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Deterministic processes guide long-term
synchronised population dynamics in replicate
anaerobic digesters
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A replicate long-term experiment was conducted using anaerobic digestion (AD) as a model process
to determine the relative role of niche and neutral theory on microbial community assembly, and to
link community dynamics to system performance. AD is performed by a complex network of
microorganisms and process stability relies entirely on the synergistic interactions between
populations belonging to different functional guilds. In this study, three independent replicate
anaerobic digesters were seeded with the same diverse inoculum, supplied with a model substrate,
a-cellulose, and operated for 362 days at a 10-day hydraulic residence time under mesophilic
conditions. Selective pressure imposed by the operational conditions and model substrate caused
large reproducible changes in community composition including an overall decrease in richness in
the first month of operation, followed by synchronised population dynamics that correlated with
changes in reactor performance. This included the synchronised emergence and decline of distinct
Ruminococcus phylotypes at day 148, and emergence of a Clostridium and Methanosaeta phylotype
at day 178, when performance became stable in all reactors. These data suggest that many dynamic
functional niches are predictably filled by phylogenetically coherent populations over long time
scales. Neutral theory would predict that a complex community with a high degree of recognised
functional redundancy would lead to stochastic changes in populations and community divergence
over time. We conclude that deterministic processes may play a larger role in microbial community
dynamics than currently appreciated, and under controlled conditions it may be possible to reliably
predict community structural and functional changes over time.
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Introduction

A number of ecological theories have been used to
explain observed patterns in microbial community
assembly and dynamics (Sloan et al., 2006; Falk
et al., 2009; Ofiteru et al., 2010; Wang et al., 2013).
Historically, community composition is thought to
be governed by deterministic factors such as inter-
species interactions (for example, competition,
syntrophy and predation) and niche differentiation
(Pholchan et al., 2013; Zhou et al., 2013). According

to this traditional niche-based theory, there is a
strong relationship between taxon traits and the
environment. More recently, an alternative theory
that disregards competition between populations,
neutral theory, has emerged that only considers
stochastic processes such as birth, death, coloni-
sation, immigration, speciation and dispersal
limitations (Sloan et al., 2006; Ofiteru et al., 2010;
Harpole, 2012). Recent studies suggest that both
deterministic and stochastic processes play a role in
structuring microbial communities (Ofiteru et al.,
2010; Caruso et al., 2011); however, because of the
complexity of many natural ecosystems, and asso-
ciated lack of controlled conditions and replicated
experimental design, the mechanisms and factors
that affect microbial diversity and community
assembly remain poorly understood (Zhou et al.,
2013).
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Engineered systems offer a controlled environment
in which to study complex microbial communities,
and together with modern culture-independent
techniques that provide an objective view of
community composition, bioreactors are gaining
popularity as environments for testing ecological
theories (Falk et al., 2009; Zhou et al., 2013). There
is also a growing appreciation of understanding
microbial ecology to improve the efficiency and
robustness of engineered systems (Briones and
Raskin, 2003; Rittmann et al., 2006; Gentile et al.,
2007; Pholchan et al., 2013).

Anaerobic digestion (AD) is a microbially
mediated technology for the degradation and
stabilisation of organic matter, resulting in the
production of energy-rich compounds such as
alcohols, volatile fatty acids (VFAs) and methane.
This process involves four sequential steps:
hydrolysis, fermentation (acidogenesis), acetogenesis
(dehydrogenation) and methanogenesis (acetoclastic
or hydrogenotrophic), that depend on the synergistic
interactions of microorganisms, forming a complex
metabolic network. During hydrolysis and fermenta-
tion, a diverse range of bacteria degrade complex
polymers (carbohydrates, lipids and proteins),
yielding soluble organic molecules (sugars, fatty
acids and amino acids) that are fermented into
short-chain VFAs, alcohols, CO2, H2 and other
by-products. Some of these fermentation products
(acetate, CO2 and H2) can directly be used as
substrates for methanogenesis, whereas others are
first oxidised to CO2 and H2 by acetogenic bacteria
that typically form a syntrophic relationship with
hydrogenotrophic methanogens (Schlüter et al.,
2008; Amani et al., 2010).

