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Background: SMC proteins organize chromosome architecture, whereas microtubules form the structural framework for
chromosome movement in mitosis.
Results: SMC proteins bind to and stabilize microtubules to promote proper mitotic spindle formation.
Conclusion: SMC proteins can provide a functional link between microtubules and DNA to ensure faithful chromosome segregation.
Significance: SMC-microtubule interactions are essential to establish a robust system for maintaining genome integrity.

Structural maintenance of chromosome (SMC) proteins are
key organizers of chromosome architecture and are essential for
genome integrity. They act by binding to chromatin and con-
necting distinct parts of chromosomes together. Interestingly,
their potential role in providing connections between chroma-
tin and the mitotic spindle has not been explored. Here, we show
that yeast SMC proteins bind directly to microtubules and can
provide a functional link between microtubules and DNA. We
mapped the microtubule-binding region of Smc5 and generated
a mutant with impaired microtubule binding activity. This
mutant is viable in yeast but exhibited a cold-specific condi-
tional lethality associated with mitotic arrest, aberrant spindle
structures, and chromosome segregation defects. In an in vitro
reconstitution assay, this Smc5 mutant also showed a compro-
mised ability to protect microtubules from cold-induced
depolymerization. Collectively, these findings demonstrate that
SMC proteins can bind to and stabilize microtubules and that
SMC-microtubule interactions are essential to establish a
robust system to maintain genome integrity.

During cell division, genomic DNA must be partitioned to
daughter cells in a highly regulated fashion to ensure the main-
tenance of genome integrity from each generation to the next.
High fidelity segregation of eukaryotic genomes requires pre-

cise coordination between the multiple components of the cel-
lular segregation machinery. For instance, replicated sister
chromatids must be connected to each other and reconfigured
into highly condensed chromosomes to allow effective segregation
in anaphase (1, 2). This reorganization of chromatin depends in
large part on a family of proteins known as the structural mainte-
nance of chromosome (SMC)6 proteins (2–4). SMC proteins
assemble into large multisubunit complexes (cohesin, con-
densin, and the Smc5-Smc6 complex) that bind to chromatin
in mitosis, where they promote the assembly of functional
chromosomes. Once mitotic chromosomes are assembled, they
become competent for attachment to a microtubule-based
structure, the mitotic spindle, and for subsequent segregation
in anaphase.

The microtubule-based cytoskeleton also undergoes dra-
matic changes and intricate regulation during the cell cycle.
Microtubules switch from providing a structural role for the
maintenance of cell shape and for intracellular transport in
interphase to building the underlying framework for chromo-
some segregation during mitosis. Mitotic chromosome forma-
tion and spindle assembly are often considered to be two pre-
cisely coordinated but separate events because proteins that are
involved in chromatin organization and remodeling are often
distinct from those that regulate cytoskeletal structures. Prime
examples include histones, which are not linked to any poly-
mer structures other than chromatin. Similarly, many known
microtubule-associated proteins, including the XMAP215 fam-
ily of TOG domain-containing proteins and the EB family of
proteins, are not known to interact with chromatin (5, 6), and
yet, during cell division, the mitotic spindle microtubules need
to make contact with the chromosomes in order to move and
segregate them to opposite poles of the cell. Therefore, proteins
linking chromosomes to the spindle apparatus are of great
interest because they can provide fundamental insights into the
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mechanisms responsible for high fidelity genome segrega-
tion in eukaryotes. Microtubule-chromosome connections
are thought to be mediated in part through the kinetochore
(7–9), a large multi-protein complex assembled on the centro-
meric region of chromosomes. Microtubules can also make
direct contact with chromosome arms via proteins endowed
with dual affinity for chromatin and microtubules (e.g. motor
proteins of the chromokinesin family (10 –12)). It is currently
unclear how many different protein families can mediate direct
interaction between chromatin and microtubules and what
their specific contributions are to high fidelity chromosome
segregation.

There have been a number of proteomic studies on microtu-
bule-interacting proteins reported in the literature (13–16).
Interestingly, some chromatin-binding proteins, most notably
SMC family members, were consistently identified as microtu-
bule-interacting proteins in such studies (13, 15). The fact that
these microtubule interactomes are devoid of other abundant
chromatin-associated proteins, such as histones, suggests that
the SMC family members identified in these studies are not
simply contaminants or artifacts. This raises the possibility that
SMC proteins directly bind to microtubules, an unexpected
property for this family of chromatin-binding proteins. How-
ever, formal proof of this possibility is still lacking. Given the
biological significance of proteins linking microtubules and
chromatin, we set out to determine whether SMC proteins
interact directly with microtubules and to understand the
potential roles and implications of these interactions in vivo.

EXPERIMENTAL PROCEDURES

Protein Purification

Full-length Smc5-STH was expressed and purified in yeast,
as described previously (17). Smc5 fragments were expressed in
bacteria from pET-series vectors (Novagen) and purified by
nickel chelate and/or Strep-Tactin chromatography (Qiagen),
according to the manufacturers’ suggested conditions. The
condensin complex containing Brn1, Smc2, Smc4, Ycg1, and
Ycs4 subunits was purified from budding yeast by sequential
nickel chelate, Strep-Tactin, and gel exclusion chromatogra-
phy, as described previously (18). All proteins were purified to
�95% purity, as judged by Coomassie Blue staining. Purifica-
tion of bovine tubulin and the labeling of tubulin with X-Rho-
damine dye were performed as described (19).

