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Abstract

The growth patterns of different anatomic structures in the human body vary in terms of growth 

amount over time, growth rate and growth periods. The oral and pharyngeal structures, also known 

as vocal tract structures, are housed in the craniofacial complex where the cranium/brain follows a 

distinct neural growth pattern, and the face follows a distinct somatic or skeletal growth pattern. 

Thus, it is reasonable to expect the oral and pharyngeal structures to follow a combined or mixed 

growth pattern. Existing parametric growth models are limited in that they are mainly focused on 

modeling one particular type of growth pattern. In this paper, we propose a novel composite 

growth model using neural and somatic baseline curves to fit the combined growth pattern of 

select vocal tract structures. The method can also determine the overall percent contribution of 

each of the growth types.
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1 Introduction

Growth curves of the various structures of the human anatomy are of clinical interest, where 

the estimated growth curves serve as normative references against which growth is evaluated 

and atypical growth is identified. Clinical growth charts established by the Center for 

Disease Control and Prevention (CDC) (www.cdc.gov/growthcharts) for weight, height and 

head circumference confirm the two major types of growth pattern, namely the somatic and 

neural growth patterns [5]. These two major growth patterns are depicted in Figure 1. Figure 

1 (a) displays the growth of head circumference (HC) that follows a neural growth pattern. 

Specific characteristics of the neural growth pattern is that there is a period of rapid postnatal 

growth where about 80% of the adult size is achieved during early childhood; this is then 

followed by slower steady growth until adulthood. Figures 1 (b) and (c) display body weight 
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and height both of which follow a somatic growth pattern where again much like the neural 

growth pattern there is rapid postnatal growth. The growth achieved during this early 

childhood phase, however, is less than 40% of the adult size. This is then followed by a 

slower growth trend but only up to puberty where there is a second marked accelerated 

growth period that tapers at about age 15 years for females and about age 18 years for males. 

These two major growth patterns also characterize the growth of the head-craniofacial 

complex where the cranium/brain follows a distinct neural growth pattern, and the face 

follows a distinct somatic or skeletal growth curve.

While head circumference, weight and height follow one particular type of growth pattern, 

some structures may display developmental changes that cannot be characterized by a single 

growth pattern. For example, structures housed in the craniofacial complex, such as the 

vocal tract structures, appear to follow the mixture of both neural and somatic growth 

patterns [32]. Existing nonlinear human growth models are either lacking of exibility in 

describing the complex growth pattern of the vocal tract. The empirical evidence so far 

suggests the vocal tract to have a composite growth model of the form

(1)

where Somatic Growth and Neural Growth are the two baseline growth curves obtained from 

existing growth charts or database. The model (1) fine-tunes to the vocal tract growth pattern 

since the baseline functions are based on normative growth curves known to represent 

somatic and neural growth respectively. Computational efficiency of the proposed model is 

guaranteed relative to nonlinear models because it is a linear combination of known 

reference curves. Random effects imposed on the linear terms in (1) do not raise 

computational challenge as nonlinear terms do. The model (1) also allows us to easily 

determine the contributions of neural and somatic growth by comparing the sum of squared 

residual between the full model (1) and the reduced models

based on the single component only.

The main contribution of this paper is the introduction of the data driven composite growth 

model of the form (1) and showing how the model is subsequently used to determine the 

contributions of different growth types. This is the first paper that models the human growth 

as a composition of two different growth shapes.