Culture-independent molecular techniques have
been used to characterise AD-associated microbial
communities under a range of process configura-
tions, conditions, feedstocks and using different
inocula (Jaenicke et al., 2010; Werner et al., 2010;
Nelson et al., 2011; Pervin et al., 2013). These
studies have provided substantial insight into the
methanogenic populations (Lee et al., 2008b;
Steinberg and Regan, 2011), but the interactions
between and within functional guilds and their link
to reactor performance remain poorly understood.
Functional redundancy is thought to be at the core
of stable reactor performance, as it ensures the
presence of a reservoir of populations able to
perform the same ecological function (Briones and
Raskin, 2003; Rittmann et al., 2006; Allison and
Martiny, 2008; Falk et al., 2009). However, few
studies have examined the relationship between
community dynamics and functional stability in
replicated lab-scale bioreactors, and the existing
studies provide conflicting results (Fernandez et al.,
1999; LaPara et al., 2001; McGuinness et al., 2006;
Gentile et al., 2007). This lack of consensus is likely
because of a combination of variables, including
community complexity, reactor design and opera-
tion (Falk et al., 2009).

In this study, a replicate time series experiment
was performed using AD as a model process to
determine the relative role of deterministic and
stochastic processes on microbial community
assembly and dynamics. The replicate reactors
were seeded with the same diverse inoculum
and were supplied with a sterile model substrate
(a-cellulose). The microbial community composi-
tion was monitored over time and correlated with
reactor performance parameters to develop
a better understanding of the relationship between
community dynamics and functional stability. We
demonstrate that population dynamics in these
complex communities are largely synchronised
over long periods, suggesting that deterministic
rather than stochastic processes drive population
succession when environmental conditions are
normalised.

Materials and methods

Inoculum
Three replicate anaerobic digesters were set up in
parallel and seeded with the same diverse inoculum
(20% v/v) that consisted of a mixture of samples
(equal volatile suspended solids ratios) taken from
eight different anaerobic locations: six well-function-
ing engineered systems (three mesophilic ADs,
thermophilic AD, Upflow Anaerobic Sludge Bioreac-
tor and anaerobic lagoon), and two natural environ-
ments (rumen and lake sediment) (Supplementary
Figure S1 and Supplementary Table S1).

Reactor set-up and operation
The replicate anaerobic digesters (2 l working
volume) were run as semi-continuous completely
mixed reactors with a hydraulic and sludge reten-
tion time of 10 days. This is the minimum retention
time needed to prevent washout of slow-growing
methanogens (Amani et al., 2010) and allows us to
highlight differences in hydrolysis rate by running
the process at an active point on the first order
operating curve (Jensen et al., 2009; based on a
cellulose hydrolysis rate of 0.2 per day; Jensen et al.,
2011). The triplicate reactors were designated AD1,
AD2 and AD3. The temperature was held at 37 1C
(±1 1C) and a pH of 7 was maintained by adding 1 M

NaOH solution. A sterile model substrate was used
as a feedstock to reduce the substrate complexity
and minimise influence of microorganisms
otherwise entering the system through a nonsterile
feed. a-Cellulose (Sigma Aldrich, Castle Hill, NSW,
Australia) was selected because it is the purest and
most polymerised form of cellulose. The sterile
medium consisted of 3 g l� 1 Na2HPO4, 1 g l� 1 NH4Cl,
0.5 g l�1 NaCl, 0.2465 g l�1 MgSO4.7 H2O, 1.5 g l�1

KH2PO4, 14.7 mg l� 1 CaCl2, 2.6 g l�1 NaHCO3,
0.5 g l�1 C3H7NO2S, 0.25 g l� 1 Na2S.9 H2O and 1 ml
of trace solution containing 1.5 g l�1 FeSO4.7 H2O,
0.15 g l�1 H3BO3, 0.03 g l�1 CuSO4.5 H2O, 0.18 g l�1

KI, 0.12 g l� 1 MnCl2.4 H2O, 0.06 g l� 1 Na2Mo4.2 H2O,
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0.12 g l� 1 ZnSO4.7 H2O, 0.15 g l�1 CoCl2.6 H2O,
10 g l� 1 EDTA and 23 mg l�1 NiCl2.6 H2O (Rabaey
et al., 2005). The medium was sparged with N2 and
then autoclaved at 121 1C for 60 min for oxygen
removal and sterilisation, respectively. The pH was
adjusted to B7.2 by addition of HCl (37 vol%).
The reactors were fed semi-continuously with
a-cellulose (5 g cellulose per l medium) four times
daily at 6 hour intervals. During these feed events,
B50 ml of feed was pumped in the systems and
an equal amount of reactor sludge was wasted
simultaneously using multi-head peristaltic pumps
(John Morris Scientific, Brisbane, QLD, Australia).
This resulted in an organic loading rate of 0.5 g
a-cellulose per l reactor volume per day. During the
start-up phase, feeding and wasting was switched
off from day 12 to day 24 (until a sufficient decrease
in VFA concentration was observed) in order to
minimise washout of slow-growing microorganisms
and to allow the biomass in the reactors to increase.
After day 24, the reactors were again fed and wasted
semi-continuously.

