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ABSTRACT: Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dan-
gers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifi-
cally and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span 
the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide 
a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities 
or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both 
are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology 
targeting approaches provides a promising means for many clinical implementations and can provide improved applications for 
otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a 
general overview of the field and its impact on cancer imaging and therapy.
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ABBREVIATIONS: AuNP: gold nanoparticle; CNT: carbon nanotube; CT: computed tomography; EDC: 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide; EPR: enhanced permeability and retention; FDG: fluorodeoxyglucose; IONP: iron oxide 
nanoparticles; MR: magnetic resonance; MRI: magnetic resonance imaging; NIR: near-infrared; nm: nanometer; NP: nanoparticle; 
PAT: photoacoustic tomography; PEG: polyethylene glycol; PET: positron emission tomography; PLGA: poly(lactic-co-glycolic 
acid); QD: quantum dot; RF: radiofrequency; SERS: surface-enhanced Raman spectroscopy; SPECT: single-photon emission 
computed tomography; SWCNTs: single-walled carbon nanotubes; T: Tesla; T1: spin-lattice relaxation; T2: spin-spin relaxation; 
UV: Ultraviolet; %ID/g: percent injected dose per gram of tissue

I. NANOTECHNOLOGY IN CANCER 
IMAGING

Nanotechnology is working with materials smaller 
than 100 nm. This includes a whole variety of organic 
as well as inorganic materials, including particles, 
dendrimers, wires, and tubes but also proteins and 
viruses to name just a few. Today, we can choose 
from this cornucopia of various agents to create 
nanomaterials suitable for both cancer diagnostics via 
imaging and even more for therapy or in combina-
tion of both in theranostic applications.1 For these 
applications, several properties of the nanoparticles 
have to be carefully considered. Their size, surface 
charge, and shape as well as the biocompatibility 
of their components are of particular importance. 

Nanomaterials usually provide a large surface-to-
volume ratio, allowing for coupling a large amount 
of targeting (or therapeutic) moieties onto the mate-
rial. Even weak, small organic molecules as ligands 
can significantly enhance the avidity of the particle 
toward its target by up to four orders of magnitude 
through multivalent interactions.2 The size and the 
coating of materials determine their distribution in 
the body in addition to their solubility in aqueous 
media; polydispersed materials tend to have a much 
wider range of different elimination times than 
materials with a narrower size distribution. Besides 
using particles solely for imaging purposes, they can 
in addition also carry another payload: a therapeutic 
agent. In conjunction with the imaging moiety, this 
creates a theranostic agent. All this makes nanoma-
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terials attractive platforms to utilize for a wide range 
of application in imaging and therapy of cancer. 

A. Nanoparticles for Optical Imaging

Optical approaches for molecular imaging and 
therapeutics utilize wavelengths that span from the 
ultraviolet (UV) through the visible spectrums and 
into the near-infrared (NIR) spectrum. Much of the 
nanoparticle work utilizing optical techniques such 
as luminescence, Raman, and fluorescence imaging 
have been focused on preclinical applications. This 
is because optical imaging, unlike clinical modalities 
such as X-ray or MR imaging, is depth dependent; 
optical wavelength light scatters and is absorbed 
by the biological medium through which it passes. 
Countering this disadvantage is the ease of use, 
high surface resolution, and diversity of probes in 
the optical domain. Nanoparticle (NP) approaches 

further these advantages, providing greater stabil-
ity, targeting, multiplexing capabilities, and ability 
to deliver cargo (Fig. 1). This section will discuss a 
variety of optical imaging techniques and discuss 
the different architectures, and chemical and mate-
rials properties (Fig. 2) of the NP for imaging and 
therapeutic applications.

B. Fluorescence Imaging

The wavelength selective excitation of dyes and 
subsequent spectral discrimination of fluorescent 
emissions are among the most widely used tools 
in the biomedical sciences.3 Most modern research 
institutions are equipped with at least some form 
of fluorescent microscope. Many now utilize these 
techniques for in vivo research as well. Fluorescent 
nanoparticle platforms have played a significant role 
in the expanding use of fluorescence disease-specific 

FIG. 1: Schematic of nanoparticle for imaging and therapy. Nanoparticles are structures generally described as being 
less than 100 nm in diameter that can be engineered to display specific chemical, physical, and biological properties. 
Working in biological environments often necessitates avoidance of the innate and adaptive immune systems often 
accomplished by polymer or polysaccharide coatings. Targeting of specific sites of disease can be accomplished with 
targeting moieties, including peptides, antibodies, and aptamers. Nanoparticles provide the opportunity to increase 
avidity for sites of interest through a strategy of multivalent attachment of a number of targeting ligands. This spe-
cific binding to sites of interest can then be exploited by the innate physical or chemical properties of the particle 
(e.g., quantum dots for fluorescence). Additionally, therapeutic chemicals or radioisotopes may also be conjugated 
to the particles.
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imaging. Quantum dots (QDs) are semiconducting 
fluorescent NP with size-dependent optical proper-
ties; the emission wavelength of the particles can be 
tuned by adjusting the particle diameter.4 Typically, 
the particle diameter is 1–8 nm.5 Generally, QDs 
possess continuous absorption profiles that decrease 
in intensity up to their narrow emission lines. These 
narrow emission bands, and the greater photostability 
relative to small molecule organic dyes, have enabled 
the widespread use of the common CdS:ZnS QDs 
for in vitro microscopy applications.6,7 Addition-
ally, the larger multiphoton cross section of the NP 
relative to small molecules has been exploited for a 
range of applications, including deep-tissue intravital 
microcopy.8,9 Use of these NP in vivo is primarily 
hampered by their toxicity due to the heavy metals 
contained within.10,11 However in vivo investigations 
have demonstrated that nanoparticles are effective 

agents for lymph node mapping,5,12 which can be 
targeted by peptide or proteins toward disease-specific 
ligands.13–15 Recent work has focused on the devel-
opment of nonheavy metal biocompatible QDs.16,17 
Another approach to achieve bright, conjugatable 
fluorescent NP has been to encapsulate fluorescent 
small molecules either within or throughout a par-
ticle. An example of this technique is the core-shell 
silica NP (so called Cornell dots or C-dots), which 
is being introduced into the clinic. Particles in the 
single to 10s of nm range can be synthesized that 
incorporate covalently bound dye molecules.18,19 The 
choice of dye determines the fluorescent emission, 
and particles have much greater brightness and 
photostability than single fluorescent moieties.18 
C-dots in the 6–10 nm range have been used for in 
vivo research, demonstrating high fluorescent output 
and rapid urinary excretion.20 A multimodal radio-

FIG. 2: Schematic representation of the diversity in nanoparticle architecture. A range of chemical and physical 
production strategies for nanoparticle synthesis results in different classes of particles. (a) Micelles and (b) liposomes 
are composed of either a single layer or bilayer of lipids, respectively. The interior of these structures can be used 
to deliver imaging or therapeutic agents. (c) Polymer micelles and (d) polymersomes exploit the same properties of 
amphipathic molecules, but instead utilize man-made polymers for more stable, but usually larger, structures than 
liposomes. (e) Metal-based nanoparticles, usually passivated for biological applications with polymer, polysaccharide, 
or biological surface groups, have been made from an incredible number of different starting materials. Some of the 
most popular for imaging and therapy are iron oxides, gold, and silver. Carbon-based materials, such as (f) carbon 
nanotubes and (g) nanodiamonds, are of intense interest because of unique physical properties resulting from these 
highly structured nanomaterials.
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iodinated (131I) derivative of this particle, functional-
ized with RGD to target αvβ3 integrin on the tumor 
vasculature, has completed a phase 0 trial in man for 
technical feasibility.21 Iron oxide NP for magnetic 
resonance imaging22 and gold core nanoparticles 
(AuNP) for X-ray computed tomography23 are among 
those that can be modified for fluorescence imaging. 
Since tissue attenuates any light and therefore both 
the excitation light and the emitted fluorescence, 
there is considerable interest in the use of the near-
infrared (NIR) or even infrared wavelengths that can 
penetrate deeper into tissues.24,25 Gold nanoparticles, 
as well as carbon-based materials (such as carbon 
nanotubes26,27), can be synthesized with emission 
wavelengths in the NIR region. Additionally, time-
resolved fluorescence measurements could be used 
to decrease the autofluorescent background of tissue 
and cell samples. This has been used to great effect 
with QD and C-dot technologies,20,28 as well as 
fluorescent nanodiamonds.29 