2 Previous Growth Models

As Gasser pointed out [9], efforts in analyzing human growth curves can be broadly divided 

into fixed and mixed-effects approaches. In this section, we provide a brief survey of notable 

models in each class.
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2.1 Fixed-Effects Models

The model-fitting procedure in the fixed model approach can be either parametric, fully 

nonparametric or semi-parametric. The parametric models are most commonly used 

nowadays in studying human growth. Crude nonlinear parametric models were first 

introduced to fit human growth locally. The Count model [6]

and the Jenss model [11]

were both used for modeling preadolescent height growth. Shohoji and Sasaki [29] used the 

modified version of Count’s model:

to model individual human height from early childhood to adulthood in Japan. The logistic 

model for pubertal growth spurt was proposed by Marubini et al. [21] for human height:

Preece and Baines [26] made an attempt at modeling global growth in human height from 

birth to adulthood by introducing a new family of mathematical functions derived from the 

differential equation

where h∞ is the adult size and s(t) is a function of time that can be represented by many 

functions, thus generating a family of growth curves. The most useful models thus generated 

are

(2a)

(2b)
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where a, b, c, d and e are model parameters. (2a) and (2b) are called the Preece and Baines 

model 1 (PB1) and model 3 (PB3) respectively. PB1 was shown to be more accurate and 

robust than PB3.

In an attempt to complement parametric models, Gasser [8] applied a non-parametric model 

to a longitudinal study of human height growth:

where  is the height of subject i measured at age tj, Hi(tj) is the true height and εij are 

i.i.d. random noises with mean 0 and finite variance . Growth curves for individual 

subjects were acquired through kernel estimation; the νth derivative of H(t) was estimated 

by

where {sj} = (tj + tj+1)/2 is an interpolating sequence, b(T) is the smoothing parameter, and 

the kernel Wν of order (ν, k) satisfies certain moment conditions.

As an alternative to the classical parametric models and nonparametric models, the shape 

invariant model (SIM), also known as self-modeling nonlinear regression model, was 

introduced and applied to human growth data by Lawton et al. [20]. The semiparametric 

approach postulates that a population has a common characteristic function and all the 

individual growth curves within the population can be modeled by shifting and scaling the 

characteristic curve. The individual growth curves can be written in the form

where g(t) represents the characteristic function of the population, α and γ are the shifting 

parameters, and β and δ are the scale parameters. The exponentiation of β and δ is imposed 

to ensure the positiveness of the parameters and thus avoid identification issues. The 

characteristic function g(t) can be either parametric or nonparametric. Early applications of 

SIM included Stützle et al. [30], where a nonlinear function plus a spline function for error 

correction were used to fit a human growth model.

2.2 Mixed-Effects Models

The fixed-effects model approach of fitting nonlinear curves to individual subjects and then 

summarizing the parameter estimates for the population is inadequate when we consider the 

within-subject dependency. Mixed-effects models provide a solution for this problem. For 

the extensive survey on the mixed-effects model, please refer to Pinheiro and Bates [24]. Ke 

and Wang proposed a semiparametric mixed-effects model [18]:
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where η is a known function defined in terms of the parameter vector ϕi, covariate tij and 

unknown function f to be estimated via smoothing spline technique; the parameter vector ϕi 

depends on the fixed-effects vector β (common to all subjects in the population) through the 

design matrix Ai and a random-effects vector bi (specific the ith subject) through the design 

matrix Bi; the covariance matrices D and Ri are parametrized by a small number of variance 

components and correlation coefficients; bi and εi = (εi1, …, εini)′ are mutually 

independent. Despite its projected exibility in fitting a large class of nonlinear trends, Ke and 

Wang’s method has computational problems that are not easily accommodated in all cases 

[7]. A related spline-based mixed-effects SIM model was used by [3] in modeling infant 

growth. By the log-transformation of the response variable yij (the jth observation of the ith 

subject), the model is set up to be

where

with unknown covariance matrix Ψ, and

with unknown variance σ2. The characteristic function g(t) is obtained through a cubic 

smoothing spline with fixed boundary and internal knots, where the boundary knots were 

chosen to be slightly outside the data range. The model was shown to provide better fit 

against a form of the Jenss model [11].