Microtubule Binding Experiments

Co-sedimentation Assay—The co-sedimentation assay was
performed as described previously with some modifications
(20). Briefly, microtubules were prepared by polymerizing
25– 40 �M tubulin in 1� BRB80 (80 mM PIPES, 1 mM EGTA, 1
mM MgCl2), 1 mM GTP, 1 mM DTT in the presence of 10%
DMSO at 37 °C for 30 min and then diluted to 10 or 20 �M

working stocks in 1� BRB80 with 20 �M paclitaxel. Binding
reactions were done by mixing SMC proteins with microtu-
bules in 1� BRB80 supplemented with the indicated salt con-
centrations (75–125 mM NaCl), 1 mM DTT, 0.01% Tween 20,
and 20 �M paclitaxel. After a 20-min incubation, mixtures were
spun at 45,000 – 60,000 rpm in a Sorvall S120AT3 rotor at 25 °C
for 5 min. Samples from supernatant and pellet fractions were

resolved by SDS-PAGE. Gels were stained by Coomassie Blue
and scanned with a digital scanner. Band intensities were quan-
tified using ImageJ (NIH). Kd measurements were done as
described previously (20).

Microscopy-based Microtubule Binding Assays—Microsco-
py-based microtubule binding assays were performed as
described previously (20). For detection of the microtubule-
Smc5-DNA ternary complex, samples of Smc5-bound X-Rho-
damine-labeled microtubules were first generated by mixing of
the two components at a molar ratio of �1:4 (Smc5/tubulin
dimer) and then attached them onto a tubulin antibody-coated
(rat �-tubulin antibody from Serotec, at 10 ng/ml) coverslip in a
flow chamber. Fluorescently labeled DNA (6-carboxyfluores-
cein (FAM)-labeled 60-bp single-stranded DNA, Integrated
DNA Technologies) was then introduced into the chamber.
After a 5-min incubation, unbound DNA was flushed out, and
images of the bound DNA and microtubules were visualized
and recorded on a Zeiss Axio-Imager Z1 microscope equipped
with a 1.4 numerical aperture Plan-APOCHROMAT 63�
objective using the Zeiss AxioVision release 4.8 software. The
TIFF files of the acquired images were then processed by Meta-
Morph (Molecular Devices, LLC).

Image Analysis for Microtubule-Smc5-DNA Interactions

The quantitative analysis of the microtubules and the associ-
ated FAM-labeled DNA was done using MetaMorph� (Molec-
ular Devices). To identify microtubules, the images of the
X-Rhodamine-labeled microtubules for the no Smc5 control
were first thresholded to a signal intensity that would allow the
detection of individual microtubules in the control image while
minimizing background noise. The objects were identified
using the “integrated morphometry analysis” functionality with
exclusion of objects that touched the image edge and those with
an area smaller than 50 square pixels (non-microtubule signals
or X-Rhodamine aggregates). The same thresholding and
exclusion filtering were applied to the acquired images with
Smc5-WT and Smc5-3KE. The average area and average signal
intensity of all of the objects were obtained automatically using
the integrated morphometry analysis. A conservative cut-off of
area occupied by microtubules was set to distinguish single
microtubules from bundles. Object identification was verified
by visual inspection. To analyze the extent of the FAM-oligo-
nucleotide binding to microtubules, regions were created
around the identified objects in the microtubule images and
were transferred onto the corresponding images containing the
FAM signal. This allows the determination of the average signal
intensity within the microtubule delineated areas. For all calcu-
lations, the average background signal intensities (from unoc-
cupied areas) were subtracted from the average signal inten-
sity of microtubules and FAM, respectively. Using this
analytical method, the average area occupied by single
microtubules in the control, the average number of micro-
tubules within bundles and the FAM intensity per microtu-
bule were calculated.

Determination of Candidate Microtubule Binding Sites

To prepare biotin-labeled Smc5 protein that has impaired
microtubule binding ability, purified Smc5 proteins were
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chemically modified in the presence of 0.1– 0.5 mM NHS-LC-
biotin (Pierce/Thermo Fisher). Biotinylation reactions were
performed at room temperature for 5 min and quenched by
the addition of potassium glutamate. Modification was ver-
ified by streptavidin-HRP Western blot (streptavidin-HRP
from Pierce/Thermo Fisher, 1:2000 dilution). Biotinylated
Smc5 proteins were allowed to bind to microtubules and sub-
jected to a sedimentation assay. This allows the separation of
the fraction that associated with microtubules (pellet) and
the fraction that remains in the supernatant (enriched for
protein with biotinylated sites that interfere with binding).
Optimal biotinylation and microtubule binding conditions
were determined experimentally. Smc5 proteins in the super-
natant fraction and the pellet fraction were analyzed by mass
spectrometry. Intensities of the trypsin-digested peptides were
normalized and compared between the two fractions. Biased
enrichment of any biotinylated peptides in the supernatant
fraction indicated lysine sites that were potentially essential for
microtubule binding.

Cold-induced Microtubule Depolymerization Assay

The assay was performed as previously described (21).
Briefly, stock microtubules were diluted 10-fold in 1� BRB80
with 2 �M paclitaxel and 75 mM NaCl either in the absence or
presence of the Smc5 proteins. The mixtures were then chilled
to 2 °C in a PCR machine and incubated for 30 min to induce
microtubule depolymerization while the control sample was
placed at room temperature. The samples were then subjected
to ultracentrifugation to separate the depolymerized tubulin
dimers from microtubules and processed as described above in
the co-sedimentation assay.