C. Surface-Enhanced Raman Spectroscopy

The Raman effect is an inelastic scattering event in 
which small numbers of incident photons’ energy 
is decreased by the vibrational energy state of the 
scattering material. This phenomenon can be used 
for material and chemical analysis, but occurs at very 
low abundance. Materials have been designed that 
can greatly increase the likelihood of these events on 
a noble metal surface.30 Silver and gold nanoparticles 
have been engineered to produce gains of Raman 
scattering >15 orders of magnitude that can be 
used in vivo. In their original work, Nie and Emory 
demonstrated single nanoparticle detection of the 
SERS effect for the rhodamine 6G-coated particles.31 
Integrin-targeting derivatives of these nanoparticles 
in vivo enabled the sensitive detection of tumors.32 
Many different particle categories have been used 
including lipid and silica-coated gold nanoparticles.33 
Recent efforts of SERS imaging have centered on 
multiplexed imaging (using multiple SERS sensitive 
dyes at the same time34) or multimodal imaging.35

D. Photoacoustic Tomography (PAT)

Pulsed laser excitation into biological media results 
in local thermoelastic expansion of materials and 
structures that absorb that energy. When returning to 
lower ground state energy, the material shrinks. This 
high-frequency shrinking and expanding produces 
acoustic waves that can be used to detect fluorescent 
molecules using ultrasound-detecting equipment.36 
The major advantages of PAT techniques are greater 
spatial resolution at greater depths because the scat-
ting of ultrasonic signals is many times less than that 
of light (i.e. fluorescence) in vivo. Many structures, 
such as melanin or hemoglobin, have wavelength-
dependent absorption and PAT properties.37 Exog-
enous probes in the form of nanoparticles have also 
been made for production of PAT signals. These 
primarily include fluorescent, carbon, or gold-based 
materials. QDs are most often used for their fluores-
cent emission properties, however, they also produce 
significant PAT signals.38 Targeted agents includ-
ing RGD-targeted CNT39 and gold nanocages for 
targeted detection of melanoma,40 as well as passive 
accumulation of AuNP,41 produce significant PAT 
signals for disease detection. Overall, the combina-
tion of strong lasers for a deep tissue penetration 
and collection of the signal with ultrasound system 
could expand the depth in which fluorescent agents 
can be detected and could therefore be useful for 
further clinical explorations.42

E. Magnetic Resonance Imaging with 
Nanoparticle Agents 

In contrast to optical imaging modalities, magnetic 
resonance imaging (MRI) enables noninvasive deep 
tissue imaging of soft-tissue structures. The technique 
is based on the use of radiofrequency (RF) pulses 
that are used to manipulate the aligned magnetiza-
tion of protons (primarily) of tissues placed in a 
strong external magnetic field. Currently, clinical 
MR scanners range in strength from 0.47 T to 7 T, 
with preclinical devices stretching into the 11.4 T 
range, but even higher field strengths are being 
explored. The inherent sensitivity of this imaging 
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modality is however quite low, since the majority of 
water’s protons are not aligned in the direction of 
the applied field, and thus the distinction between 
adjacent tissues, or between sites of healthy and 
diseased tissues, is often difficult. To ameliorate this 
deficiency, magnetic contrast agents are often used. 
Most commonly applied in the clinic are gadolinium 
chelates. These small, linear or cyclic chelates are 
suboptimal in many cases since they clear rapidly, 
and their high rotational freedom does not allow 
for a very high relaxivity (a measure of the contrast 
generated per species). However, superparamagnetic 
nanoparticles are capable of generating significant 
contrast by affecting water protons’ relaxation times, 
such as T1 (spin-lattice relaxation time, which is 
the time needed for the magnetization vector’s 
Mz component to reach 63% of its original state 
following its 90 deg radiofrequency pulse flipping 
onto the transverse magnetic plane) and T2 (spin-
spin relaxation, which is the time needed for the 
magnetization vector to recover 37% of its original 
status following an application of 90 deg and 180 deg 
radiofrequency pulses that cause displacement of 
the longitudinal magnetization onto the transverse 
plane). This section will cover T1- and T2-weighted 
MR nanoparticles, concentrating on the synthesis 
and characterization of iron oxide nanoparticles 
(IONPs) and their subsequent clinical translation. 
A brief review of the use of these agents for therapy 
will then be presented.

F. Imaging with T1-Weighted MR 
Nanoparticles

For imaging, protons are excited by RF pulses. To 
come back to a lower energy ground state, the protons 
must pass their energy to the surrounding environ-
ment lattice. Longitudinal relaxation (T1) describes 
the time in which it takes a proton to become 
realigned with the applied magnetization direction. 
To enhance the contrast between tissues and tissue 
compartments (such as the blood or cerebrospinal 
fluid), it may be necessary to administer the chelated 
paramagnetic ion gadolinium. Enhanced contrast can 
be generated using NPs most simply by synthesis of 

probes that bear multiple chelation sites for gado-
linium. Such an approach has been accomplished 
with the most chemical rigor using dendrimer par-
ticles. Dendrimers of different generations (size and 
functional groups) have been generated with terminal 
gadolinium chelates as so-called gadomers.43 The 
chelates are most commonly Gd(III)-N,N′,N′′,N′′′- 
tetracarboxymethyl-1,4,7,10-tetraazacyclododecane 
(Gd(III)-DOTA) or Gd(III)-diethylenetriamine 
pentaacetic acid (Gd(III)-DTPA).44 Increasing 
from the small molecular weight linear DTPA-Gd 
monomer to as many as 64 chelated Gd ions per 
particles results in an increase in both the per-Gd 
and per-agent relaxivity.45 The ultimate result is 
a decrease in minimum detectable concentration 
of contrast. Targeted gadomer particles have been 
generated against the folate receptor,46,47 as well as 
with a peptide against the transferrin receptor,48 
both overexpressed in many malignancies. Clusters 
of dendrimers conjugated together provide a larger 
free water exchange coefficient and further increase 
the rotational correlation time by increasing the 
molecular weight of the complex. These dendrimer 
nanoclusters have been synthesized and also used 
to target the folate receptor.49 Retention of higher 
generation (larger molecular weight) gadomers in the 
liver has been cited as a potential problem. However, 
polyethylene glycol modification of the particles, for 
avoidance of the reticuloendothelial system, largely 
ameliorated this problem.50 This issue of biodistribu-
tion of the toxic gadolinium ion at later times has 
not been further investigated for dendrimers. The 
cavities and surfaces of lipid and polymer-based 
vesicles have also been exploited for Gd chelation. 
These larger particles (often greater than 80 nm in 
diameter) can carry large payloads of the ion and 
have been investigated for several decades.51 Refine-
ments in production and labeling have resulted in 
liposome probes with increased signal character-
istics.52 Furthermore, polymer-based and hybrid 
lipid-polymer vesicle particles have been evaluated 
for greater stability53 and improved targeting54 and 
contrast.55 Manganese-based NPs also produce posi-
tive T1 contrast.56 These nanoparticles have been used 
in a range of applications, particularly to study cells 
and structures within the rodent brain.57,58
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G. Imaging of T2-Weighted MR 
Nanoparticles

