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Abstract

Magnetic nanoparticles are useful biological probes as well as therapeutic agents. There have been

several approaches used to model nanoparticle magnetization dynamics for both Brownian as well

as Néel rotation. The magnetizations are often of interest and can be compared with experimental

results. Here we summarize these approaches including the Stoner-Wohlfarth approach, and

stochastic approaches including thermal fluctuations. Non-equilibrium related temperature effects

can be described by a distribution function approach (Fokker-Planck equation) or a stochastic

differential equation (Langevin equation). Approximate models in several regimes can be derived

from these general approaches to simplify implementation.
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I. INTRODUCTION AND NANOPARTICLE APPLICATIONS

Magnetic nanoparticles (MNPs) are useful in many biophysical and medical applications

because they can be remotely controlled and monitored with magnetic fields. For these

applications, it is important to model the dynamics of the particles; and many approaches

have been used previously to do so. In this case ‘modeling’ means simulating the

magnetizations of the particles over time to study how different variables (e.g., field

strength, anisotropy) affect their dynamics. In this review, we outline the major advances in

MNP modeling including state-of-the-art techniques requiring numerical simulations and

accounting for many experimentally verified phenomena. We also include approximate

theories that admit analytical solutions, formulations that are easier to implement and other

expressions that are more transparent.

A. Sensing and imaging

Magnetic nanoparticles can be used as sensors to detect properties of their local micro-

environments when rotations couple MNP dynamics to the environmental parameters1-3. For

example, the concentration of specific molecules can be detected because their dynamics can

be noticeably different when bound and unbound4. This is depicted in Fig. 1(a).

Nanoparticle sensing is sensitive (down to 100pM of analyte and nanogram amounts of iron)

and could potentially be used in vivo to detect changing concentrations over time. Aside
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from molecular sensing, MNPs have been used as probes to measure local temperatures5,

viscosities6, and local environment rigidity7. MNPs have been used as MRI contrast agents8,

and the developing technology of magnetic particle imaging (MPI). MPI uses the particles

themselves as high-contrast imaging agents which hold the possibility for time-domain

tracers9-11.

B. MNP hyperthermia

Magnetic nanoparticle (MNP) hyperthermia is considered a potentially useful addition to

current cancer treatment modalities12,13. Nanoparticles can be directly injected14 or targeted

biologically15 to achieve specific localized therapy. Furthermore, it appears cells ingest the

MNPs, so cellular distribution may be possible16. If oscillating magnetic fields are applied

to the sample, diverse physical mechanisms prevent the particles from following the field

exactly, and thus energy is dissipated locally. This energy can be thought of as heat, and it

has been shown that cytotoxic heating is possible17,18. The principle of MNP hyperthermia

can be conceptualized as in Fig. 1(b). It is important to design efficient heating agents and

much work has been done to characterize MNPs and improve properties such as magnetic

moment magnitude and anisotropy energy17,19.

II. NANOPARTICLE ROTATIONS AND RELAXATION TIMES

There are two mechanisms for nanoparticles to rotate their magnetic moment μ. This is

visualized in Fig. 2. The whole particle can rotate, as in so-called Brownian rotation, named

for Robert Brown. The moment can rotate internally due to restructuring of electronic states.

This so-called Néel rotation is named for Louis Néel, who first described the phenomenon

while studying magnetic remanence in geological samples20. The timescale for a perturbed

system to return to equilibrium is called the ‘relaxation time’. This expression is different for

each mechanism and depends on the parameters of interest.

A. Brownian relaxation time

The Brownian relaxation time, sometimes called the Einstein relaxation time21 based on

Einstein’s original work to derive the timescale from Brownian motion arguments is written

(1)

in terms of the suspension viscosity η, the hydrodynamic volume of the particle Vh and the

thermal energy introduced with Boltzmann’s constant k and local temperature T .