Yeast Genetics and Growth Conditions

Yeast culture and genetic modifications were performed
according to St-Pierre et al. (18). The genotypes of yeast strains
used in this study are described in Table 1. smc5 mutants defec-
tive in microtubule-binding residues were created by site-di-
rected mutagenesis (QuikChange, Stratagene) and integrated
into the yeast genome, as described previously (17). The pres-
ence of the appropriate mutations in the yeast genome was
confirmed by sequencing the SMC5 locus. Cell proliferation at
various temperatures and/or in the presence of DNA-damaging
agents was determined by spotting 5-fold dilution series of
yeast cultures on solid medium containing the appropriate sup-
plements and/or drugs. Cells were grown until individual colo-
nies became visible on the surface of the solid media (2–3 days
between 23 and 37 °C; 4 –5 days at 18 °C). A previously charac-
terized temperature-sensitive mutant in the SMC5 gene,
smc5-6, was included in some experiments as a control for the
effect associated with losing Smc5-Smc6 complex function
(22).

Yeast Cell Cycle Experiments

Cell cultures were arrested in the G1 phase of the cell cycle
using �-factor (50 ng/ml for 180 min) and synchronously
released from this arrest at 18 °C. Samples were taken at inter-
vals and processed for microscopic characterization of yeast
bud, spindle, and nuclear morphology, as described previously

(23). Yeast images were acquired on a Leica DM5500B micro-
scope equipped with an EM-CCD camera (Hamamatsu).
Volocity software (PerkinElmer Life Sciences) was used to
acquire images. Brightness and contrast adjustments were
applied to primary micrographs using Photoshop software
(Adobe). During time course experiments, yeast culture sam-
ples were also processed for determination of DNA content by
flow cytometry using published procedures (23).

Immunoprecipitation and Western Blotting

Cell lysates were prepared in lysis buffer (50 mM Tris-HCl,
pH 7.5, 100 mM KCl, 100 mM NaF, 10% glycerol, 0.1% Tween 20,
1 mM DTT, 10 �M 4-(2-aminoethyl)benzenesulfonyl fluoride
hydrochloride, 10 �M pepstatin A, 10 �M E-64), as described
previously (18). During the immunoprecipitation process, 5 �g
of anti-Myc 9E-10 (GenTex) or anti-Strep-tagII (Qiagen) were
allowed to bind to GammaBind Plus Sepharose beads (GE
Healthcare). Protein samples were resolved by electrophoresis
on 8% polyacrylamide gels for 16 h and then transferred onto
polyvinylidene difluoride (PVDF) membranes. For Western
blotting, antibodies were used at the following concentrations:
mouse monoclonal anti-Strep-tagII (Qiagen, 1:1000), mouse
monoclonal anti-PGK-22C5 (Abcam, 1:1000), mouse mono-
clonal anti-Myc 9E-10 (GenTex, 1:1000).

Detection of Smc5-Microtubule Interactions in Yeast

Proximity ligation assay (PLA) experiments were performed
as described previously (20), with minor modifications. Briefly,
images were acquired on a DeltaVision microscope (Olympus),
controlled by softWoRx software (Applied Precision). Antibod-
ies were used at the following concentrations: anti-�-tubulin
(DM1�, Sigma) at 1:1000; anti-Streptag (GenScript) at 1:400;
Alexa-Fluor 488-conjugated secondary antibody (Molecular
Probes) at 1:500.

RESULTS

Smc5 Binds Directly to Microtubules in Vitro—To test the
possibility that SMC proteins bind to microtubules directly,
we first tested the purified condensin complex in a microtubule
co-sedimentation assay and found it to be associated with the
polymers. Indeed, Fig. 1A shows that the five subunits of the
yeast condensin complex (i.e. Brn1, Smc2, Smc4, Ycg1, and
Ycs4) (18) are enriched in the pellet fraction containing micro-

TABLE 1
Yeast strains used in this study

Name Relevant genotype

D1 MATa SMC5
D3 MATa/MAT� SMC5/SMC5 SMC6/SMC6
D224 MATa smc5-6
D253 MATa tub2-401
D3465 MATa smc5-950-STH::HIS3MX6
D4052 MATa SMC5-STH::HIS3MX6
D4119 MATa smc5-950-STH::HIS3MX6 tub2-401
D4121 MATa SMC5-STH::HIS3MX6 tub2-401
D4134 MATa SMC5-STH::HIS3MX6 mad1::URA3
D4136 MATa smc5-950::HIS3MX6 mad1::URA3
D4240 MATa/MAT� SMC5-STH::HIS3MX6/SMC5
D4241 MATa/MAT� smc5-950-STH::HIS3MX6/SMC5
D4258 MATa/MAT� SMC5-STH::HIS3MX6/SMC5

SMC6-13MYC::HIS3MX6/SMC6
D4259 MATa/MAT� smc5-950-STH::HIS3MX6/SMC5

SMC6-13MYC::HIS3MX6/SMC6
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tubules after sedimentation. We next sought to determine
whether this microtubule-binding behavior is also typical of
other SMC complexes. Specifically, we focused on Smc5
because this protein can be purified in recombinant form (17).
Smc5 is a member of the Smc5-Smc6 complex related structur-
ally to the condensin complex but completely distinct in sub-
unit composition. The fact that it can be purified in monomeric
form enabled us to determine whether SMC subunits are
directly responsible for the interaction with microtubules
within their own complexes. We found that Smc5 also associ-
ated with microtubules in the co-sedimentation assay, indicat-
ing a direct interaction between these proteins (Fig. 1B). Judg-
ing by the observation that more than half of the SMC proteins
associated with microtubules (at 0.5 �M tubulin dimer concen-
tration) in these experiments, we concluded that SMC-micro-
tubule interaction was of high affinity, with a dissociation con-
stant (kd) of about or below 0.5 �M. It should be noted that the
ionic strength of the buffer condition used in these experiments
(80 mM PIPES with �125 mM NaCl) was much higher than
those used traditionally (ranging typically from 12 to 80 mM

PIPES or 20 mM sodium phosphate with 0 –50 mM KCl or NaCl)
(24 –26). Although the condensin complex is an ATPase (2), its
association with microtubules did not appear to be affected by
the presence of different nucleotides (ADP, ATP, or the non-
hydrolyzable ATP analog AMP-PNP). The condensin complex
did, however, appear to bind more to microtubules in the
absence of nucleotide (Fig. 1C). This is distinct from the nucle-
otide dependence of many prototypical kinesin motor proteins,
where ATP hydrolysis or ADP releases motors from microtu-
bules (24, 27). Interestingly, although Smc5 is capable of hydro-
lyzing ATP as a monomer (17), possible differences in the levels
of ATPase activity present in the purified Smc5 and condensin
fractions may explain their differential sensitivity to nucleo-
tides in microtubule-binding assays (Fig. 1C).