T2-weighted imaging describes the dephasing, or 
loss, of transversely aligned spins. Inherent in imag-
ing complex organisms is the presence of several 
magnetic heterogeneities generated by interfaces of 
different materials and fluids, which generates native 
T2 contrast. This results in local signal hypointesity 
or negative contrast. Ameliorating this drawback 
is the fact that magnetic NP contrast agents can 
be engineered to provide passive or targeted local 
T2-weighted contrast to further dephase local spins. 
Currently, the most commonly used nanoparticles for 
MRI are iron oxide nanoparticles (IONPs) thanks to 
their generally benign profile59 and uptake in a wide 
variety of cell types.60,61 Multiple synthesis routes 
can be used to achieve nanoparticles <100 nm with 
varying magnetic, physical, and chemical properties 
(consolidated in a comprehensive review by Huber62). 
Usually, possessing a core of iron oxide (magnetite 
and/or maghemite) crystals surrounded by a polymer 
or polysaccharide coating, IONPs generate an intense 
T2-weighted signal. Other formulations, such as 
magnetodendrimers,63 gold,64 and silica-coated iron 
cores,65 have also been investigated. The small iron 
oxide crystal core (<14 nm) imparts the property of 
superparamagnetism, and many IONPs are referred 
to as superparamagnetic iron oxides (SPIOs). These 
nanoparticles do not possess a permanent magnetism 
(unlike a ferromagnetic material, the classic magnet). 
In the presence of a strong magnetic field though, 
they align with the field and act as strong dephasing 
susceptibility agents. Without further modification, 
these nanoparticles are often quickly entrapped by 
the reticuloendothelial system and accumulate in 
the liver and spleen. Indeed, their first biomedi-
cal application was the identification of lesions by 
negative contrast.66,67 Their cellular uptake, along 
with their biocompatibility (on degradation they 
enter the iron metabolism of the body), have led to 
the use of SPIOs for many preclinical cell tracking 
studies, including immune68,69 and stem cells.70,71 The 
use of large SPIOs enables detection down to the 
single-cell level,72 and ultrasmall SPIOs have been 
used clinically.73 IONPs can be modified for targeted 

imaging with small molecules, peptides, antibodies, 
and aptamers. This can be achieved through a variety 
of conjugation methods: carbodiimide conjuga-
tion,74 click chemistry,75 and silane , among other 
approaches.76

H. Nuclear Imaging and Nanotechnology

Nuclear imaging involves detecting radionuclides 
through emitted particles associated with their decay 
into more stable nuclides, which provides numer-
ous advantages as an in vivo imaging modality. 
First, because the specific activity is often high for 
radiotracers, picomolar amounts of the radiotracer 
can be imaged, allowing non-pharmacologic doses 
that do not affect the biological system (commonly 
known the “radiotracer principle”).77 Second, nuclear 
imaging is noninvasive and may be used serially over 
a time course to track a biological process, such as 
glucose metabolism.78 Third, nuclear medicine images 
are quantitative, meaning that the image intensity 
corresponds to the concentration of radioactivity in 
an area.79 In comparison to other common imaging 
modalities, such as MR and CT imaging, nuclear 
imaging offers superior sensitivity.80

Radioisotopes have been combined with vari-
ous types of nanoparticle platforms for imaging. By 
conjugating multiple radionuclides to one platform, 
the specific activity, and therefore signal, delivered 
to a site of interest can be increased. Delivery of 
the radiolabeled nanoplatform to the site of inter-
est can occur either by enhanced permeability and 
retention (EPR)81,82 or through conjugating target-
ing ligands, such as small molecules,83 peptides,84 
aptamers,85,86 and antibodies87 to the nanoparticle 
surface. An important consideration in radiolabel-
ing nanoparticles is to match the kinetics and bio-
distribution of the nanoparticle with the half-life 
of the radioisotope. A practical goal is to choose a 
radionuclide with a half-life short enough to limit 
patient exposure to ionizing radiation, but long 
enough that the radiolabeled entity can be clearly 
distinguished from the background. PET agents 
paired with nanoparticles include fluorine-18 (18F), 
copper-64 (64Cu), yittrium-86 (86Y), zirconium-89 
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(89Zr), and iodine-124 (124I), while the SPECT 
tracers technitium-99m (99mTc), indium-111 (111In), 
and renium-188 (188Re) have been combined with 
nanoparticles, among others.

Utilizing nanoparticles as platforms for radio-
nuclides requires attaching the radionuclide to the 
nanoparticle. While certain nanoparticles such as 
liposomes and micelles can envelope the radio-
nuclide,88 other nanoparticles with metallic cores 
such as iron oxide nanoparticles (IONPs) and gold 
nanoparticles (AuNPs) require surface attachment. 
This is accomplished by conjugation of a chelator 
for metallic radioisotopes or a prosthetic group for 
nonmetallic radionuclides such as halides. Conjuga-
tion of chelators is accomplished through utilizing 
functional groups, such as amines and carboxyl groups 
on the nanoparticle coating.89,90 Direct conjugation of 
radiohalides can occur via attachment of the radio-
nuclide to a prosthetic group previously attached to 
the nanoparticle.91

I. PET Imaging

PET Imaging involves detecting radionuclides that 
decay to a daughter isotope via the emission of a 
positron from the nucleus. In comparison to SPECT, 
PET offers superior sensitivity and spatial resolu-
tion,92 making PET radiotracers attractive imaging 
agents. Combining the intrinsic sensitivity and 
quantitative aspects of PET imaging with the plat-
form structure of nanoparticles has been the subject 
of intensive research for the past decade. Coupling 
MRI-active nanoparticles with PET tracers has 
attracted considerable interest as multimodal probes. 
These typically have a composition of an iron oxide or 
gadolinium containing nanoparticle with the radio-
tracer conjugated to the surface of the nanoparticle. 
MRI-active nanoparticles have been labeled with a 
plethora of PET tracers, such as 18F, 64Cu, and 89Zr, 
depending on the blood clearance kinetics of the 
nanoparticle. Recently, iron oxide nanoparticles were 
radiolabeled with 11C using [11C] methyl iodide as a 
methylation agent. This was conjugated through both 
carboxylic acid and amino functional groups and the 
radiolabeled nanoparticle showed liver accumulation 

in an in vivo mouse model, but the short half-life 
of 11C (t1/2 = 20.3 min) requires nanoparticles that 
have rapid kinetics.93 A hetero-nanostructure of gold 
and iron oxide was developed as a multimodal probe. 
After synthesis, the nanoparticle was labeled with 
64Cu along with an anti-EGFR antibody, and imaged 
with PET, MRI, and optical modalities.94 Further-
more, single-walled carbon nanotubes (SWCNTs) 
have pharmacokinetic profiles that offer rapid blood 
clearance, making shorter-lived radionuclides attrac-
tive for labeling.95 SWCNTs were radiolabeled with 
86Y, with whole-body PET, indicating major sites of 
accumulation in the kidneys, liver, and spleen in an 
athymic nude mouse model.96

Liposomes are another class of nanomateri-
als used for PET imaging, which allow molecules, 
including radionuclides, to be enclosed within. By 
using the hydrophobic pockets of the liposome, 
89Zr was encompassed in a liposome containing 
also [Gd]-DTPA, using a chelator-free method, 
which was then labeled with octreotide to target 
human somatostatin receptor subtype 2 (SSTr2). 
This PET/MR active liposome showed approximately 
twofold tumor uptake of the targeted nanoparticles 
(3.5–5.0%ID/g) compared to non-targeted controls 
(2.5–3%ID/g) at 50 h postinjection a xenograft 
mouse model, but higher bone uptake (12%ID/g) 
compared to chelated zirconium nanoparticles was 
a limitation observed using this method.88 64Cu was 
used to radiolabel 120 nm diameter liposomes, which 
had greater uptake in the tumor compared to FDG 
uptake in a murine model of mammary carcinoma.97 
Quantum dot micelles composed of phospholipids 
were labeled with 18F for in vivo multimodal imaging 
and showed a circulation half-time of 2 h.98 Whereas 
previous polymer-coated nanoparticles were taken 
up within minutes by the RES system,99 the longer 
half-life of the phospholipid nanoparticles allows for 
biomarker specific targeting to take place. Micelles 
conjugated with anti-CD105 monoclonal antibody 
were radiolabeled with 64Cu, loaded with doxorubicin, 
and exhibited pH-sensitive drug release, with a blood 
half-life of several hours.100
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J. SPECT Imaging 