Digester performance monitoring
Biogas production was measured continuously from
each digester using tipping bucket gas metres, and
logged daily. Gas composition (CH4, CO2, H2) was
determined by gas chromatography with thermal
conductivity detector (GC-TCD) (Gopalan et al.,
2013). Slurry samples were collected from each
reactor twice per week and analysed for total
chemical oxygen demand (COD), soluble COD
(sCOD) and VFA concentration. Sample preparation
and analyses were performed as described pre-
viously (Ge et al., 2011) and according to standard
methods (APHA, 2005). The extent of cellulose
solubilisation was calculated using the total COD
concentration in the feed and the particulate COD
(pCOD) concentration in the reactor as a proxy for
the residual cellulose concentration.

Sample fixation and fluorescence in situ hybridisation
Samples for fluorescence in situ hybridisation
(FISH) were collected on a weekly basis.
These samples were immediately fixed in 4%

paraformaldehyde for 4 h and washed twice with
1% phosphate-buffered saline solution before
being stored at � 20 1C in a 50:50 mixture of 1%
phosphate-buffered saline and 100% ethanol
(Amann et al., 1995). Cells were hybridised with
universal bacterial and archaeal probes (Amann
et al., 1995) in combination with population-
specific probes targeting Bacteroidales, Clostridiales
and Fibrobacterales populations (Table 1). FISH
preparations were visualised using a Zeiss LSM512
confocal laser scanning microscope (Zeiss, Oberko-
chen, Germany). Brightness, contrast and registra-
tion were modified using Adobe Photoshop 6.0
(Sydney, NSW, Australia).

DNA extraction and 16S rRNA gene amplicon
sequencing
Samples for DNA extraction were taken twice per
week, snap-frozen in liquid nitrogen and stored at
� 80 1C. DNA extractions were performed using
FastDNA Spin kits for Soil (MP Biomedicals
Australasia, Seven Hills, NSW, Australia) according
to the manufacturer’s instructions. DNA quality was
assessed using gel electrophoresis (1% agarose) and
DNA concentrations were measured using Quant-iT
dsDNA BR Assay kits and a Qubit fluorometer (Life
Technologies, Mulgrave, VIC, Australia).

Genomic DNA was extracted from samples taken
from each reactor at 14 time points (days 27, 70, 88,
95, 113, 130, 148, 178, 209, 243, 276, 305, 325 and
362) and 16S rRNA genes were amplified as
described previously (Cayford et al., 2012; Dennis
et al., 2013). Briefly, PCR reactions (50 ml) were
prepared with 20 ng of template DNA, 5ml 10�
buffer, 1 ml dNTP mix (10 mM each), 4 ml 25 mM MgCl,
1ml forward primer (10 mM), 1ml reverse primer
(10 mM), 0.2 ml Taq polymerase and 1.5 ml BSA
(Life Technologies) and 1 ml (10 mM) of each of the
universal primers targeting the V6-V8 region of
the bacterial and archaeal 16S rRNA gene
(Engelbrektson et al., 2010): 926F (50-AAACTYAAA
KGAATTGRCGG-30) and 1392R (50-ACGGGCGG
TGTGTRC-30) modified on the 50 end to contain
454 sequencing adaptor sequences. The reverse
primer also contained a 5–6 base sample-specific

Table 1 Oligonucleotide probes used in fluorescence in situ hybridisation (FISH), their sequences, formamide percentage (FA) and
specificity

Probe Sequence (50–30) FA Specificity Reference

ARC951 FITC GTGCTCCCCCGCCAATTCCT 20 Archaea Stahl and Amann, 1991
EUB338 Cy5 GCTGCCTCCCGTAGGAGT 20 Bacteria
EUB338þ Cy5 GCWGCCACCCGTAGGTGT 20 Daims et al., 1999
Bac1080 Cy3 GCACTTAAGCCGACACCT 20 Bacteroidales Kong et al., 2012
CF319a Cy3 TGGTCCGTGTCTCAGTAC 20
Clo549 Cy3 CAATCATTCCGGACAACG 30 Clostridiales Kong et al., 2012
Ace731 Cy3 TACTGTCCAGATAGCCGC 30
Rum831 Cy3 GGTCAGTCCCCCCACA 30
Fibr225 FITC AATCGGACGCAAGCTCATCCC 20 Fibrobacterales Kong et al., 2012
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barcode sequence. The PCR program included one
cycle at 95 1C for 3 min, followed by 30 cycles at
95 1C for 30 s, 55 1C for 30 s and 75 1C for 30 s, and
then a final extension at 74 1C for 10 min. Post
amplification, amplicons were pooled and
sequenced using the Roche 454 GS-FLX Titanium
platform (Roche Diagnostics, Castle Hill, NSW,
Australia) at the Australian Centre for Ecogenomics.
Sequences were submitted to the National Centre
for Biotechnology Information (NCBI) Short Read
Archive with the following accession numbers:
SRR1175890, SRR1175892, SRR1175894 and
SRR1175897.