To simplify our investigation, we decided to follow the SMC
component of the Smc5-Smc6 complex and chose purified
Smc5 for subsequent experiments (17). We reconfirmed the
Smc5-microtubule interaction using a microscopy-based flow
chamber assay (Fig. 1D). In this assay, Smc5 protein was non-
specifically absorbed onto a glass coverslide in a flow chamber.
Fluorescently labeled microtubules were then infused into the
chamber to allow binding to the surface-immobilized Smc5. As
observed in Fig. 1E, microtubules were efficiently captured only
in the chamber that had been coated with Smc5 protein, again
indicating a direct interaction.

Mapping and Assessment of the Smc5-Microtubule Inter-
action—Having demonstrated the ability of Smc5 to bind
directly to microtubules, we next asked what the functional
significance of this interaction would be. One way to address
this question is to identify and characterize a mutant with
impaired microtubule binding ability. However, without a crys-
tal structure or a recognizable microtubule-binding motif in
Smc5, locating the interaction interface in a �125-kDa protein
is not a trivial task. To narrow our search, we decided to map
the minimal binding domain using truncated forms of Smc5
containing only the ATPase heads, or the hinge domain with
medium (HM) or long (HL) coiled-coil extensions (Fig. 2A). By
a co-sedimentation assay, we found that the hinge and the
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coiled-coil domains, but not the ATPase domain, contain most
if not all of the microtubule-binding sites (Fig. 2, B and C). This
finding is consistent with our finding that Smc5-microtubule
interaction is not sensitive to the nucleotide-binding states of
Smc5 (Fig. 1C). Next we determined whether Smc5, like many
microtubule-associated proteins, interacts with microtubules
via the C-terminal negatively charged tails of tubulins known as
the E-hooks (28 –31). To achieve this, we used the protease
subtilisin to cleave off the E-hooks from microtubules and
found that this treatment did indeed drastically reduce Smc5
binding (Fig. 2D). This shows that Smc5 interacts with micro-
tubules largely by electrostatic interactions via the C-terminal
tails of tubulins.

Identification and Characterization of Microtubule-binding
Mutants of Smc5—Although we had narrowed down the
domains that contain the bulk of the microtubule binding activ-
ity of Smc5, we still needed to pinpoint the key regions or amino
acid residues that mediate the interaction. To achieve this, we
took advantage of the observation from the subtilisin experi-
ment that negative charges played a role in the microtubule-
Smc5 interaction to develop a strategy to obtain a microtubule-
binding mutant (Fig. 3A). We hypothesized that positively
charged residues on Smc5 are important to interact with the
E-hooks of tubulins, so we chemically modified lysine residues
in Smc5 with biotin under non-saturating conditions. Our
rationale was that the labeling of lysine residues essential for
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microtubule interaction would impair binding to the polymers,
whereas that of unrelated lysine residues would not. By com-
bining this approach with the microtubule co-sedimentation
assay, it is possible to obtain a biased distribution of differen-
tially labeled Smc5 protein molecules. Smc5 with those lysine
residues “essential” for microtubule-binding biotinylated will
be enriched in the supernatant fraction (i.e. non-microtubule
binding), whereas those with lysines not relevant to microtu-
bule-binding biotinylated will remain associated with the
microtubule pellet, behaving similarly to the non-modified pro-
tein (Fig. 3B). Subsequent comparative mass spectrometry
analysis of the supernatant and the pellet fractions will then
determine which biotinylated lysines are specifically enriched
in the individual fractions.

Using the strategy described above, we identified three resi-
dues (Lys-624, Lys-631, and Lys-667) in the microtubule-bind-
ing region of Smc5 (i.e. Smc5-HM) that were consistently
enriched in the supernatant fraction in the microtubule co-sed-
imentation assay (n � 3). Using site-directed mutagenesis, we
generated a lysine to glutamic acid mutant (called Smc5-3KE)
to determine the effect of these mutations on microtubule
binding. We purified Smc5-3KE protein from yeast and tested
the mutant in a microtubule co-sedimentation assay. We found
that, in comparison with its wild-type counterpart, Smc5-3KE
had an �2-fold decrease in binding affinity for microtubules

(Kd Smc5-3KE � 1.19 �M versus Kd Smc5-WT � 0.59 �M; Fig.
3, C and D).

DNA Binding Activity of Microtubule-binding Mutants of
Smc5—Because Smc5 is a known DNA-binding protein (17), we
wished to determine whether the 3KE mutations affect the
DNA-binding affinity of this protein. The ability of purified
wild-type and 3KE mutant forms of Smc5 to bind single-
stranded DNA (ssDNA) was determined using an electropho-
retic mobility shift assay (EMSA). As shown previously (17), we
find that wild-type Smc5 is capable of fully binding/shifting
ssDNA in the well of the gel at a protein/DNA ratio of 25-fold
molar excess (Fig. 4A). The Smc5-3KE mutant could also fully
shift the ssDNA to the well of the gel although at a slightly
higher protein/DNA molar ratio (Fig. 4B). We thus concluded
from these experiments that the Smc5-3KE mutant largely
retains its DNA binding activity, although the mutations may
have a slight effect on this activity. It should be noted that the
DNA binding activity of SMC complexes is contributed by mul-
tiple independent subunits of these complexes (32–34) and that
a modest loss in the activity of a single component is likely to be
compensated by the DNA binding activity of other subunits.