SPECT imaging utilizes nuclides that decay via the 
emission of single gamma rays with differing ener-
gies depending on the radionuclide. A collimator 
detects these photons, and the image is reconstructed. 
However, because of the necessity of a collimator, the 
sensitivity of SPECT is several orders of magnitude 
lower than PET and it is so far not yet quantitative 
in nature.101 However, many SPECT radionuclides, 
such as 99mTc, are eluted from a generator, alleviating 
the need of an on-site cyclotron. Additionally, while 
having inferior sensitivity and resolution compared 
to PET, SPECT does have the benefit of allowing 
simultaneous imaging of multiple isotopes,102 as 
well as longer radionuclide half-lives and potentially 
higher resolution. For dual modality MRI/SPECT 
agents, magnetic nanoparticles have been labeled 
with SPECT radionuclides. Bisphosphonate was 
used to anchor PEG to an iron oxide nanoparticle, 
which was subsequently radiolabeled with 99mTc.103 
These nanoparticles showed a blood half-life of 3 h 
with low reticuloendothelial system uptake. 99mTc 
was also used to label polymer-shelled microbubbles 
of superparamagnetic iron oxide nanoparticles 
(SPIONs) that were functionalized with NOTA 
or DTPA. The biodistribution of the microbubbles 
showed a dependence on the chelator used, with 
generally high uptake for each system seen in the 
liver, spleen, and kidneys at 24 h.104 Alternatively, 
doxorubicin-loaded liposomes capable of MR, NIR, 
and nuclear imaging were generated and injected 
intratumorally in squamous cell carcinoma of head 
and neck tumor xenografts. These liposomes were 
radiolabeled with 99mTc for SPECT imaging or 64Cu 
for PET, but no systemic injections were reported.105 
188Re liposomes were generated and tested in vivo 
in a C26 colonic peritoneal carcinomatosis mouse 
model. The nanoparticles accumulated via the EPR 
effect and showed 7.91% injected dose per gram in 
the tumor at 24 h, with a tumor-to-muscle ratio 
of 25.8. 188Re-labled PEG-ylated liposomes were 
generated and evaluated in a glioma mouse model, 
and showed a 1.95% injected dose per gram in the 
tumor at 24 h, with a 32.5 tumor-to-brain ratio.106 
Similarly, a micelle with a GRP78 binding peptide 

was generated for a gastric xenograft model. The 
micelles were radiolabeled with 111In conjugated with 
DTPA, and in vivo tests with the GRP78BP micelle 
showed higher uptake compared to a non-targeted 
control.107 Multifunctional micelles were generated 
that contained both a near-infrared dye IR-780 and 
188Re, allowing imaging by both NIR fluorescence 
and SPECT. Additionally, the dye allowed photo-
thermal therapy in vivo with histopathology showing 
irreversible tissue damage after in vivo photothermal 
ablation.108

II. WHAT SHALL THE FUTURE BRING IN 
NANOTECHNOLOGY-BASED NUCLEAR 
IMAGING?

A number of recent innovative publications show 
novel ways for improved imaging and therapy through 
combining nanoparticles with radionuclides. With 
the advent of bioorthogonal click chemistry,109 new 
methods of imaging and therapy with radionuclides 
are in development. Although pre-targeting with 
an antibody-PET tracer system has recently been 
accomplished using the transcyclooctene/tetrazine 
system,110 an analogous strategy using pre-targeting 
with antibodies and nanoparticles could feasibly 
allow less ionizing radiation dose to the RES while 
still obtaining high specific activity.111 Raman-active 
particles have become increasingly popular since they 
offer exquisite signal-to-background levels, but the 
Raman signal is quickly quenched at depths of a few 
millimeters.35 Radiolabeling Raman-active particles 
allows the particles to be noninvasively imaged 
regardless of depth,112 while the highly specific 
Raman signal at the surface allows for intraoperative 
imaging for surgical assistance.113 By combining these 
modalities, a one-shop system could conceivably be 
used for both preoperative and intraoperative imaging. 

Because of the “always-on” nature of radionu-
clides, measuring a functional response with radionu-
clides has not been possible until recently. Cerenkov 
light from [18F]-FDG was used to excite a fluorescent 
probe that was delivered to tumors via conjugation 
to gold nanoparticles.13 The nanoparticles contained 
a fluorescein bearing peptide that when bound to 
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the gold nanoparticle was quenched. The peptide 
was cleaved by MMP-2, which is overexpressed in 
many more aggressive cancers, causing the release 
of FAM, which was then excited by Cerenkov from 
[18F]-FDG. Another report of Cerenkov imaging 
with a nanoparticle system involved gold nanocages, 
which were recently synthesized with 198Au being 
incorporated within the Ag nanocubes by galvanic 
replacement reaction (Fig. 3).114 After PEGylation 
of the 35 nm nanocubes, the particles showed a high 
tumor-to-muscle ratio at 24 h, with a clear delinea-
tion of the tumor by Cerenkov imaging. 

A. Nanotechnology in Cancer Therapy

1. From Conventional Chemotherapeutics 
to Advanced Treatment

Cancer is among the leading causes of death in the 
world, with more than a million new cases each year 
in the United States and several hundred thousand 
deaths.115 Apart from substantial mortality, cancer 
has major economic impact due to the associated 
health-care costs for diagnosis, treatment, and man-
agement. Advancements in cancer biology allowed 
deciphering how cells can become malignant and 
why effective cancer treatment stills remains a chal-
lenging conundrum.116 Although surgery and radio-
therapy have been widely used for decades, advanced 
chemotherapeutics gradually reach the clinic, in 

order to achieve tumor regression via inhibition of 
fundamental cellular processes, such as cell division 
and metabolism, or blocking of overactive signaling 
pathways. The primary challenge that these drugs 
face is their ability to reach the lesion at adequate 
concentrations, and once in the cell’s vicinity to 
associate with their target and eventually initiate cell 
death. From the time that a drug enters a patient’s 
body, it constantly encounters barriers and clearance 
mechanisms that can quickly eliminate it, including 
serum proteins, immune cells, and excretory organs. 
Hence having drug delivery systems that will improve 
cancer chemotherapeutics’ time in circulation, protect 
them from degradation, and release them only at the 
site of disease to reduce side effects is critical and 
would improve efficacy.117–119

Supramolecular drug delivery systems, including 
nanoparticles, had already been proposed in the late 
1970s, as tunable platforms that can enhance drug’s 
efficacy by improving their target cell uptake and 
achieving controlled drug release within an optimal 
range of therapeutic concentration.120 Since the cost 
and time for the development of a new drug delivery 
system are lower than those for the development of 
a new drug ($50 million in four years versus more 
than $500M in 10 years), the health-care industry 
encourages the introduction of advanced delivery 
systems.121 An indicator of this trend is the growth 
of the U.S. drug delivery system market, which has 
expanded from $75 million in 2000 to $121 billion in 
2010.122 Similarly, the allocation of research funds has 

FIG. 3: Construction of a radioluminescent nanocage using silver nanocubes and gold radionuclides. Enhanced tumor 
uptake was observed after 24 h, based on Cerenkov imaging. Adapted with permission from Ref. 114. Copyright 
2013 American Chemical Society.
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substantially increased, where U.S. government fund-
ing agencies provided more than one billion dollars 
for the investigation of nanotechnology-based drug 
delivery platforms in the last 10 years.118 Research 
has provided us with novel nanomaterials with unique 
architectures and capabilities, which demonstrate 
cancer selectivity, improved pharmacokinetics and 
enhanced cytotoxicity. FDA-approved drug deliv-
ery systems that are currently in the clinic for the 
treatment of different cancers or infections include 
lipid-based and polymeric nanoparticles indicative 
of the exciting new era in nanotechnology-based 
cancer chemotherapy.

What makes nanoparticles attractive drug deliv-
ery vehicles is their ability to have tunable proper-
ties, such as size, shape, surface charge, valency, and 
compartments.117,118,123–125 Particularly, size is of major 
importance during synthesis, because nanoparticles 
of the same material and different size can have dif-
ferent toxicity, uptake, and fate within the cell.126–128 
Furthermore, size plays a role in the way that the 
nanoparticles are recognized by the immune system 
and how the nanoparticles will be cleared from the 
body.129,130 Likewise, the shape of the nanoparticles 
is a key factor in how these agents will interact with 
the cells. For instance, spherical or rodlike nanopar-
ticles aligned perpendicular to the plasma membrane 
will be more effectively uptaken by the cell, while 
elongated wormlike nanoparticles avoid phagocyto-
sis.131,132 Long carbon nanotubes with diameter of a 
few nanometers can be rapidly uptaken by the cells, 
yet they are surprisingly quickly removed from the 
body through renal clearance.133 Perhaps the most 
common approach to improve the aqueous stability 
and circulation times of nanoparticles is the conju-
gation of polyethylene glycol (PEG) groups to the 
nanoparticles’ surface.134,135 Apart from decreasing 
immunogenicity and preventing activation of the 
complement cascade, the pegylation of nanomaterials 
lowers osponization and nonspecific uptake by the 
reticuloendothelial system.