B. Néel relaxation time

The Néel relaxation time derives from the thermal movements between two potential energy

minima that arise from postulating a single anisotropy axis n (see Fig. 2). The anisotropy

energy is written in terms of the anisotropy constant K and the magnetic core volume Vc; the

unitless ratio of this energy to the thermal energy is defined σ. Thus, the relaxation time can

be expressed

Reeves and Weaver Page 2

Crit Rev Biomed Eng. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(2)

where the ‘event time’ τ0 is often quoted as 10−10s but is defined

(3)

in terms of the electron gyromagnetic ratio γ = 1.76 · 1011Hz/T, a dimensionless magnetic

damping parameter α, and the magnetic moment—calculated using Ms the material

dependent saturation magnetization as μ = MsVc. More precise forms of the Néel relaxation

time including additional factors of σ can be found in Ref.22.

C. WF relaxation time

W F Brown developed a more general characteristic time including applied fields23. Letting

σ » 1 he approximated this time to be

(4)

where the applied magnetic field H is accounted for with the unitless ξ = μH/kT . The ratio

of anisotropic to magnetic energy is defined E = ξ/2σ and the expression reduces to the

equilibrium Néel time in the absence of an applied field.

D. Relaxation time considerations

An assumption found frequently in the literature is that the more prevalent relaxation

mechanism is the one with the shorter relaxation time. The process is then approximated as

parallel so the effective relaxation time is

(5)

To the best of our knowledge there has been no theoretical work that deals with Néel and

Brownian relaxation simultaneously, so currently this expression is not derived from first

principle and does not incorporate the fact that the processes could be coupled24,25. Another

consideration is that these relaxation times only hold for equilibrium conditions, and should

not be applied without awareness of this constraint.

III. ANISOTROPIC HYSTERESIS LOOPS

The energy of a magnetic particle with a single anisotropy direction n immersed in a

magnetic field H can be written

(6)

so that if the field is applied in the ẑ direction, we define the angle from the polar to be θ and

the angle between the moment and the easy axis to be ø. Thus
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(7)

To find the minimum energy, the equilibrium state of the particle, with respect to the

moment direction θ we write

(8)

or

(9)

To ensure a minima we also require  Solving for the magnetization M = cos θ

and plotting this with respect to the normalized field E we find that the so-called Stoner-

Wohlfarth hysteresis loop emerges26.

This model is useful because the area of the loop indicates the energy dissipated when the

particle is forced to change its orientation from one potential minima to another. This can

then be used as a model for hyperthermic heating given particles with specific sizes,

saturation magnetizations, and anisotropy constants. The weakness of the model is that it

assumes no relaxational timescale for the process, thus neglecting that any phenomena

depend on the frequency of the applied field. Still, models based on the theory have been

extended to model heating more realistically27.

IV. DIFFERENTIAL EQUATIONS FOR THE MAGNETIZATIONS

There exist more general methods to model the behaviors of the magnetic moments in

various applied fields. This can be accomplished by describing the time dynamics of the

magnetization using differential equations. Then the varying rotation methods as well as the

specific conditions the particles experience in various applications can be simulated.

A. Brownian dynamics

A Brownian particle can be modeled phenomenologically with a balance of torques28:

(10)

We have neglected the acceleration term because the nanoparticles have a very small

Reynold’s number. Balancing this equation admits a differential equation for the

magnetization which can be rewritten in terms of a unitless field α = μH/kT and the

Brownian relaxation time τB as

(11)
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This magnetization equation can be enhanced by including thermal fluctuations of the

magnetization of the particles. There is no one general way to do this, and we will see the

prescription for Néel particles is slightly different. Here we supplement the torques with the

stochastic term Ts = N /√τB . The magnitude of this term depends on the relaxation time so

that larger torques occur at higher temperatures and lower viscosities. We have also

introduced the random variable N which we define to have

(12)

This is a white frequency spectrum—so that in the time domain, it is controlled by a Dirac

delta function—and the term only contributes if the correlation function is taken in the same

spatial direction, a property encoded by the Kronecker delta29. The noise is not truly white

but provides the simplest inclusion of stochastic effects. We write the stochastic differential

equation, called a Langevin equation30 as

(13)

This equation is used to model Brownian particles and is amenable to changing local

variables like fluid viscosity and temperature as well as externally applied fields.