Amplicon sequences were quality filtered,
trimmed to 250 base pairs and dereplicated using
the QIIME pipeline (Caporaso et al., 2010). Chimeric
sequences were removed using UCHIME (Edgar
et al., 2011) and Acacia (Bragg et al., 2012) was
used to correct for homopolymer errors. Sequences
were clustered at 97% identity using CD-Hit OTU
(Wu et al., 2011) and cluster representatives were
selected. Sequences were also clustered at 100%
identity with uclust (Edgar, 2010) to compare the
community profiles at a higher phylogenetic resolu-
tion. BLASTn (Altschul et al., 1990) was used to
assign a GreenGenes taxonomy (DeSantis et al.,
2006) to each cluster representative. The 97%
operational taxonomic unit (OTU) data set was
normalised to 1100 sequences per sample and the
100% OTU data set was normalised to 2400
sequences to allow comparison of diversity without
bias from unequal sampling effort. The libraries
were repeatedly subsampled and the number of
OTUs observed at equal number of sequences
between samples (richness) and Simpson’s diversity
indices (evenness) were calculated. A table with
the OTUs corresponding to distinct populations
and their taxonomic assignments (to the lowest
possible level of classification) in each sample was
generated.

Real-time quantitative PCR
Total bacterial and archaeal biomass was estimated
using real-time PCR for the three reactors at the same
14 time points subjected to 16S rRNA gene amplicon
sequencing. The primers 1406F (50-GYACWCA
CCGCCCGT-30) and 1525R (50-AAGGAGGTGWTCC
ARCC-30) were used to amplify bacterial and
archaeal 16S rRNA genes. For inhibition control,
the rpsL F (50-GTAAAGTATGCCGTGTTCGT-30) and
rpsL R (50-AGCCTGCTTACGGTCTTTA-30) primer
set was used that is specific for Escherichia coli
DH10B rRNA. Two dilutions (1/100, 1/1000) were
made of the microbial template DNA and run in
parallel with an inhibition control test using
Escherichia coli DH10B genomic DNA. The PCR
reaction was set up using 5 ml 2� SYBR
Green/AmpliTaq Gold DNA Polymerase mix (Life
Technologies), 4ml template DNA and 1 mM primer
mix (0.4 mM 1406F/1525R, 0.2 mM rpsL F/R) and each

sample was run in triplicate. The PCR program
included one cycle at 95 1C for 10 min, followed by
40 cycles of 95 1C for 15 s and 60 1C for 1 min. A melt
curve was produced by running one cycle at 95 1C
for 2 min and a final cycle at 60 1C for 15 s. The cycle
threshold (Ct) values were recorded and analysed
using ABI SDS 2.4.1 software.

Statistical analyses
All statistical analyses were performed in R Studio
(version 2.15.0) using the R CRAN packages: vegan
(Oksanen et al., 2012), RColowBrewer (Neuwirth,
2011) and shapes (Dryden, 2013). A heatmap
showing relative abundances was generated based
on the OTU table. Hellinger-transformed OTU
abundances (Legendre and Gallagher, 2001), rich-
ness, evenness and performance parameters were
compared between reactors over time using
Tukey’s Honestly Significant Differences tests.
Differences in community composition were further
explored and visualised using complete linkage
hierarchal clustering and principle component
analysis (PCA). Procrustes plots and metrics were
calculated to compare the PCA results for each
replicate. Correlations between microbial commu-
nity composition and performance parameters were
calculated using environmental parameter fitting.

Results

Anaerobic digester performance
Three replicate anaerobic digesters were seeded
with the same inoculum mixture and operated for
362 days with a-cellulose as the sole carbon and
energy source. Based on the pCOD, sCOD and VFA
profiles, three performance phases could be identi-
fied: phase 1—start-up (days 0–81), phase 2—stable
hydrolysis (days 82–160) and phase 3—steady-state
digestion performance (days 161–362) (Figure 1).