Paradoxically, although nanoparticles have 
to avoid nonspecific uptake and either renal or 
hepatic clearance, they also have to release their 
therapeutic payload at the tumor, in order to mini-
mize systemic toxicity and maximize the drug’s 

local concentration at the pathology. In general, 
most primary solid tumors have a leaky vasculature, 
which allows retention of nanoparticles between 
30 and 200 nm via the enhanced permeability and 
retention effect.118,136 Hence, this passive targeting 
allows the nanoparticles to be sequestered within 
the tumor, and release the drugs on encountering 
unique conditions at the tumor’s environment, such 
as enzymes and pH. An attractive element of this 
approach is that the drug delivery vehicle does not 
undergo any extensive modification, which might 
be desirable for fast regulatory approval. Since 
tumor heterogeneity might result in nonuniform 
vascularization and vessel permeability, it is possible 
for different areas in the lesion to variably retain 
the nanoparticles and induce drug resistance.137,138 
Alternatively, active targeting may be utilized 
where the nanoparticles are conjugated with 
affinity ligands, whose receptors are overexpressed 
on the cancer cell’s plasma membrane or are in 
abundance within the tumor’s microstructure. From 
antibodies to their fragments, and from aptamers 
to peptides and small molecules,118 the library of 
tumor-targeting moieties continuously expands, 
as researchers identify new molecular landmarks 
and biomarkers on tumors. Conjugation of these 
ligands to the nanoparticle surface is achieved 
through facile chemistries, such as carboxyl-to-
amine (EDC) or propargyl-to-azide (“click”), that 
allow the formation of stable covalent bonds. The 
density of receptors at cancer cells’ plasma mem-
brane is important for the nanoparticle uptake, 
allowing multiple interactions between the cells 
and the drug delivery vehicles. In the case of 
ErbB2-targeting liposomes that carried Doxoru-
bicin, the high levels of ErbB2 were important in 
the uptake of the nanoparticles and intracellular 
release of the drug.139 Furthermore, meticulous 
grafting of the nanoparticle surface with targeting 
ligands can render the nanoparticles multivalent 
agents and confer improved drug delivery, due to 
the enhanced binding of the nanoparticle with 
receptors at the target cell. 
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2. Polymeric Nanoparticles

Among the most versatile platforms for drug delivery 
are polymeric nanoparticles, which have significantly 
evolved since the 1970s.140 Initial attempts included 
the conjugation of drugs to polymers, in an effort 
to substantially increase their molecular weight 
and avoid rapid renal clearance.141,142 Many drugs, 
including paclitaxel, doxorubicin, and camptothecin, 
were conjugated to poly(L-glutamic acid) (PGA) 
and N-(2-hydroxypropyl) methacrylamide (HPMA) 
among other polymers.143,144 In addition to improved 
bioavailability, HPMA was utilized as a multifunc-
tional platform for drug delivery and imaging, where 
the polymer was conjugated to radiolabeled cyclical 
RGD peptide.145,146 However, several drug-polymer 
conjugates were associated with side effects and 
unpredictable drug release that slowed their approval 
by regulatory agencies, priming the emergence of 
polymeric nanostructures as drug delivery vehicles.147 
Hence, contemporary polymeric nanoparticles have 
been engineered to provide multiple attractive proper-
ties. For instance, apart from demonstrating improved 
in vivo stability, they are biodegradable, with tunable 
degradation rates, and concomitantly controllable 
drug release. Poly(lactic acid) (PLA), poly(glycol acid) 
(PGA), and their copolymer poly(lactic-co-glycolic 
acid) (PLGA) have been used for the delivery of 
small molecules, peptides, proteins, and DNA.148–150 
Since PLGA can be easily processed, investigators 
were able to tune the size of nanoparticles through 
innovative fabrication protocols. Likewise, judicious 
selection of PLGA’s monomeric subunits can enhance 
the nanoparticles’ characteristics. It was demon-
strated that the nanoparticles’ drug release rate was 
affected by changing PLA’s molecular weight while 
the D-PLA enantiomer forms nanoparticles with 
enhanced mechanical properties.151,152 Additional 
hybrid polymeric drug delivery vehicles have been 
developed, in order to target multiple oncogenic 
mechanisms, such as angiogenesis and aberrant cell 
division. In an elegant study, PLGA nanoparticles 
carrying doxorubicin where coated with a PEGylated 
lipid that entrapped the anti-angiogenic drug com-
bretastatin.153 On retention of the nanoparticles in 
the tumor and degradation of the nanoparticles’ 

lipid coating, combretastatin was released, causing 
disruption of the tumor neovasculature and reduction 
in blood supply. As a result, the doxorubicin-loaded 
PLGA nanoparticles were entrapped within the 
tumor, and readily internalized by cancer cells, leading 
to tumor regression. With the development of new 
classes of chemotherapeutics, such as photosensitiz-
ers that become highly cytotoxic on light irradiation, 
Weissleder and colleagues have used PLGA as a drug 
delivery vehicle of meso-tetraphenylporpholactol.154 
The nanoparticles were able to release the photosen-
sitizer in vitro and in vivo, and topical irradiation 
with visible light achieved complete tumor regres-
sion in mice [Fig. 4(a)]. This hints at the potential 
use of this approach in laparoscopic and endoscopic 
therapeutic interventions with low systemic toxicity. 
In an effort to make PLGA nanoparticles specific 
toward a tumor, researchers have conjugated targeting 
moieties to these nanoparticles, in order to associate 
with the prostate-specific membrane antigen that 
is overexpressed in prostate cancer and the neovas-
culature of the majority of solid tumors.155 These 
docetaxel-carrying nanoparticles had a blood half-life 
of 20 h with low liver accumulation, and were able 
to gradually release their content, achieving 100-fold 
higher drug plasma concentration than the free drug 
and enhanced tumor reduction [Fig. 4(b)]. 

Other polymeric vehicles have been developed 
and approved by the FDA, including polyanhydrides, 
which degrade on hydrolysis of the anhydride link-
age.147 One of them, the polyanhydride wafer Gliadel 
has been approved for the treatment of patients with 
malignant glioma to complement surgery and radia-
tion.156 Advancements in the field include the intro-
duction of block copolymers, such as a poly(propylene 
oxide)-poly(ethylene oxide)-poly(propylene oxide) 
(PEO-PPO-PEO) and a modified poly(aspartic acid) 
linked to PEG.157,158 These polymers are in clinical 
trials in the United States and abroad for the delivery 
of doxorubicin and paclitaxel.147 Meanwhile, research 
efforts have been focused on improving polymeric 
nanoparticles’ stability, such as by enhancing the 
hydrophobicity of the nanoparticle cavity through 
introduction of hydrophobic moieties to the polymer, 
increasing the cavity’s capability to form multiple 
hydrogen bonds and electrostatic associations, and 
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cross-linking the cavity. Adopting these principles, 
Santra et al. created a hyperbranched polyester from 
diethyl malonate, which allowed the formation of 
highly stable nanoparticles that had a hydrophobic 
core and surface functional groups.159 Due to the 
polymer’s stability, the corona’s carboxylic acid groups 
were easily converted to amine, propargyl, or azide, 
which allowed the conjugation of targeting moieties, 
such as folic acid. The resulting nanoparticles suc-
cessfully co-delivered paclitaxel and the fluorophore 
DiI to folate-receptor-expressing cancer cells, where 
the nanoparticles gradually released their cargo on 
degradation in the acidified late endosomes and 
lysosomes. Additionally, two different populations of 
hyperbranched polymeric nanoparticles were chemi-
cally linked to each other, yielding nanocomposites 
with drug delivery, imaging, radio-protecting, and 
magnetic capabilities [Fig. 4(c)]. Hyperbranched 
polyester nanoparticles were also used for the in 
vivo delivery of the cytotoxic peptide CT20p, due to 
its unique amino acid composition.160 This peptide 
derived from the pro-apoptotic effector Bax, and 
includes hydrophobic and cationic amino acids on its 
sequence, which allow CT20p to bind to the mito-
chondrial membrane and initiate apoptosis. Intrigu-
ingly, delivery of the peptide with the nanoparticles 
achieved remarkable tumor regression [Fig. 4(d)], 
through an alternative mechanism that did not 
exclusively rely on effector caspases and was unaf-
fected by overexpression of the anti-apoptotic protein 
Bcl-2. Others used polymeric nanoparticles for the 
co-delivery of paclitaxel and siRNA to inhibit the 
expression of the oncogenic serine/threonine-protein 
kinase PLK1 and accomplish a synergistic therapeu-
tic effect.161 Although most chemotherapeutics are 
hydrophobic, therapeutic proteins and endogenous 
cytotoxic agents, such as the cytochrome c that initi-
ates the apoptotic cascade, are hydrophilic. Delivery 
of cytochrome c to cancer cells was achieved through 
encapsulation of the protein within hyperbranched 
polyhydroxyl nanoparticles, which preserved cyto-
chrome’s structure and enzymatic activity, eventually 
leading to significant cell death in targeted cells.162