B. Néel dynamics

The equation for the change in the magnetization of a Néel particle is the phenomeno-logical

Landau-Lifshitz-Gilbert (LLG) equation. This can be derived from the Larmor precession of

a spin in a magnetic field with an added velocity-dependent damping term31. The

normalized internal moment then rotates with

(14)

The effective field H is used to include additional dynamics beyond the applied field32. For

example we include an externally applied field with amplitude Ho and frequency ω, a field

from the anisotropy axis n33, and a stochastic field h, so that

(15)

In this case, the fluctuations are added to the model with an additional stochastic field, a

white noise field with zero-mean and standard deviation parameterized by the nanoparticle

variables

(16)
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Some work has been attempted to describe the effects of dipole fields, which can also be

added to the effective field32 or treated as a mean field34. But because it seems the effects

are actually of detriment to the effectiveness of hyperthermia, we do not discuss them here.

C. Numerical integration of Langevin equations

With the addition of the stochastic terms, the differential equations cannot be integrated as a

normal Riemann integral35. In general we see that the dimensions of the stochastic terms are

actually the square-root of time, so in fact it is more precise to instead write these equations

as integral equations of the form

(17)

where the W represents the Wiener process, the continuous analogue to the random walk.

Additional information on the various types of stochastic differential equations can be found

in Ref.35,36. The usual method is to integrate the differential equation to first or second

order, using the Euler-Marayuma or the Heun integration scheme, respectively28,37. Then,

magnetization moments are found from successive solving

(18)

so that the average magnetization is when j = 1.

V. DISTRIBUTION FUNCTION APPROACH LEADING TO APPROXIMATE

MODELS

We saw in the Langevin equation formulation that it is possible to include thermal effects to

models of nanoparticles. This is particularly useful when the particles are expected to be at

room temperature (as in biological and medical applications). The finite temperature will

cause magnetization fluctuations and thus the nanoparticles are accurately described as a

distribution of states. Instead of repeatedly solving a stochastic differential equation, we can

use a distribution function approach where the distribution of states evolves over time.

A. The Fokker-Planck equation

We can represent a single nanoparticle’s magnetization as a point on the unit sphere, so that

the surface density of many magnetizations is determined by a function f (θ, ø, t). As the

particles rotate in space, the magnetization surface density changes, leading to a surface

current J . The total number of nanoparticles is conserved, i.e., r f dΩ = 1, defining the

surface density function as a probability distribution. The normalization also implies the

continuity equation

(19)

The probability current depends on the probability itself; this is the key to understanding the

dynamics. At temperature T = 0 the current density J depends only on the velocity
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 of the points on the sphere. However, when the temperature is not zero, the

system evolves towards equilibrium. A postulated phenomenological ‘diffusion’ of the

distribution function23 accounts for the approach to equilibrium. This is represented by a

new term in the continuity equation proportional to a diffusion constant D and the gradient

of the distribution function. We write the Fokker-Planck (FP) equation for the distribution

function f (θ, ø, t) as

(20)

From this distribution, magnetization statistics can be determined using the definition of the

probability moments

(21)

What remains is to define the change in the magnetization and the diffusion constant. The

magnetization dynamics are controlled by the zero temperature differential equations Eq. 11

and Eq. 14. The diffusion constant is determined by the parameters at equilibrium

conditions, when there is no applied field and . In general, solutions to the Fokker-

Planck equation are not possible, so approximation methods are used in practice.

B. Néel rotation and hyperthermia

If the expression for the magnetization dynamics of Néel rotation is inserted, this FP

equation can be used to describe the rotations of small particles that are fixed spatially.