Smc5 Can Bind to DNA and Microtubules Simultaneously—
To determine whether Smc5 can bind to both DNA and micro-
tubules simultaneously, we developed a microscopy-based
assay to visualize ternary complex formation. In this assay, sur-

CC D

S S S S S S SP P P P P P P S P

WT -

3KE -

0 0.2 0.4 0.8 1.2 1.6 2.0 4.0MT (µM):

Sm
c5

 - 
fu

ll 
le

ng
th

- tubulin

- tubulin

A B

+

+

+
++ Biotin

+

+
+

++ Biotin

+

+

+

Biotin

Microtubule Polymer

+

+

+

Biotin

++

Fr
ac

tio
n 

bo
un

d
[Microtubules] µM

WT Kd = 0.59 µM
KE   Kd = 1.19 µM

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

Smc5_WT
Smc5_3KE

Sup SupPellet Pellet

Unlabeled Biotin-labeled

Co
om

as
si

e
Bl

ue
St

re
pt

av
di

n-
H

RP

-  Smc5-HM
-  Tubulin

Biotin-
Smc5-HM-

FIGURE 3. Generation of a microtubule-binding mutant of SMC5. A, schematic depicting the method used to identify surface-exposed lysine residues on
Smc5 that are essential (red �) or non-essential (blue �) for microtubule binding. Upon chemical labeling by biotin, modified lysines essential for binding will
be enriched in the supernatant fraction. Relative abundances of tryptic peptides containing the modified lysines in the supernatant and pellet fractions were
quantified by mass spectrometric analysis. B, Coomassie Blue-stained gel and streptavidin-HRP blot of the supernatant and pellet fractions of mock-labeled or
biotin-labeled Smc5-HM proteins from the microtubule co-sedimentation assay. The enrichment of labeled Smc5-HM in the supernatant indicates the
perturbation of microtubule binding upon lysine modifications. C, three lysine residues in the hinge region of Smc5 identified by the method illustrated above
in A and B were mutated into glutamic acid to generate the microtubule-binding mutant called Smc5-3KE. Coomassie Blue-stained microtubule titration gels
of full-length Smc5-WT (wild-type) or Smc5-3KE from the co-sedimentation assay are shown. D, fractions of microtubule-bound Smc5-WT (red) and Smc5-3KE
from four independent microtubule co-sedimentation experiments were plotted against microtubule concentrations and fitted to a hyperbola to determine
their dissociation constants (Kd).

SMCs Link Microtubules to Genome Integrity

OCTOBER 3, 2014 • VOLUME 289 • NUMBER 40 JOURNAL OF BIOLOGICAL CHEMISTRY 27423



face-anchored X-Rhodamine-labeled microtubules precoated
with Smc5 were allowed to interact with fluorescently labeled
(FAM-labeled) DNA in solution (Fig. 4C). Using this method,
we observed the capturing of fluorescently labeled DNA by
Smc5-coated but not naked microtubules, indicating the for-
mation of microtubule-Smc5-DNA ternary complex (Fig. 4D).
It is worth noting that this capturing of FAM-labeled DNA was
much reduced on Smc5-3KE-coated microtubules, as evi-
denced by the weak FAM signal that was only barely above that
of the control condition. In addition, we found that microtu-
bules were more efficiently bundled by Smc5 than by Smc5-
3KE. Based on our quantification (Fig. 4E), Smc5-induced bun-
dles represented �90% of the input microtubules (versus 72%

with Smc5-3KE), and each bundle consisted of �17 microtu-
bules on average (versus �12 microtubules with Smc5-3KE). In
addition, the average FAM intensity on Smc5-induced micro-
tubules is substantially higher than that on Smc5-3KE bundles
or control (Fig. 4F). Together, our results show that Smc5 can
interact with both microtubules and DNA simultaneously, and
3KE mutations compromise the formation of the ternary
complex.

Smc5 Interacts with Microtubules in Dividing Yeast Cells—
Having demonstrated the interaction between Smc5 and
microtubules in vitro, we next sought to determine whether this
interaction occurs in vivo. To test this notion, we performed a
proximity ligation assay (PLA), an established method to detect
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protein-protein interactions based on their proximity within 40
nm in distance (20, 35, 36). For this, we used antibodies against
tubulin and the StreptagII-fused Smc5. Their close proximity
was detected and amplified by the secondary antibody-conju-
gated fluorescently labeled Duolink� probes (Fig. 5A). Specifi-
cally, we observed a significant increase in the number of cells
showing a PLA-positive spot (indicating an in vivo Smc5-mi-
crotubule interaction) in the SMC5-STH yeast strains, as com-
pared with that in the no-tag control (SMC5; Fig. 5, B and C). In
addition, there was a specific enrichment of PLA signals in the
nucleus and on microtubules in the StreptagII-fused Smc5
strain (Fig. 5D). Together, these results suggest a direct Smc5-
microtubule interaction in dividing yeast cells.