After an initial variable start-up phase (phase 1),
the residual pCOD profiles stabilised in the three
reactors (Figure 1a and Table 2), indicating stable
hydrolysis (phase 2). During this phase, the cellu-
lose degradation efficiency was 78±5% and did not
differ between reactors (P40.984). Phase 2 was
characterised by variable sCOD and VFA profiles
(Figures 1c and d) which indicated instability
in fermentation, acetogenesis and/or methanogen-
esis. Also, the sCOD concentrations, VFA profiles
and methane production rate of AD1 differed
significantly (Po0.02, Po0.005 and Po0.001,
respectively) from those of AD2 and AD3 (Figures
1b and f and Table 2). VFA concentrations decrea-
sed with time and ranged between 290
and 1390 mg CODVFA per l for AD1, between 25 and
760 mg CODVFA per l for AD2 and between 40 and
710 mg CODVFA per l for AD3. Total VFA concentra-
tions were tightly linked to the sCOD concentration,
indicating that the majority of soluble products
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(on average 50–75%) were fermented to VFAs. The
main VFA constituents were acetate and propionate,
contributing B92% (0.8:1 acetate to propionate
respectively) of the total VFAs for AD1,
B90% (1.8:1) for AD2 and B91% (1.8:1) for AD3
(Figures 1e and f).

During phase 3, the three reactors converged on a
performance level with no significant differences
in pCOD (P¼ 1.00), sCOD (P40.92) and VFA

concentrations (P¼ 1.00), or methane production
rates (P40.75). The cellulose degradation efficiency
was 78±8% during phase 3. Residual VFA concen-
trations further decreased during phase 3 and
ranged between 8 and 240 mg CODVFA per l for AD1,
between 5 and 90 mg CODVFA per l for AD2 and
between 2 and 80 mg CODVFA per l for AD3
(Figure 1d). The methane production rate in AD1
increased significantly compared to phase 2

Table 2 Operational performance parameters

Reactor Cellulose degradation pCOD sCOD VFA CH4 production rate
(%) (mg COD per l) (mg COD per l) (mg CODVFA per l) (mg CODCH4 per l per day)

Phase 2 Phase 3 Phase 2 Phase 3 Phase 2 Phase 3 Phase 2 Phase 3 Phase 2 Phase 3

AD1 77±5 76±7 1200±240 1300±310 990±370 410±90 750±340 70±70 250±48 450±132
AD2 80±4 81±10 1100±190 1000±510 550±260 390±120 290±220 40±20 360±83 420±137
AD3 76±7 78±8 1300±350 1200±400 520±230 310±80 320±160 30±20 410±68 380±124

Abbreviations: AD, anaerobic digestion; pCOD, particulate chemical oxygen demand; sCOD, soluble chemical oxygen demand; VFA, volatile
fatty acids.
The average values of all performance parameters are given for AD1, AD2 and AD3 during stable hydrolysis and steady-state performance (average
values and s.d. for phases 2 and 3): cellulose degradation, pCOD, sCOD and VFA concentrations and methane production rate.

Figure 1 Reactor performance parameters over time for reactors AD1 (J grey), AD2 (& light grey) and AD3 (B black). Three distinct
phases can be identified (phase 1—start-up, phase 2—stable hydrolysis and phase 3—steady state) showing differences in pCOD
concentration (a), methane production rate (b), sCOD concentration (c), total VFA concentration (d), acetate concentration (e) and
propionate concentration (f). Methane production was measured daily and average methane production rates were calculated on a
weekly basis (error bars represent s.d.).
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(Po0.001) and is consistent with improved conver-
sion of VFA to methane in this reactor. Methane
production also increased for AD2 and decreased for
AD3 (Table 2), but this change was not significant
(P40.65). During all phases, the CH4 content of the
biogas was 63% (±5%) on a volume basis and no H2

was detected.

Microbial community dynamics related to performance
in the ADs
The composition (97% OTUs) and total biomass of
the microbial communities associated with the
replicate ADs were characterised at 14 time points
in order to monitor the development and succession
of populations, and to correlate the community
dynamics to reactor performance parameters. The
inoculum mixture was dominated by methanogens
(53% relative abundance) belonging to the genera
Methanobacterium and Methanosaeta. The most
abundant bacterial populations in the inoculum
belonged to the phyla Bacteroidetes, Proteobacteria,
OP11 and WS6. Upon introduction into the anaerobic
digesters, the microbial community rapidly changed
(Figure 2 and Supplementary Figures S2 and S3) and
decreased in richness (Table 3 and Supplementary
Figure S4). Complete linkage hierarchal clustering
and PCA indicated that the composition of
microbial communities in the digesters differed

between the three phases of reactor operation.
The microbial community composition in all
digesters was highly dynamic over time (Figures 2
and 3 and Supplementary Figure S5) and there was
a significant difference in composition between
phases 2 and 3 (Po0.001). Although minor differ-
ences between the reactor communities could be
observed at individual time points, the communities
were significantly similar within phases (P¼ 0.81).
Similarly, there was no significant difference in the
richness and evenness of the microbial communities
between reactors within a phase (Table 3, P¼ 0.94
and P¼ 0.80, respectively). Procrustes analysis
on the PCAs from each replicate confirmed a