2.3 Vocal Tract Growth Modeling

Modeling vocal tract growth is a challenge, in that a good model would require a great deal 

of fine-tuning towards specific growth pattern such as the adolescent growth-spurt. This 

requirement rules out a number of classical parametric models confined to describe less 

complex growth pattens. Polynomial curves and complicated parametric models, as well as 

nonparametric and semiparametric models, would in theory provide good fits. Vorperian et 

al. [31] modeled the growth change of various vocal tract portions from birth to adulthood 
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by fourth-order polynomials. Due to great exibility and computational simplicity, 

polynomial curves in practice remain good candidates in modeling complex growth patterns 

such as vocal tract growth [17]. However, the main limitation of polynomial curves is 

downward bending in late adolescence [31].

Barbier et al. used a double-logistic model to fit the growth of the vocal tract from fetus to 

adulthood [1]. While the double-logistic model provides a close imitation of the vocal tract 

growth pattern, parameter estimation is nearly impossible for a highly unbalanced data set 

when random effects are incorporated. Same issues occur with efforts to apply other 

complex parametric models with random effects. The much more exible spline and kernel 

smoothing techniques are computationally demanding when the data set is large. On the 

other hand, the proposed composite growth model will easily accommodates random effects 

even with large and unbalanced datasets. The patterns specific to vocal tract growth would 

also be kept by the model at all times.

3 Methods

The term composite growth refers to a linear combination of two different growth types. 

With the proper choice of the baseline curves, it is possible to model any complex vocal tract 

growth. For the current study, we use published normative head circumference and weight 

growth curves that are representative of neural and somatic growth. The neural growth curve 

N(t) represented by the head circumference growth was obtained by Vorperian et al. [31] 

from a study conducted by Nellhaus [23], where gender specific population mean growth 

curves were estimated (Figure 1 (a)). The somatic growth curve S(t) represented by the sex-

specific CDC weight growth curves is based upon several national health examination 

survey datasets taken between the years 1963 and 1994 [5] (Figure 1(b)).

3.1 Mixture Growth Model

Let G(t) represents the measurement of a vocal tract structure at age t. Consider neural N(t) 
and somatic S(t) curves that characterize two different types of growth. We are interested in 

modeling G as a linear combination of N and S. Figure 1 (d) shows a schematic of 

composite growth out of two baseline growth patterns N and S. We fit the following three 

models simultaneously:

(3a)

(3b)

(3c)

Wang et al. Page 6

Stat Methods Med Res. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The reduced growth models (3b) and (3c) will be used to determine the contribution of each 

growth type with respect to the full growth model (3a). The error term ε(t) represents the 

Gaussian noise N(0, σ2) with unknown variance σ2. The mixed-effects parameters γ’s are 

given as the sums of fixed-effects terms α’s and random-effects terms β’s:

(4a)

(4b)

(4c)

and the β’s are assumed to follow the distributions

where Ψ, Ψb, Ψc are unknown covariance matrices. The parameter estimation is essentially 

that of linear mixed-effects models [24].

Since the fixed-effects parameters α’s can be interpreted as the population averages for the 

corresponding mixed-effects parameters γ’s, we can construct the following formulas to 

quantify the population growth type based on the respective fixed-effects residual sums of 

squares R2a, R2b and R2c of the models (3a), (3b) and (3c):

(5a)

(5b)

where the numerators R2c − R2a and R2b − R2a represent the respective loss of information 

in models (3c) and (3b) compared with model (3a) due to missing somatic and neural 

presence, and the denominator R2b + R2c − 2R2a serves to normalize the losses. Note that PS 
+ PN = 100. Formulas (5a) and (5b) are thus associated with natural percentage 

interpretation of the growth type of a vocal tract portion.

The proposed model (3a) can be interpreted as the scaling of additive characteristic somatic 

and neural functions from the shape invariant point of view. The variability of individual 

subjects within the population is incorporated in the random effects of the intercept and 
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scaling factors. The proposed model (3a) has many advantages compared with the existing 

growth models. (1) Classical models often model a single growth type, whereas the proposed 

approach models the linear combination of two distinct types of growth. (2) In terms of 

computation, the proposed model (3a) can be easily implemented when the sample dataset is 

large, as opposed to the computationally demanding non-parametric and semiparametric 

mixed-effects models. (3) Since the normative baseline curves S(t) and N(t) originate from 

sources independent of the dataset, the proposed approach is less biased than estimating the 

baseline functions and fitting model from a single dataset.