Since nature widely employs polymers made 
from simple precursors such as carbohydrates, nucleic 
acids, and amino acids, researchers have used natural 

polymers, due to their biocompatibility and pharma-
cokinetics. Polysaccharides, such as chitosan, have 
been used for the delivery of chemotherapeutics, 
yet toxicity issues have to be addressed depending 
on the polymer used.163 Polymeric nanoparticles 
with carbohydrate units and glycosidic bonds that 
are found within the human body are attractive 
alternatives, due to their lower toxicity and immu-
nogenicity. In a recent study, polymeric nanoparticles 
made from glucosamine-conjugated poly(isobutylene 
maleic acid) and loaded with cisplatin achieved 
tumor reduction in breast, lung, and ovarian can-
cer models.164 Other groups utilized DNA and 
RNA’s unique interactions to form supramolecular 
structures for the delivery of doxorubicin, methyl-
ated oligonucleotides, and siRNA.165–167 With the 
evolvement of DNA origami, DNA nanotubes, 
nanoboxes, and nanorobots were developed.168–170 In 
fascinating studies, DNA nanorobots were able to 
process inputs based on logical gates that served as 
environmental antigen keys capable of activating the 
nanobots.171 These nanobots controlled cell signal-
ing by releasing antibodies and antibody fragments 
that targeted CD33 and CDw328 in aggressive NK 
leukemic cells. The nanorobots inhibited cell cycle 
progression, as well as the phosphorylation of the Jun 
N-terminal kinase ( JNK) and Akt. Potentially, the 
in vitro and in vivo stability of DNA nanoparticles 
can be further enhanced with the use of modified 
nucleic acids, which can preserve the nanoparticles 
from early nuclease degradation. 

Elegant nanostructures can be created from 
amino acid building blocks, conferring properties 
such as biocompatibility, targetability, and low anti-
genicity.147 Elastomer-like and silklike proteins have 
been utilized for drug delivery, since their molecular 
weight, hydrophobicity, and bioconjugation sites can 
be judiciously engineered. Elastin-like proteins have 
the amino acid sequence GVGVP as their building 
block, whereas silklike proteins have alternate repeats 
of glycine and alanine.172,173 Drug and gene delivery 
have been accomplished, and recent studies revealed 
that these protein-based polymers might serve as high 
avidity drug delivery platforms, due to the multiple 
interactions between targeting moieties and cells. 
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3. Liposomes and Micelles

Another nature-inspired approach to deliver thera-
peutics to cells was introduced in 1965 by Alec 
Bangham using phospholipids,174 which was later 
refined by Gregory Gregoriadis in the form of 
lipid-based drug delivery vesicles capable of retain-

ing drugs within them.175 It was envisioned that 
this drug delivery platform could be biocompatible 
and biodegradable, as well as capable of deliver-
ing hydrophobic and hydrophilic therapeutics. 
Liposomes are spherical nanoparticles that have a 
phospholipid bilayer similar to mammalian cells, 
with an aqueous phase that can accommodate agents 

FIG. 4: Polymeric nanoparticles in cancer therapy. (a) PLGA nanoparticles delivered meso-tetraphenylporpholactol 
to prostate cancer xenografts in mice. Treatment of tumors with light resulted in tumor regression due to activation 
of the phototoxic agent, while the untreated tumors (no light treatment) continued growing. Adapted with permission 
from Ref. 154. Copyright 2005 American Chemical Society. (b) Axial contrast-enhanced CT scans of a cholangio-
carcinoma patient with lung metastases and coronal images of a tonsillar cancer patient before and after treatment 
with docetaxel-carrying targeted nanoparticles. Adapted with permission from Ref. 155. Copyright 2012 American 
Association for the Advancement of Science. (c) Composite nanomaterials with unique properties, courtesy of their 
magnetic and radiation-protecting nanoparticle building blocks. Adapted with permission from Ref. 159. Copyright 
2010 American Chemical Society. (d) Intratumoral or intravenous administration of a cytotoxic peptide with poly-
meric nanoparticles results in tumor regression. Adapted with permission from Ref. 160. Copyright 2012 American 
Chemical Society.
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with amphiphilic properties.176 On the other hand, 
micelles are spheres that contain a lipid monolayer 
with the phospholipids’ hydrophilic groups exposed 
to the aquatic milieu, forming a hydrophobic cavity. 
These structural differences between liposomes and 
micelles could be used for the retention of drugs 
with different characteristics, such as hydrophobic-
ity and molecular weight. Particularly in the case of 
liposomes, extremely hydrophobic chemotherapeutics, 
like paclitaxel, cannot be efficiently retained within 
the liposomal vesicle, because the phospholipid 
bilayer is highly permeable to hydrophobic agents, as 
opposed to hydrophilic molecules that are confined 
within the liposomal cavity via multiple electrostatic 
interactions.177 

Since fluorescent small molecules also have the 
ability to produce local chemical or direct thermal 
damage, with the potential for therapy, this strat-
egy has resulted in several approved photodynamic 
therapy (PDT) approaches in the clinic.178 Porphyrin-
based PDT agents are notably difficult to solubilize 
and when systemically administered have the problem 
of possibly severe skin reactions (necessitating patients 
to avoid exposure to sunlight). Apart from porphyrins, 
methylene blue has some photosensitizer function, 
and nanoparticle encapsulated versions have been 
demonstrated to have cytotoxic effect.179 Of particular 
interest is the new class of nanomaterial that was 
developed specifically for optical-based therapy and 
imaging called porphysomes. Composed of bilayers 
of porphyrin-capped carbon chains, these 100 nm 
diameter structures are biodegradable, and strongly 
photothermal under NIR excitation.180 Investiga-
tions have demonstrated that these nanoparticles are 
effective in hypoxic tumors, overcoming one known 
barrier to traditional effective treatment of tumors.

Although drugs can be stably accommodated 
within liposomes and micelles, drug delivery with 
these vehicles has been challenging, due to the 
nanoparticles’ clearance through the reticuloendo-
thelial system, enzymatic degradation by esterases 
and lipases at the liver, and structural instability of 
the nanoparticles that leads to vehicle aggregation 
or abrupt release of the therapeutic cargo.181 Efforts 
to alleviate these problems include incorporation of 
cholesterol and sphingomyelin to restrict the fluidity 

of the lipid bilayer and introduction of polyethylene 
glycol moieties.182,183 For instance, the FDA-approved 
liposomal formulation Doxil consists of PEGylated 
liposomes loaded with doxorubicin, whereas the 
non-PEGylated liposomes daunorobicin-carrying 
DaunoXome and doxorubicin-encapsulating Myocet 
are used in the clinic to minimize the cardiotoxic-
ity associated with the conventional delivery of the 
drugs that lack a delivery vehicle. To achieve specific 
drug delivery, peptides, glycoproteins, and antibodies 
were introduced to liposomes, where the presence 
of PEG within the lipid bilayer lowered steric hin-
drance and facilitated the conjugation of multiple 
targeting moieties.184–186 The ανβ3 integrin, which 
plays a key role in angiogenesis, was targeted with 
small cyclical RGD peptides that were introduced 
to both liposomes and micelles.187,188 Clinical trials 
with an oxaliplatin-encapsulating transferrin-PEG 
and doxorubicin-carrying anti-ErbB2 liposomes 
demonstrated the translational potential of these 
systems, and how researchers creatively solved the 
initial targetability problems of liposomes.189,190 
Several other cancer biomarkers were utilized for 
the targeting of liposomes and micelles with mono-
clonal antibodies and antibody fragments, including 
the VEGFR2, EGFR, and EpCAM among oth-
ers.191–193 Likewise, with the identification of new 
therapeutics, liposomes were utilized for the delivery 
of antisense oligonucleotides and siRNA,194 while 
novel drug release approaches for lipid-based carriers 
were developed, including hyperthermia, ultrasound, 
pH-sensitive linkages, and enzymes.195–198