Figure 2 Microbial community composition and synchronised dynamics. This heatmap shows the total biomass estimates and relative
abundance of the most dominant microbial populations (45% relative abundance in at least one of the samples) in the three reactors
(AD1, AD2 and AD3) at 14 time points. Different populations were associated with the three performance phases and changes in
membership occurred in parallel in the three reactors over time. Taxonomy was determined at the phylum level (left column) and at the
lowest possible assignment (right column). H: hydrogenotrophic methanogens; A: acetoclastic methanogens. Darker colour intensity
indicates a higher total biomass estimate (green) or relative abundance (red).

Table 3 Richness and evenness of the microbial communities

Name Richness
(observed OTUs)

Evenness
(Simpson’s diversity index)

Inoculum 201 0.92
AD1 89±16 0.89±0.03
AD2 93±15 0.89±0.06
AD3 93±16 0.89±0.06

Abbreviations: AD, anaerobic digestion; OTU, operational taxonomic
unit.
Richness (observed OTUs) and evenness (Simpsons’s diversity index)
are given for the inoculum mixture and reactors (AD1, AD2 and AD3
averaged over 14 time points) after normalisation of the data to 1100
sequences. Error margins represent s.d. values.
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high correlation (40.8, P¼ 0.001) between the
community compositions (Supplementary Figure
S6 and Supplementary Table S2). Minor differences
in community composition between reactors are
likely explained by operational variability and the
relatively long time between sampling events
(B3 residence times). The estimated biomass in
the reactors fluctuated over time between 6.0� 109

and 4.9� 1010 cells per ml of reactor sample, and
trends in biomass concentration tracked one another
in the three reactors (Figure 2).

The most abundant populations in all reactors
(average relative abundance 44%) belonged to
the bacterial orders Bacteroidales, Clostridiales,
Fibrobacterales and Sphaerochaetales, and the archaeal
orders Methanomicrobiales and Methanosarcinales.
Despite being independent systems, the relative

abundance profiles of these populations were
similar in the three reactors and tracked one another
over time (Figures 2 and 3b and Supplementary
Figure 5S). These synchronised dynamics were also
observed when the community was analysed with
increased resolution (100% OTUs) (Supplementary
Figure S7). Synchronised shifts in population
relative abundance were especially prominent at
the transition between phases 2 and 3 (days
148–178), when reactor performance reached steady
state. Different members of the order Clostridiales
were present at high relative abundance (35±14%)
in the three digesters at all time points and
correlated with higher sCOD and VFA concentra-
tions, and methane production rates (Figure 3a and
Supplementary Figure S8). During phase 2, the
microbial communities dominated by Bacteroidales,

Figure 3 Microbial community dynamics linked to reactor performance. The PCA shows the microbial community composition at the
OTU level (Hellinger transformed) for the three reactors (AD1, AD2 and AD3) at 14 time points. (a) Each sample is symbolised by a single
circle coloured by reactor. The size of the circle increases with time. Individual OTUs are represented as black crosses and the taxonomy
of those contributing most to the variability between community profiles is provided. Environmental parameter fitting was performed to
correlate reactor performance parameters to the community composition and significant correlations are presented by the arrows.
(b) Tracking of the microbial community composition in the three reactors over time, starting from day 88. Each line represents the
trajectory in the PCA plot (based on community structure) of each reactor over time.
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Ruminococcus (a member of the order Clostridiales)
and Sphaerochaetales populations were significantly
correlated with higher sCOD and VFA concentrations
(P¼ 0.001; Figure 3a and Supplementary Figure S8a).
The relative abundance of these populations
decreased between day 88 (phase 2) and day 362
(phase 3) from 25±4.9% to 13±6.4% for Bacteroidales,
19±9.5% to 8±6.4% for Ruminococcus and
9±3.0% to 1±0.9% for Sphaerochaetales. The
relative abundance of a Fibrobacter population
peaked between days 243 and 276 in all reactors,
and was inversely correlated to higher pCOD
concentrations. The relative abundance of methano-
gens increased over time from 14±6.2% at day
88 (phase 2) to 53±11.0% at day 362 (phase 3).
This coincided with a shift in dominance from
a Methanomicrobiales to a Methanosarcinales
population around day 178, and was significantly
correlated to higher methane production rates
(Figures 2 and 3a; P¼ 0.026). Populations belonging
to the orders Desulfobacterales, Desulfovibrionales
and Syntrophobacterales were typically found in
low abundance (0–1.1%), but their relative abun-
dance increased between phases 2 and 3.