3.2 Simulations

For simulation studies, the baseline longitudinal data was generated using a gender specific 

fourth-degree polynomial model:

(6)

where tij ~ Unif{0, …, 240} follows uniform distribution over integers between 0 and 240, 

and ; the population coefficients are

and the coefficients varying between subjects follow

These specific coefficients were obtained by fitting the model (6) to our vocal tract length 

data. The polynomial growth model was previously used to imitate population growth 

patterns exhibited by the vocal tract length from birth to adulthood (Vorperian et al. [32]). 

Based on the simulated data, we then fitted and compared the performance of the proposed 

composite model to the double logistic model.

The signals and noises are assumed to be independent, and their variances  and  are 

specified accordingly in the following two separate simulations

Study 1. N = 20, ni ~ Poisson(15), σ1 = 0.02, σ2 = 0.8;

Study 2. N = 50, ni ~ Poisson(10), σ1 = 0.3, σ2 = 0.3.

Data generated in Study 1 are noisier than those generated in Study 2. Figures 3 and 4 show 

examples of simulated data in Study 1 and 2. One hundred simulations were run in each 

study and our composite and double logistic models were fitted in each simulation. The 

results do not differ greatly even if we increase the number of simulations or change the 

parameters in the model indicative of robustness of our simulation framework.
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We compared the proposed model (3a, 3b, 3c) against a mixed-effects version of the gender-

specific double logistic model used by Barbier et al. [1] for vocal tract growth from fetus to 

adulthood

(7)

where

and Ψp is an unknown covariance matrix. The optimal combinations of random effects were 

chosen with respect to convergence, correlation and running time. Parameter estimation was 

handled by the R package lme4.0 [2] for the proposed model (3a) and nlme [25] for the 

mixed-effects double logistic model.

Table 1 provides a summary of mean squared errors (MSEs) over 100 simulations in Study 1 

and 2 and their corresponding standard deviations. The MSEs show that the proposed model 

(3a) is generally comparable with the mixed-effects double logistic model. The variance 

between MSEs is also much larger in the double logistic case when more noise is present in 

the data. The small variance of MSEs in our proposed model (3a) shows its robustness 

against noise in this type of longitudinal data. Also, Figures 3 and 4 show that the proposed 

composite model captures the early development of vocal tract type of growth more closely 

than the double logistic model. The latter is too sensitive to noise to model the sharp growth 

that characterizes early childhood development.

Note that the data sets generated in both Study 1 and 2 were fairly balanced. The parameter 

estimation for the mixed-effects double logistic models was relatively easy to handle. 

However, for many highly unbalanced data sets we have attempted, the mixed-effects double 

logistic models often failed to converge, whereas the proposed model (3a) converged quickly 

in every case. The simulation studies suggest that the proposed model (3a) would make a 

better candidate in modeling unbalanced large-scale longitudinal vocal tract data in practice.

4 Application

We applied the proposed method to model the growth of the four vocal tract portions based 

on measurements secured from CT images.
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4.1 Vocal Tract Data

Measurements were obtained from 771 CT and MRI imaging studies of individuals between 

birth and 19 years of age. All measurements were made from the midsagittal plane of 419 

male and 352 female scans. Some of the individuals had repeated scans and therefore the 

number of scans were highly unbalanced among subjects. For example, between birth and 

19 years, 229 subjects had a single scan. Some subject has up to 10 scans.