4. Metallic Nanoparticles 

At the beginning of the twenty-first century, research 
efforts focused on the development of multifunctional 
nanoparticles, which can serve as drug delivery 
vehicles, therapeutic intervention mediators, and 
diagnostic or imaging agents. Iron oxide and gold 
nanoparticles have been extensively investigated in 
cancer therapy, due to their optical, magnetic, and 
photothermal properties. Multiple synthetic strategies 
yielded nanoparticles with different geometries, but 
almost all converge to the formation of polymer- or 
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small-molecule-stabilized nanoparticles.199 Apart 
from providing aqueous stability and minimizing 
aggregation, the surface coating allows the conjuga-
tion of targeting moieties through facile chemistries, 
and the addition of polyethylene glycol moieties to 
minimize nonspecific uptake in vivo. Polymer-coated 
iron oxide nanoparticles, which carried doxorubicin, 
targeted the folate receptor via folic acid moieties 
found on the nanoparticles’ coating.200 These nanopar-
ticles demonstrated enhanced tumor regression 
in folate-receptor-positive tumors, and were more 
effective than liposomal doxorubicin. Histochemical 
analyses revealed that the drug-loaded iron oxide 
nanoparticles more effectively reduced the expression 
of angiogenic biomarkers and increased apoptosis. The 
nanoparticles’ localization was determined through 
MRI, and marked signal differences were observed in 
the folate-receptor-expressing tumors. Furthermore, 
strong magnetic fields can be used to increase the 
accumulation of the magnetic drug-loaded nanopar-
ticle at known sites of disease.201,202 One can also use 
an alternating magnetic field to locally heat the local 
environment of magnetic nanoparticles. The principle 
here is that energy is lost during the magnetization 
reversal process experienced by the nanoparticle 
within an alternating field (a difference in the hyster-
esis loop, friction, and magnetic effects). This energy, 
in the form of heat, is deposited by the nanoparticle 
in the local environment to a level lethal to cells.203 
Several superparamagnetic iron oxide nanoparticle 
formulations of varying size have been used for a 
range of cancer types in several small animal models 
of disease, including treatment of breast cancers,204 
prostate cancer,205 and gliomas.206 While not a com-
monplace practice for cancer treatment in patients, 
trials have evaluated the effects of local heating in 
the clinic (up to 49.5°C).207,208 

Recent studies have yielded multimodal iron 
oxide nanoparticles, which allow imaging through 
magnetic resonance and fluorescence techniques. 
This was accomplished through the encapsulation 
of near-infrared lipophilic fluorophores within the 
cavities of poly(acrylic acid), which was utilized 
to stabilize iron oxide nanoparticles.209 These dual 
MRI/fluorescent nanoparticles specifically delivered 
paclitaxel to folate-receptor-expressing cells, since 

the carboxylic acid groups of the polymer were used 
for the conjugation of folic acid. Interestingly, the 
nanoparticles released their cargo within the cell’s 
late endosomes and lysosomes, as the polymeric 
coating underwent degradation by enzymes and 
acid-mediated hydrolysis (pH ≤ 4.5) [Fig. 5(a)]. 
Similarly, cisplatin was released from ErbB2-targeting 
porous hollow iron oxide nanoparticles at low pH, 
on etching of the nanoparticle pores by the acidified 
milieu.210 Magnetic-field-directed drug delivery was 
also accomplished with mesoporous silica-coated 
iron oxide nanoparticles, which in the presence of 
magnetic field significantly improved doxorubicin’s 
delivery to tumors.211 In an effort to achieve higher 
drug delivery and improved MRI signal, investiga-
tors loaded doxorubicin and iron oxide nanoparticles 
within a micelle’s cavity.212 The micelle targeted ανβ3 
integrin through cyclical RGD peptides, efficiently 
tracking ανβ3-positive cells and inducing cytotoxicity. 

Improved drug efficacy was also observed with 
gold nanoparticles that were covalently linked to 
paclitaxel with DNA linkers.213 This approach 
improved paclitaxel’s solubility, and allowed the 
conjugation of many drug molecules with diverse 
linkers, ultimately making the nanoparticles potent 
chemotherapeutic systems. Alternatively, hydropho-
bic drugs were non-covalently retained within the 
interior of monolayers of gold nanoparticles, which 
were efficiently delivered within cancer cells.214 In 
the case of photodynamic therapy, PEGylated gold 
nanoparticles delivered silicon phthalocyanine 4 in 
vitro and in vivo,215 demonstrating that inorganic 
nanoparticles could be used to deliver prodrugs that 
are subsequently activated or released in the pres-
ence of stimuli, including light, temperature, acidity, 
hydrophobicity, and enzymes.214,216–220 For instance, 
gold nanocages consisting of porous walls and hollow 
interiors were able to release their cargo, once they 
were illuminated with near-infrared light.221 Gold 
nanoparticles were used for the photothermal abla-
tion of melanoma, using nanoparticles that displayed 
a melanocyte-stimulating hormone analog on their 
surface.222 Also exploiting the compromised plasma 
membrane as a result of topical heating during pho-
tothermal therapy with gold nanospheres, researchers 
accomplished improved in vivo delivery of drugs 
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and siRNA.223,224 In order to improve the efficacy 
of photothermal ablation particularly for deep tis-
sue therapy, gold nanorods were utilized along with 
an implantable source for the treatment of ovarian 
cancer in an orthotopic model.225 

Endogenous activators of cytotoxic activity are 
often preferred, such as an i.v.-administered trigger 
or the tumor’s innate features, since they allow cli-
nicians to conduct therapy without deviating from 
well-established protocols and procedures. Toward 
this direction, Rotello and colleagues used chemical 
recognition to activate the cytotoxicity of cationic 
gold nanoparticles within cells.226 Specifically, the 
positive charge of diaminohexane-functionalized 
gold nanoparticles was neutralized via the capping 
of the nanoparticles with cucurbit[7]uril, allowing 
the nanoparticles to be endocytosed by the cells 
without any toxicity. Once the cells were treated 
with 1-adamatylamine, the nanoparticles dissoci-
ated from cucurbit[7]uril, and caused cell death, due 
to pore-forming capabilities of the nanoparticles’ 
cationic groups [Fig. 5(b)]. Another research group 
used the intrinsic enzymatic properties of cerium 
oxide nanoparticles, where at physiological pH these 
nanoparticles behaved as antioxidant enzymes and 
at acidic microenvironments they acquired oxidase-
like characteristics.227,228 It was demonstrated that at 
physiological pH the nanoparticles scavenged reactive 
oxygen species, due to the conversion of cerium(III) 
to cerium(IV) and back to cerium(III). However at 
acidic pH, the nanoparticles did not undergo auto-
regeneration, yet they catalyzed the oxidation of 
various substrates that ultimately led to cell death 
depending on the subcellular localization of these 
nanoparticles [Figs. 5(c) and 5(d)].229,230