Spatial distribution of bacterial and archaeal
community members
FISH probes broadly targeting bacteria and archaea
were used in combination with specific probes to
determine the morphology and spatial distribution
of phylogenetic groups identified in the commu-
nities through 16S rRNA gene amplicon sequencing
(Table 1 and Figure 4). The Bacteroidales-specific
probes (Bac1080 and CF319a) revealed two morpho-
types, straight rods (length 2–4mm) and filaments
(length up to 10 mm), that were more abundant in the
planktonic phase, but were occasionally found
attached to a-cellulose particles. Clostridiales-
(Clo549 and Ace731), Ruminococcus- (Rum831)
and Fibrobacter-specific probes (Fibr225) revealed
large rods (3–5mm), chain-forming cocci (diameter
o1 mm) and short rods (1–2 mm), respectively, that
were predominantly attached to cellulose particles
(Figure 4). In most cases, a-cellulose particles

appeared to be colonised by multiple populations.
Archaeal cells (ARC951) were mainly seen in the
planktonic phase and did not appear to be asso-
ciated with cellulose. Three archaeal morphotypes
could be distinguished, including cocci (single cells
with a diameter of 1–2 mm), clusters of cocci
(diameter 3–7 mm) and rods (3–10 mm). Rod-shaped
archaeal cells also formed large filaments (15–100mm)
or were arranged as a chain within a common sheath
(up to B100mm; Figure 4).

Discussion

Community composition and dynamics linked to
reactor performance
In this study, triplicate anaerobic digesters were run
for 362 days under identical operating conditions
with the same complex inoculum and model
cellulosic feedstock. A diverse community was
present in each reactor with multiple populations
capable of hydrolysing cellulose, fermenting soluble
intermediates and producing methane (Figure 5). By
monitoring the microbial community dynamics and
performance parameters in replicate digesters,
strong correlations between composition and
function were observed.

The reactor communities rapidly shifted away
from the inoculum community profile and con-
verged to a highly similar composition under the
selective pressures imposed by the operating condi-
tions (Figure 2 and Supplementary Figure S2). The
hydraulic residence time was shorter than that of the
source environments of the inocula that initially
caused partial washout of slow-growing microorgan-
isms including methanogens and resulted in reactor
communities dominated by bacteria. The dominant
bacterial phylotypes were present at very low
abundance or were below detection in the inocu-
lum, suggesting that the shorter hydraulic residence
time, mesophilic temperature and simple cellulosic
substrate created specific niches different to the
native inoculum environments. As anticipated,
these selective pressures not only influenced the
community composition but also led to a decrease in
phylotype richness (Table 3).

Figure 4 Morphology and spatial distribution of dominant populations. FISH micrographs are shown of the microbial community from
AD3 on (a) day 88, (b) day 178 and (c) day 362. Universal probes targeting archaea (ARC951, green) and bacteria (EUB338 and EUB338þ ,
blue) were used in combination with population-specific probes targeting Bacteroidales (Bac1080 and CF319a, red), Clostridiales (Clo549
and Ace731, magenta) and Fibrobacterales (Fibr225, cyan). The arrows point to possibly hydrolytic populations attached to cellulose
particles (a, b), and clustering of archaeal rod-shaped cells into a sheathed filament (c).
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The microbial communities in this experiment
were dominated by bacterial populations belonging
to the orders Bacteroidales, Clostridiales, Fibrobacterales
and Sphaerochaetales (Figure 2). The most abun-
dant archaeal populations belonged to the orders
Methanomicrobiales and Methanosarcinales that are
often found separately or together as the dominant
methanogens in anaerobic digesters (Ariesyada
et al., 2007; Jaenicke et al., 2010; Nelson et al.,
2011). Recently, characterisation of the microbial
community composition of 21 full-scale ADs
highlighted dominant populations belonging to the
phyla Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, Chloroflexi and Spirochaetes
(Sundberg et al., 2013). Similarly, a meta-analysis
of all publicly available 16S rRNA gene sequences
from AD-associated microbial communities sup-
plied a variety of feedstocks showed that many
dominant populations belong to the phyla Chloro-
flexi and Proteobacteria (Nelson et al., 2011).
Several representatives of these phyla were detected
in the inoculum (45%), but they were only present
at low relative abundance in the reactors (o1%).