Figure 2 displays four variables we used to assess the composite growth model proposed in 

this paper. The four variables are: (a) VTL, Vocal Tract Length, defined as the curvilinear 

distance along the midline of the vocal tract starting at the level of the vocal fold (VF) to the 

intersection with a line drawn tangentially to the lips (L); (b) VT-H, Vocal Tract Horizontal, 

defined as the horizontal distance form where the VTL ends to the posterior pharyngeal wall 

(PPW); (c) HP-V, Hyoid Posterior Nasal Spine Vertical, defined as the vertical distance from 

the posterior nasal spine (PNS) to the anterior-inferior border of the Hyoid bone (H); and (d) 

LP-V, defined as the vertical distance from the PNS to the larynx at the level of the vocal 

fold (VF). The abbreviation of the variables is consistent with that used by Vorperian et al. 

[32].

4.2 Results

The mixed-effects models based on (3a), (3b) and (3c) were fitted separately for male and 

female using the lme4.0 pacakage in R [2]. All combinations of random effects (single, 

double and full combination) were fitted based on the full fixed-effects model. The Akaike 

information criterion (AIC) was used as a criterion in comparing the models [3].

Table 2 displays the AICs for all the random-effects combinations of model (3a) for VTL, 

VT-H, LP-V and HP-V. Chosen combinations have the smallest AICs. For instance, for VTL 

we should fit random effects on the intercept and the neural growth for female, and fit 

random effects on the somatic and neural growth for male. The AICs of the chosen models 

are set in bold face in the table. Figures 5–8 show the estimated population average growth 

patterns for VTL, VT-H, LP-V and HP-V. All four measurements see a sharp growth spurt 

between birth and approximately two years of age followed by the second more smooth 

growth spurt during adolescence.

We also compared the performance of the proposed composite growth model to the existing 

double logistic model. Table 3 shows the comparison between the mean squared errors 

(MSEs) of the double logistic model and the chosen composite model in Table 2. Our model 

is in general comparable or outperforms the mixed-effects double logistic model. In fact, the 

double logistic model fails to converge for the male case of LP-V. Figure 9 shows depiction 

of VTL population growth trend by the double logistic model and the proposed composite 

growth model. Although the double logistic model manages to capture the overall growth 

trend, the sharp growth and plateau that respectively characterize early childhood and late-

teen development are not as well depicted as the proposed growth model, particularly for the 

male curve.

Apart from accurate depiction of vocal tract growth trends with computational efficiency, 

another key contribution of the proposed model is the direct quantification of population 
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growth types. Different structures may have differing contributions of somatic and neural 

growth (Vorperian et al. [32]). From the residual sum of squares, we can determine the 

percentage contribution of the growth types. Table 4 shows that the population somatic 

growth is dominant over neural growth in VTL, LP-V and HP-V for both male and female. 

For VT-H, population neural growth is shown to dominate over somatic growth for both 

male and female.

Growth velocity is an important growth characteristic that can be easily computed based on 

a fitted model and visualized. The population growth velocity for a vocal tract portion is 

approximated from the population average of a model. At a particular age t, we estimate the 

growth velocity discretely using the finite difference

(8)

where Ĝ(t) is the fitted population average of G(t) at age t and Δt is defined to be the 

difference between t and the later consecutive time point t + Δt. We have taken Δt = 0.1 

between ages 0 and 19. Figures 7 and 8 show the growth rate for structures LP-V and HP-V. 

The growth velocity can be used to visually determine ages of growth spurts. For LP-V and 

HP-V, the growth spurt occurs earlier for females at around age 12–13 while the the growth 

spurt occurs later for males at around age 14.

5 Conclusion and Discussion

The proposed method uses existing two normative growth curves in modeling the growth of 

more complex vocal tract structures as a composition of somatic and neural growth types. 

Since this is an empirical approach based on available growth curves, the resulting growth 

model can closely represent documented growth trends. Compared with the traditional 

parametric growth models, our method is numerically simpler to implement and 

computationally more efficient. All the traditional models achieve the accuracy in depiction 

of finer features such as mid-growth spurts by adding parameters and nonlinearity in the 

model. This adds considerable difficulty in computation for large and highly unbalanced 

datasets. Algorithms fitting nonlinear models require sensible and stable initial values, 

which are difficult to obtain when the a model consists of several nonlinear parameters. 