B. Emerging Nanotechnologies in Drug 
Delivery and Therapy

The continuous quest to identify new platforms 
for cancer therapy led to the introduction of new 
nanomaterials and innovative solutions, which 
ultimately may reach the patient’s bedside. Carbon 
nanotubes, graphene, and fullerenes have been 
investigated due to their facile synthesis, unique 

mechanical properties and multiple conjugation 
sites.231,232 Surprisingly, many of these nanoparticles 
undergo renal clearance,133 yet the initial circulation, 
solubility, and toxicity issues have been addressed 
with creative strategies, including PEGylation and 
nanoparticle surface modification. For instance, 
doxorubicin was effectively delivered to tumors with 
modified hydrophilic fullerenes that caused enhanced 
antitumor activity.233 Recently, PEGylated graphene 
oxide nanoparticles delivered doxorubicin in vitro, 
where the drug was released by the late endosomes/
lysosomes low pH, glutathione, and near-infrared 
light.234 Carbon nanotubes were used for the delivery 
of topoisomerase inhibitors, such as camptothecin, 
irinotecan, and etoposide, and commonly used 
chemotherapeutics, like doxorubicin, paclitaxel, and 
tamoxifen.235 Depending on the surface properties 
and chemical modifications of the carbon nanotubes, 
the drugs were retained through physical absorp-
tion or covalent bonds, which allowed drug release 
through pH changes, salt concentration differences, 
and esterases. Furthermore, since carbon nanotubes 
have a high aspect ratio and a large area with multiple 
conjugation sites, targeting moieties, including folic 
acid, cyclical RGD peptide, and antibodies, were 
introduced, allowing selective cytotoxicity toward 
certain cancer cell populations. In an innovative 
approach, Scheinberg and colleagues used single-
wall carbon nanotubes for targeted radiotherapy, by 
conjugating to the nanoparticles an antibody and 
DOTA for the chelation of the alpha particle emitter 
225Ac.236 Enhanced tumor regression was observed 
due to potency of the alpha particles, whereas the 
rapid clearance of the nanoparticles from circula-
tion prevented systemic toxicity. Adopting similar 
conjugation strategies, single-wall carbon nanotubes 
delivered a peptide antigen to antigen-presenting 
cells in vivo, increasing the production of antibod-
ies against the tumor-associated WT1 antigen that 
is found in many leukemias and cancers (Fig. 6).237

Apart from using nanoparticles as adjuvants 
and vaccinelike agents, engineered plant viruses are 
attractive drug delivery vehicles, since their produc-
tion is affordable and scalable.238 Among them, the 
cowpea mosaic virus was extensively studied, primar-
ily due to high viral particle yield after plant infection  
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(1–2 g/kg), the viral capsid’s thermal stability, and 
easy chemical modification of its coat proteins. 
This allowed the conjugation of small VEGR1-
targeting peptides and larger macromolecules, 
including enzymes, providing nanoparticles with 
different valency levels.239,240 In model studies, up 
to 11 molecules of horseradish peroxidase (44 kDa) 
were conjugated on the surface of the cowpea 
mosaic virus, while low valency was achieved when 
glucose oxidase (160 kDa) was covalently attached 
via simple bioconjugation procedures. Several 
groups were able to deliver chemotherapeutics, like 
doxorubicin and proflavine, with the cargo either 
immobilized on the viral coat or retained within it 

through hydrogen bonds between the viral RNA 
and guest molecule.241,242 Steinmetz and colleagues 
were able to deliver infused chemotherapeutic 
cargo to a panel of cervical, breast, and colon cells 
with cowpea mosaic virions that utilized vimentin 
and underwent lysosomal degradation and drug 
release.242 Other groups used the propensity of some 
alphaviruses toward tumors, and delivered diverse 
payload that ranged from small molecules and 
nucleic acids to proteins and gold nanoparticles.243 
The cargo was retained within the viral capsid, and 
was successfully released once within cancer cells, 
leaving healthy cells unaffected. However ongoing 
in vivo studies intend to address the immunogenic-

FIG. 6: Delivery of a peptide antigen with single-wall carbon nanotubes led to specific immune response toward 
the antigen in vivo, indicated by the levels of serum IgG that were quantified with ELISA. Adapted with permission 
from Ref. 237. Copyright 2011 American Chemical Society.
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ity of plant viruses and improve the tumor uptake 
of these natural nanoparticles. Recent reports 
showed that the size and structure of the viruses 
play a key role in the nanoparticles’ biodistribution 
and clearance.238,244 Comparing the icosahedral 
cowpea mosaic virus (28 nm) and the filamentous 
potato virus X (515  ×  13 nm), it was found that 
the elongated potato virus X demonstrated better 
tumor uptake and it was cleared by the spleen, 
contrary to the hepatic clearance of the cowpea 
mosaic virus. With the introduction of imaging 
agents,245,246 the fate of these nanoparticles will 
be further delineated, assisting in their preclinical 
evaluation as multifunctional therapeutic vehicles. 

With the introduction of new instrumentation 
and advancements in cancer biology, nanoparticles 
can support therapy and improve treatment out-
come. Iron oxide nanoparticles were used as sensors 
for the detection of a single cancer cell in whole 
blood samples, by detecting aberrant expression 
of surface biomarkers [Fig. 7(a)].247 Intriguingly, 
this unprecedented sensitivity was achieved with a 
multivalent small-molecule-conjugated magnetic 
nanosensor, which was able to quickly interrogate 
clinically relevant samples and potentially provide 
critical information on disease status, such as 
micrometastasis initiated by rare circulating tumor 
cells. Quantification of circulating tumor cells was 
also accomplished with micro-Hall detector and 
magnetic nanoparticles, using a creative microfluidic 
platform and a portable reader.248 The nanosensors 
were able to determine the expression of prototypic 
biomarkers, such as EpCAM, HER2, and EGFR, 
on each detected cell, allowing the physician to 
characterize these metastasis progenitors and pro-
ceed to personalized therapy with administration of 
drugs that can target the corresponding oncogenic 
pathways. Further studies allowed the molecular 
profiling of cancer cells collected from fine-needle 
aspirates, using a biomarker-screening magnetic 
nanosensors panel [Fig. 7(b)].249 Detection was 
accomplished with a portable micro-NMR sensor, 
which can be used in the clinic and at the patient 
bedside to quickly monitor molecular cascades 
related to disease progression and therapeutic 
interventions. Since sensitive probes are critical 

in the translational success of new diagnostics 
and therapeutics, binding magnetic nanosensors 
were utilized to quantify the affinity and avidity 
of molecular entities toward receptors associated 
with disease pathogenesis [Fig. 7(c)].250 This novel 
platform demonstrated that previously unidentified 
molecular interactions could be investigated with a 
solution-based optics-independent assay, thanks to 
the optimized display of the interrogated molecules 
and absence of steric hindrance. In an effort to model 
chemotherapeutic dynamics ex vivo, iron oxide 
nanoparticles were used to measure the binding of 
poly(ADP-ribose) polymerase (PARP) inhibitors to 
their target protein, which is differentially expressed 
in cancer cells.251 Finally, since radiation therapy is 
widely used for the treatment of numerous cancers, 
cerium oxide nanoparticles were used for the selec-
tive cytoprotection of healthy cells, allowing ionizing 
radiation to affect only the malignant tissue.252–254 
To avoid potential nanoparticle side effects due 
to cerium’s context-dependent self-regeneration 
and enzymatic activity, cerium oxide nanoparticles 
were introduced within an implantable device, 
which monitored the levels of reactive oxygen spe-
cies generated by the inflammatory cascade and 
radiotherapy [Fig. 7(d)].255 Detection was achieved 
through MRI and near-infrared fluorescence, since 
the high levels of reactive oxygen species caused 
clustered the device’s iron oxide nanoparticles and 
quenched their fluorophore, opening new vistas in 
the management and treatment of cancer. 

III. CONCLUDING REMARKS

Nanoparticles provide exciting and promising 
new paradigms in diagnostic oncology and cancer 
therapeutics. For their successful transition to the 
clinic, it is important to thoroughly understand the 
interactions of these novel materials and architec-
tures within the body, using suitable models and 
experimental strategies. With the advancements in 
nanomaterial design and tumor targeting, the use of 
innovative approaches to eradicate cancer cells, and 
the construction of multifunctional platforms that 
perform imaging and diagnosis, nanotechnology is 
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poised to improve cancer therapy, lower cancer mor-
tality, and potentially lower the costs of treatment. In 
conjunction with new discoveries in cancer biology, 
nanoparticles delivering therapeutics and providing 
sensitive imaging will maximize tumor regression, 
minimize side effects, eliminate residual disease, and 
prevent metastasis, opening new frontiers in patient-
tailored molecular oncology. 
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