Functional Significance of Smc5-Microtubule Interaction—
To assess the physiological consequence of impaired microtu-
bule binding on Smc5 functions, we integrated the smc5-3KE
mutant at the endogenous SMC5 locus in yeast. We found that

the smc5-3KE mutant could substitute endogenous Smc5 func-
tion for viability at 30 and 37 °C. However, the mutant strain
exhibited compromised growth kinetics at lower temperatures
(Fig. 6A), consistent with a conditional cold-sensitive (cs) phe-
notype. The absence of detectable phenotype in diploid cells
expressing smc5-3KE and wild-type SMC5 indicates that the
mutant allele is recessive for cs behavior (Fig. 6A, bottom pan-
els). smc5-3KE is the first identified mutant allele in any mem-
bers of the SMC family that shows a conditional cs phenotype in
budding yeast. Cold-sensitive phenotypes are relatively rare in
essential proteins in eukaryotes and typically associate with
defects in structural components of the cell (37–39). Consistent
with this, tubulin mutants represent one of the largest classes of
essential proteins for which cs mutations have been isolated
(e.g. see the tub2-401 allele in Fig. 6A (38)). Microtubule
mutants are known to be sensitive to lower temperatures at
least in part because this condition can lead to microtubule
depolymerization (40 – 42). This, together with the shared cs
phenotypes of tubulin and smc5-3KE mutants, led us to wonder
whether Smc5 acts by stabilizing microtubule polymers. To test
this idea, we developed an in vitro assay to reconstitute cold-
induced depolymerization. In this assay, paclitaxel-stabilized
microtubules were diluted to low concentration and subjected
to low temperature (i.e. 2 °C) to induce depolymerization.
Compared with the identical sample at room temperature, the
cold-treated sample had substantially more depolymerization,
evident by the presence of more tubulins in the supernatant
fraction in the sedimentation assay. Remarkably, substoichio-
metric ratio of Smc5 effectively stabilized microtubules at 2 °C
(Fig. 6, B and C). In contrast, Smc5-3KE had a significantly
reduced ability to protect microtubules from cold-induced
depolymerization. This result led us to hypothesize that the cs
phenotype and growth arrest we observed in smc5-3KE mutant
yeast were due to microtubule instability and activation of the
spindle assembly checkpoint. To test this in vivo, we investi-
gated whether double mutants defective in smc5-3KE and
microtubule components (38) or spindle assembly checkpoint
activity (43, 44) show synthetic defects relative to single
mutants. Remarkably, combining tub2-401 or mad1	 with the
smc5-3KE allele in yeast resulted in a significant decrease in
the proliferative properties of the double mutant, relative to the
single mutants, at lower temperatures (Fig. 6, D and E). Impor-
tantly, the microtubule-related phenotype of the smc5 mutant
was not the consequence of mutation-induced disassembly of
the Smc5-Smc6 complex or abnormal abundance of the Smc5-
3KE protein in cells (Fig. 7). Together, these data suggest that
Smc5 plays a direct role in stabilizing microtubules in yeast.

We next wondered whether loss of microtubule binding
affected the known functions of the Smc5-Smc6 complex in the
DNA damage response (3). To test this notion, we monitored
the cellular proliferation of smc5-3KE mutants in the presence
of various DNA-damaging agents, including methyl methane-
sulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), and
hydroxyurea (HU). Fig. 6F shows that loss of microtubule bind-
ing ability significantly reduced the capacity of the smc5-3KE
mutant to grow in the presence of all three DNA-damaging
agents tested. As observed previously for the cs phenotype, the
DNA damage sensitivity of the smc5-3KE mutant was comple-
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mented by a single wild-type copy of SMC5, indicating that
the mutant allele is recessive for its sensitivity to DNA-dam-
aging agents (data not shown). Together, these observations
indicate that Smc5 depends at least in part on its interaction
with microtubules and/or on a normal microtubule network
(see below) to maintain genome integrity in cells exposed to
DNA damage.

If the binding of Smc5 to microtubule affects the stability
and/or functionality of the microtubule cytoskeleton in vivo,
one would expect that the smc5-3KE mutant should have
mitotic phenotypes resembling those of tub2 mutants. To test
this hypothesis, we performed a cell cycle experiment in which
smc5-3KE mutants and wild-type yeasts where synchronized in
G1 at 30 °C using �-factor and then released from this arrest