When random effects are added to the model, convergence might be difficult to obtain due to 

the unbalanced number of observations between subjects. Our composite growth model, on 

the other hand, has only linear parameters, which rarely cause divergence when fitting 

random effects.

The obvious limitation of the proposed model (3a), however, lies with the requirement of 

distinct baseline growth curves that behave like basis functions in representing more 

complex growth patterns. If a biological structure does not follow a documented 

combination of distinct growth trends, our approach may not offer an accurate depiction of 

the growth. Neither would it be useful when reliable reference growth curves do not exist.
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One possible application and extension of the proposed model is toward the landmarked-

based morphometric study of the human maxillary complex [10], which is closely related to 

vocal tract structures in terms of growth characetristics. Given the composite biological 

structure of the maxillary complex, we can expect that the distances between various 

landmarks on the complex exhibit composite growth patterns similar to those found in the 

vocal tract structures. We can therefore model the growth of the human maxillary complex 

by a system of our proposed models. The fitted models could serve as normative references 

in medical and dental treatments such as maxillary expansion.
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Figure 1. 
Nellhaus head circumference and CDC height and weight growth curves for male and 

female between 0 and 20 years of age, with a schematic for the proposed growth model (3a)
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Figure 2. 
Midsagittal images displaying the anatomic landmarks used for making oral and pharyngeal 

measurements; the highlighted segments illustrate the actual measurements; left to right: 

VTL (Vocal Tract Length), VT-H (Vocal Tract Horizontal), LP-V (Larynx-PNS Vertical) and 

HP-V (Hyoid-PNS Vertical). The landmarks that are used to define the four variables are L 

(Lips), VF (Vocal Fold), PPW (Posterior Pharyngeal Wall), PNS (Posterior Nasal Spine) and 

H (Hyoid Bone).
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Figure 3. 
Example of data generated in Study 1 for female and male; green solid and red/blue dashed 

lines indicate population average fitted curves by double logistic model (7) and proposed 

model (3a) respectively.
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Figure 4. 
Example of data generated in Study 2 for female and male; green solid and red/blue dashed 

lines indicate population average fitted curves by double logistic model (7) and proposed 

model (3a) respectively.
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Figure 5. 
VTL: population growth curve (left) and rate (right) based on model (3a).
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Figure 6. 
VT-H: population growth curve (left) and rate (right) based on model (3a).
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Figure 7. 
LP-V: population growth curve (left) and rate (right) based on model (3a).
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Figure 8. 
HP-V: population growth curve (left) and rate (right) based on model (3a).
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Figure 9. 
Population average growth curves of VTL based on mixed-effects double logistic (7) (left) 

and composite growth model (3a) (right).
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Table 1

Mean squared error (MSE) and its one standard deviation for the double logistic and the proposed models (3a) 

for 100 simulations.

Study 1 Double Logistic Proposed Model

Female 0.046 ± 0.013 0.047 ± 0.009

Male 0.031 ± 0.012 0.043 ± 0.007

Study 2 Double Logistic Proposed Model

Female 0.028 ± 0.004 0.037 ± 0.005

Male 0.015 ± 0.004 0.041 ± 0.003
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Table 3

Mean squared errors (MSEs) for the mixed-effects double logistic model (7) and mixed-effects composite 

growth model (3a) chosen in Table 2 for VTL, VT-H, LP-V and HP-V; NA indicates failure of convergence.

Female Double Logistic Proposed Model

VTL 0.111 0.058

VT-H 0.053 0.061

LP-V 0.073 0.078

HP-V 0.083 0.086

Male Double Logistic Proposed Model

VTL 0.226 0.239

VT-H 0.097 0.094

LP-V NA 0.145

HP-V 0.092 0.091
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