These are the expected conditions for nanoparticles during hyperthermia32. It is also

possible to develop an analytical approximation based on the assumption that the

distribution function is linear in the magnetization. This approximation has been used to

model hyperthermia because the imaginary response indicates heat deposition38. Though

these expressions are commonly used, we do not describe them here because recent work

has shown that they are inadequate to fully model heating25,27. The methods are accurate but

care is necessary to assure that they are applied in the correct range of validity: when

magnetizations are indeed linear as when applied fields are weak, magnetic moments are

small and/or frequencies are high39.

C. Brownian Fokker-Planck with cylindrically symmetric applied field

Replacing the velocity of the magnetization in Eq. 20 with Eq. 13, simplified slightly we

have the FP for Brownian rotation

(22)

A general solution is not currently analytically possible, but if the applied magnetic field is

in the z -direction only, the FP equation can be simplified. This involves writing out all the

components and unit vectors of m in spherical coordinates,
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and each unit vector is expressed e.g.,

eventually we find

where the second term completely cancels. Thus, we arrive at the intuitive result that the

distribution function does not depend on the azimuthal angle f = f (θ, t) only. We now have

the FP equation

(23)

where by using the definition of the spherical gradient over only the polar angle we write

(24)

and lastly with the change of variables x = cos θ we have  and with D = 1/2τ

we can write the 1-D FP equation,

(25)

This equation has solutions in a Legendre polynomial expansion34,40. But it is of interest to

demonstrate a further approximation method, the so-called ‘effective field’ method or

‘macroscopic relaxation equation’.

D. Effective field model for low-frequency Brownian relaxation

If we set the applied field to be a constant α0 and let  we find the normalized

distribution function

(26)

This is the same result as we get from Boltzmann statistics (remembering x = cos θ in terms

of the polar angle because the field is applied in the ẑ direction). We write the average

magnetization in the direction of the field as M . Using this distribution function and
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integrating to get the first moment, we find, as we should, that the Langevin function L(x)

describes the equilibrium dynamics of an ensemble of particles in an applied field:

(27)

The valuable approximation is to assume the particles are always at equilibrium so that the

distribution function retains the same functional form, but with a time varying field α →

α(t). This ‘effective field’ approach turns out to be very useful to model low frequency

oscillating fields where the relaxation time of the particles is shorter than the period of the

applied field28,34. Multiplying by x and integrating Eq. 25 with the effective distribution and

definitions of the probability moments leads to an equation for the second moment in terms

of the first. We have then a differential equation for the magnetizations at near-equilibrium

conditions:

(28)

where αeff is found from inverting the Langevin function at every step34. An inverse

Langevin function can be used as in Ref.41. The effective field equation is useful for quicker

analyses because it is much less computationally challenging than the full stochastic models.

VI. SUMMARY

We have seen that there are two mechanism for a magnetic particle to reorient its moment.

The energy changes for particles to relax internally over energy barriers are also discussed in

the framework of localized heating as is used in magnetic nanoparticle hyperthermia. The

dynamics of these magnetic moments undergoing each relaxation mechanism separately are

explored. The two most general approaches (the Langevin equation, or stochastic differential

equation approach, and the Fokker-Planck, or distribution function approach) are illustrated.

These include full variability of nanoparticle parameters as well as thermal fluctuations

induced in a realistic setting. The methods for numerical integration are highlighted, and

readers are directed to valuable sources. However, these equations are difficult and time

consuming to solve, so we also introduce a macroscopic relaxation equation that is useful for

low-frequency Brownian simulations.
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FIG. 2.
Néel and Brownian particles relax differently. The moment can rotate internally to align

with the anisotropy axis n, or the entire particle can rotate.
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FIG. 1.
Two applications for magnetic nanoparticles (a) sensing specific ‘analyte’ biomolecules, and

(b) locally heating through dissipative losses from oscillating particles.
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