FIGURE 6. Smc5 stabilizes microtubules in vivo and in vitro. A, the smc5-3KE mutant exhibits a recessive cold-sensitive growth defect in yeast. 5-Fold dilution
series of wild-type haploid cells, smc5-6 mutant (22), tubulin mutant tub2-401 (38), wild-type SMC5, or smc5-3KE, were spotted on solid medium to evaluate
growth at the indicated temperatures of 18, 23, 30, and 37 °C. Bottom panels, proliferation of diploid yeast heterozygous for SMC5-STH or smc5-3KE-STH on solid
medium at various temperatures. The absence of cold-sensitive growth defect in the diploids indicates that the smc5-3KE allele is recessive. B, Smc5 protects
microtubules from cold-induced depolymerization. After incubation at the indicated temperature (2 °C or room temperature (RT)), reaction mixtures contain-
ing buffer control (�), Smc5-WT, or Smc5-3KE were subjected to ultracentrifugation to separate the dissociated tubulin dimers and the remaining microtubule
polymers into supernatant (S) and pellet (P) fractions, respectively. Coomassie Blue-stained gels of the samples are shown. The relative quantity of the Smc5 proteins
in arbitrary units (a.u.) in each sample is shown below the corresponding lanes on the gel. C, quantification of the percentage of protection provided by Smc5 proteins
(average of three independent experiments; error bars, S.D.). Percentage protection is defined as percentage of excess microtubules retained in the pellet relative to
the control at 2 °C. D and E, genetic interactions between smc5-3KE and the tubulin-defective mutant tub2-401 (D) or the spindle assembly checkpoint mutant mad1	
(E). Growth phenotypes of the indicated yeast strains were evaluated as described in A. F, proliferation of smc5 mutants and wild-type yeast strains on solid medium
containing methyl methanesulfonate (MMS) at 0.005%, hydroxyurea (HU) at 100 mM, and 4-nitroquinoline 1-oxide (4NQO) at 0.2 �M.
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into a synchronous cell cycle at non-permissive temperature for
the smc5-3KE mutant (i.e. 18 °C). Samples were taken at 30-min
intervals, and cell cycle progression was monitored using flow
cytometry and bud morphology. Yeast carrying the tub2-401
allele or an epitope-tagged version of wild-type SMC5 (i.e. the
STH epitope that is also present in the smc5-3KE allele (17))
were included as controls. Wild-type cells and SMC5-STH con-
trols progressed normally in the cell cycle, accumulating small
buds concomitantly with the initiation of DNA synthesis (at 90
min after release; Fig. 8A) and entering M phase 30 – 60 min
thereafter (as evidenced by the increased population of large
budded cells in the culture; Fig. 8A). The subsequent appear-
ance of unbudded cells and return to a 1n genomic DNA con-
tent marked an exit from mitosis and return to G1 210 min after
the release (Fig. 8, A and B). In parallel experiments, the tub2-
401 and smc5-3KE mutant populations showed similar kinetics
of DNA replication and mitotic entry compared with wild-type
cells (Fig. 8B). However, at later time points, the two mutant
populations failed to exit mitosis and return to G1 with normal
kinetics. Indeed, tub2-401 and smc5-3KE cells accumulated
with a 2n/large budded phenotype and remained in this state
until the end of the experiment (Fig. 8, A and B), suggesting a
persistent mitotic arrest in the absence of the TUB2 and SMC5
functions. A small fraction of the smc5-3KE mutant population
rebudded toward the end of the experiment (i.e. at 240 min),
whereas tub2-401 mutant cells remained mostly arrested with
no bud under identical conditions (Fig. 8A). The population of

rebudded smc5-3KE mutants may represent cells that have
adapted to the spindle checkpoint arrest, as observed previ-
ously (45).

The mitotic arrest phenotype of smc5-3KE cells is similar to
that of tubulin mutants (46), raising the possibility that Smc5
might affect microtubule functions in mitosis. To test this pos-
sibility,wemonitoredmicrotubulemorphologybyimmunofluo-
rescence in SMC5 and smc5-3KE yeast cultures progressing
synchronously in mitosis (Fig. 9A). Although smc5-3KE cells
were clearly capable of building a microtubule cytoskeleton,
our analysis revealed a significant proportion of mitotic cells
with aberrant or defective microtubule morphology at 18 °C
(Fig. 9B). Moreover, there was a noticeable fraction of smc5-
3KE mutants carrying anaphase spindles with unsegregated
nuclear masses, indicating a defect in microtubule-driven sep-
aration of chromosomes (Fig. 9, B and C). Furthermore, relative
to wild-type controls, a significant fraction of smc5-3KE cells
contained nuclear microtubules that differed from their normal
morphology, with spindles containing more than one continu-
ous nuclear structure (referred to as “branched”; Fig. 9B) by
immunofluorescence. Likewise, another fraction of smc5-3KE
cells contained spindles that were either mispositioned or mis-
oriented, being entirely localized in the daughter cells or having
initiated anaphase in the mother cell instead of at the bud neck
(Fig. 9, B and C). Collectively, these results indicate that inacti-
vation of the microtubule binding activity of Smc5 gives rise to
defects in mitotic spindle morphology and positioning in vivo.

DISCUSSION

The ability of cells to maintain genomic integrity from gen-
eration to generation depends on faithful segregation of chro-
mosomes. This is achieved, in large part, by ensuring that chro-
mosomes are properly connected to the spindle microtubules
during mitosis and meiosis. Proteins linking chromatin to
microtubules play a crucial role in this respect (9, 47). Here, we
uncover the existence of an unexpected new activity in a known
regulator of chromosome stability, the ability to bind both micro-
tubules and DNA. This, together with previous mass spectrometry
characterization of the microtubule interactome (13, 15), suggests
that Smc5 and other SMC family members represent a novel class
of evolutionarily conserved proteins that can directly connect
spindle microtubules to chromosomes during cell division.
Furthermore, we provide evidence that this novel activity can
contribute to the functional stability of microtubules and help
sustain robust cell cycle progression in vivo.

The unique cold-sensitive phenotype of the smc5-3KE
mutant relative to other alleles affecting Smc5-Smc6 complex
components raises an interesting question: why a few point
mutations in a single SMC protein have such a profound effect
on microtubule stability? This question is particularly relevant
in light of the fact that proteomic studies have shown that there
are hundreds of proteins in the microtubule-associated pro-
teome (13–16). One explanation for this is that not all proteins
in this group are likely to be direct regulators of microtubule
dynamics and/or stability. In particular, we think that the phe-
notype of smc5-3KE mutant reflects the fact that budding yeast
is a highly sensitized system to observe microtubule-related
defects. Indeed, this organism has an unusually low concentra-

0 60 120 240
Time after

release (min)

