 2.70)	1.75 (0.97, 3.18)	3.79 (2.13, 3.18)
Multivariate HR (95% CI) b	1.00	1.77 (1.19, 2.62)	1.66 (0.91, 3.02)	3.60 (2.02, 6.41)
NSAIDs				
Psoriasis				
No. of cases/person-years	245/582 384	168/315 423	73/121 158	51/47 416
Age-adjusted HR (95% CI)	1.00	$1.24\ (1.01,\ 1.52)$	1.27 (0.96, 1.68)	1.62 (1.16, 2.25)
Multivariate HR (95% CI) ^a	1.00	1.11 (0.91, 1.37)	1.07 (0.80, 1.42)	1.30 (0.93, 1.82)
Multivariate HR (95% CI) b	1.00	$1.09\ (0.88, 1.34)$	$1.04\ (0.78,1.38)$	$1.26\ (0.90,\ 1.76)$
PsA				
No. of cases/person-years	45/582 384	46/315 423	29/121 158	18/47 416
Age-adjusted HR (95% CI)	1.00	2.04 (1.33, 3.14)	3.26 (1.92, 5.54)	3.61 (1.93, 6.76)
Multivariate HR (95% CI) ^a	1.00	1.63 (1.06, 2.51)	2.30 (1.35, 3.91)	2.32 (1.23, 4.36)
Multivariate HR (95% CI) b	1.00	1.51 (0.98, 2.33)	2.09 (1.22, 3.58)	2.10 (1.11, 3.96)
Aspirin				
Psoriasis				
No. of cases/person-years	385/825 789	114/191 386	25/43 366	18/16 365
Age-adjusted HR (95% CI)	1.00	1.14 (0.92, 1.41)	$0.99\ (0.66,\ 1.50)$	1.38 (0.84, 2.24)
Multivariate HR (95% CI) ^a	1.00	1.01 (0.81, 1.26)	0.85 (0.56, 1.29)	1.17 (0.72, 1.92)

	0	1-6 y	7–10 y	11 y
Multivariate HR (95% $CI)^b$	1.00	0.99 (0.79, 1.23)	0.99 (0.79, 1.23) 0.83 (0.55, 1.26) 1.14 (0.70, 1.86)	1.14 (0.70, 1.86)
PsA				
No. of cases/person-years	96/825 789	32/191 386	9/43 366	4/16 365
Age-adjusted HR (95% CI)	1.00	1.18 (0.78, 1.78)	1.18 (0.78, 1.78) 1.29 (0.64, 2.61)	1.04 (0.37, 2.91)
Multivariate HR (95% CI) ^a	1.00	0.94 (0.62, 1.43)	0.94 (0.62, 1.43) 0.97 (0.47, 1.96)	0.78 (0.28, 2.19)
Multivariate HR (95% CI) b	1.00	0.88 (0.58, 1.33)	$0.88\ (0.58,1.33) 0.90\ (0.44,1.84) 0.72\ (0.26,2.02)$	0.72 (0.26, 2.02)

 $^{a}\!\mathrm{Multivariate}$ HRs were adjusted for the covariates listed in Table 2 footnote a.

 $b_{
m HRs}$ were further adjusted for the other drugs (depending on the model) listed in the table.

Table IV

Risk of psoriasis and PsA according to weekly dosage of acetaminophen, NSAIDs, and aspirin in the Nurses' Health Study II (1999–2005)

	0	1-5 tablets/week	6 tablets/week
Acetaminophen			
Psoriasis			
No. of cases/person-years	149/262 051	65/75 291	35/29 465
Age-adjusted HR (95% CI)	1.00	1.44 (1.08, 1.93)	1.98 (1.37, 2.86)
Multivariate HR (95% CI) ^a	1.00	1.34 (1.00, 1.80)	1.59 (1.10, 2.32)
Multivariate HR (95% CI) ^b	1.00	1.37 (1.01, 1.84)	1.62 (1.11, 2.37)
PsA			
No. of cases/person-years	29/262 051	21/75 291	16/29 465
Age-adjusted HR (95% CI)	1.00	2.44 (1.39, 4.28)	4.48 (2.43, 8.26)
Multivariate HR (95% CI) ^a	1.00	2.14 (1.22, 3.76)	3.04 (1.63, 5.67)
Multivariate HR (95% CI) ^b	1.00	2.12 (1.20, 3.77)	3.05 (1.63, 5.70)
NSAIDs			
Psoriasis			
No. of cases/person-years	114/183 634	75/103 485	51/71 547
Age-adjusted HR (95% CI)	1.00	1.13 (0.84, 1.51)	1.13 (0.81, 1.58)
Multivariate HR (95% CI) ^a	1.00	1.06 (0.79, 1.42)	0.94 (0.67, 1.31)
Multivariate HR (95% CI) ^b	1.00	1.00 (0.74, 1.35)	0.91 (0.65, 1.28)
PsA			
No. of cases/person-years	22/183 634	13/103 485	23/71 547
Age-adjusted HR (95% CI)	1.00	1.03 (0.52, 2.04)	2.56 (1.43, 4.60)
Multivariate HR (95% CI) ^a	1.00	0.92 (0.46, 1.84)	1.83 (1.01, 3.32)
Multivariate HR (95% CI) ^b	1.00	0.79 (0.39, 1.59)	1.66 (0.91, 3.02)
Aspirin			
Psoriasis			
No. of cases/person-years	197/315 268	19/16 829	15/11 203
Age-adjusted HR (95% CI)	1.00	1.39 (0.85, 2.25)	1.56 (0.91, 2.68)
Multivariate HR (95% CI) ^a	1.00	1.27 (0.78, 2.06)	1.23 (0.71, 2.12)
Multivariate HR (95% CI) ^b	1.00	1.20 (0.74, 1.96)	1.20 (0.69, 2.07)
PsA			
No. of cases/person-years	50/315 268	6/16 829	4/11 203
Age-adjusted HR (95% CI)	1.00	1.68 (0.70, 4.04)	1.52 (0.53, 4.34)
Multivariate HR (95% CI) ^a	1.00	1.43 (0.59, 3.44)	1.02 (0.35, 2.93)
Multivariate HR (95% CI) ^b	1.00	1.23 (0.51, 2.98)	0.95 (0.33, 2.74)

 a Multivariate HRs were adjusted for the covariates listed in Table 2 footnote a.

 $^b\mathrm{HRs}$ were further adjusted for the other drugs (depending on the model) listed in the table.