Smc5-WT Smc5-3KE

α-STII

α-Pgk1

0 60 120 240

Smc5-STH

Pgk1

A

B

No-ta
g

W
T

3KE

Lysate

Smc6-13MYC

Smc5-STHα-STII

α-Myc

Smc5:
No-ta

g

W
T

3KE

Beads

No-ta
g

W
T

3KE

α-STII

No-ta
g

W
T

3KE

α-Myc

IP

FIGURE 7. Mutations in Smc5-3KE do not affect Smc5-Smc6 complex for-
mation and protein abundance. A, Smc5 (or Smc5-3KE) and Smc6 proteins
were immunoprecipitated (IP) from whole cell extract using anti-StreptagII
(STII) and anti-Myc antibodies to evaluate the association between Smc5-STH
(or Smc5-3KE) and Smc6-13xMYC by Western blotting with the reciprocal
antibodies, as indicated. Cell lysate (Lysate) and beads alone (Beads) were
used as controls. The strains used in this experiment are as follows. No-tag,
SMC5/SMC5; SMC6/SMC6; WT, SMC5-STH/SMC5; SMC6-13MYC/SMC6; 3KE,
smc5-3KE-STH/SMC5; SMC6-13MYC/SMC6. B, Western blotting analysis of
Smc5-3KE protein abundance in yeast upon �-factor arrest and release into a
synchronous cell cycle at 18 °C, using a StreptagII antibody. Pgk1 protein was
used as a loading control.

SMCs Link Microtubules to Genome Integrity

OCTOBER 3, 2014 • VOLUME 289 • NUMBER 40 JOURNAL OF BIOLOGICAL CHEMISTRY 27427



tion of tubulin compared with other eukaryotic species.
Although tubulin concentration in other systems, such as human
cultured cell or Xenopus oocyte, is about 20 �M (48–51), yeast may
have less than 2 �M tubulin.7 Because low tubulin concentration

will favor microtubule depolymerization rather than its polymer-
ization, yeast may be particularly reliant on microtubule stabilizers
to build a functional spindle structure. Separate from a role in
stabilization, SMC proteins, such as those of the Smc5-Smc6 or
cohesin complexes, could provide anchorage points on the chro-
mosomes for spindle microtubules to attach during mitosis. Given
the high affinity of SMC proteins for microtubules, we postulate
that SMC proteins are key stabilizing factors for microtubule poly-
mers. Therefore, impairment of one major component in this sys-
tem could have a noticeable consequence on mitotic spindle integ-
rity, especially when cells are exposed to microtubule stressors,
such as low temperature (41, 42).

7 Based on the number of Tub1 molecules per yeast cell, 5590, reported by
Ghaemmaghami et al. (60) and a haploid cell volume of 42 fl (61), the cal-
culated concentration of tubulin in a yeast cell is �0.22 �M. However, we
think this probably represents an underestimation of the actual tubulin
concentration in cells based on our estimated minimal tubulin subunits
needed to assemble the yeast mitotic spindle (�39,000 tubulin dimers
needed to assemble 16 � 1.5-�m-long microtubules, which makes the
tubulin concentration close to 1.5 �M).
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Mechanistically, how might Smc5 contribute to microtubule
stability? We think this could be achieved simply through high
affinity association with microtubules. The buffer condition
that we used for measuring kd has much higher ionic strength
than what was traditionally used for a microtubule-binding
experiment, suggesting a very strong interaction between SMC
proteins and microtubules. In fact, under this condition, most
kinesins would barely interact with microtubules (29, 52, 53).
Additionally, Smc5 might have multiple microtubule-binding
sites and thus allow bundling of adjacent microtubules, as we
have observed in our microscopy experiments (Fig. 4D). How-
ever, it remains unclear how much this would contribute to
spindle integrity in yeast and whether it could partly account
for the occurrence of the “branched” phenotypes observed in
cells expressing smc5-3KE (Fig. 9, B and C). This is further com-
plicated by the presence of other microtubule-regulating fac-

tors in vivo. Given the small size of the yeast spindle, we could
not resolve microtubule bundles (or the lack of them) by fluo-
rescence microscopy. Separate from this bundling activity, high
affinity binding by Smc5 could physically hinder tubulin disas-
sembly at microtubule ends, which would effectively slow down
catastrophe and promote rescue.

Functionally, besides preserving spindle integrity, we have
considered other impacts of the newly described SMC-micro-
tubule interaction. It is conceivable that microtubule binding
could affect other Smc5 functions. For instance, this binding
event could act to allosterically regulate the affinity of Smc5
with other binding partners, such as chromatin or other mem-
bers of the Smc5-Smc6 complex (3, 54). Alternatively, microtu-
bule binding could sequester the pool of free Smc5 or Smc5-
Smc6 complexes in cells and in such a way modulate the
dynamics and availability of Smc5 for specific functions in cells,
such as DNA repair (55). This is consistent with our observa-
tion that smc5-3KE is sensitive to DNA-damaging agents,
although the precise regulatory mechanism in this process has
yet to be determined.

Our work has uncovered a novel and unexpected function of
SMC proteins in the regulation of microtubule stability. This
discovery raises many interesting questions. For example, are
other chromatin binding proteins also contributing to this
function? If so, do these proteins collectively contribute to the
formation and maintenance of microtubule-based structures,
such as the mitotic spindle? In this regard, it is interesting to
note that SMC proteins, including the Smc5-Smc6 complex,
have been shown to be enriched at centromeres in yeast, sug-
gesting a possible link between this complex and the regulation
of kinetochore function (55–59). It is tempting to speculate that
SMC proteins can take part in promoting kinetochore-micro-
tubule interactions by capturing and stabilizing microtubules in
close proximity of the centromeres. Regardless, our data sug-
gest that SMC proteins could provide a linkage between chro-
matin and microtubules, and this could in turn directly contrib-
ute to faithful segregation of chromosomes during mitosis. In
light of our finding, it will also be interesting to determine in the
future whether microtubules can have a direct effect on the
known functions of the SMC complexes, including chromo-
some cohesion, condensation, and DNA repair.
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S. M., Ostman, A., and Landegren, U. (2002) Protein detection using proxim-
ity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477
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