This is likely related to the use of a-cellulose as
model feedstock in this study that reduces the
number of metabolic niches that can be occupied
by hydrolytic and fermentative microorganisms.
Consistent with this finding, it has previously been
observed that the type of substrate strongly influ-
ences the composition of AD microbial communities
(Merlino et al., 2012; Regueiro et al., 2012; Sundberg
et al., 2013; Ziganshin et al., 2013).

Hydrolysis
Populations belonging to the order Bacteroidales
and the genus Ruminococcus were likely the initial
main cellulose degraders, and contributed to stable
hydrolysis during phase 2. As the relative abun-
dance of these populations decreased, members of
the genus Clostridium increased in all reactors,
followed by a shift in dominance to a population
belonging to the genus Fibrobacter. Members of each
of these orders/genera have previously been impli-
cated in cellulose hydrolysis (Bayer et al., 2004;
Jacob-Lopes et al., 2009; Magnuson et al., 2009;

Figure 5 Schematic of the proposed populations involved in the different steps of anaerobic digestion. The circle size represents the
average relative abundance of the populations during phase 2 (blue) and phase 3 (green). During steady-state performance, the functional
guilds are more evenly distributed. The dotted circles represent populations belonging to the genus Clostridium and the orders
Desulfovibrionales, Desulfuromonadales and Synergistales that may be capable of syntrophic metabolism (McDonald et al., 2008). The
arrows indicate the flow of carbon through the system.
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Nelson et al., 2011; Sundberg et al., 2013). FISH
confirmed that these populations were attached to
or in close proximity to cellulose particles
(Figure 4), strengthening the likelihood that these
microorganisms were major cellulose hydrolysers.
As some of these populations were also present in
the planktonic phase, it is hypothesised that
different mechanisms of cellulose degradation may
be used, that is, via extracellular enzymes or by a
cell-attached cellulosome complex which has
previously been observed for Clostridium
cellulovorans (Matano et al., 1994). Several
Bacteroidales and Ruminococcus populations were
significantly correlated to higher VFA concentra-
tions (Figure 3a), consistent with their potential role
in cellulose hydrolysis yielding soluble substrates
for VFA production.

Fermentation
Members of the orders Bacteroidales, Clostridiales
and Sphaerochaetales are known as saccharolytic
chemoorganotrophic heterotrophs (Magnuson et al.,
2009; Jaenicke et al., 2010; Sundberg et al., 2013).
Our results suggest that these populations are the
dominant fermenters in the digesters, supported by
a significant correlation with higher VFA concentra-
tions and high relative abundance of these popula-
tions in the planktonic phase. Clostridiales
populations were also significantly correlated with
higher methane production (Figure 3). Although
members of this order are not capable of producing
methane, they do have diverse metabolic capabil-
ities that yield substrates for methanogenesis,
including cellulose degradation, polysaccharide
fermentation to VFAs, alcohols and hydrogen,
homoacetogenesis and syntrophic acetate oxidation
(Stieb and Schink, 1985; Schnurer et al., 1996; Lee
et al., 2008a; Sundberg et al., 2013). Our results
suggest a possible syntrophic interaction between
specific Clostridiales and methanogenic populations
as they both increased in relative abundance during
steady-state performance, although additional func-
tional data are required to further support this
hypothesis. During phase 3, VFA concentrations
decreased (Figure 1) as the relative abundance of
populations capable of utilising VFAs increased,
such as potentially syntrophic acetogens belonging
to the order Syntrophobacterales that are known to
oxidise acetate and propionate to H2 and CO2

(Muller et al., 2010; Muller et al., 2013).

Methanogenesis
In contrast to hydrolytic and fermentative popula-
tions that have relatively high growth rates (Griffin
et al., 1997), methanogens tend to respond poorly to
a change in operational conditions and short
hydraulic residence time. Stress and partial washout
of methanogenic populations led to an imbalance
between functional guilds during start-up, resulting

in increased VFA concentrations and a corresponding
drop in pH (B6). The latter may have further
inhibited methanogenesis as optimal pH for methane
production varies between pH 7 and 8 (Weiland,
2010). Methanogenesis remained the rate-limiting
step during phase 2, as indicated by high residual
VFA concentrations (Figure 1). During this phase,
the most abundant methanogenic population
belonged to the hydrogenotrophic family Methanos-
pirillaceae. Members of the genus Methanosarcina
were the second most dominant methanogen, likely
explained by their low acetate substrate affinity
and preference for high acetate concentrations
(460 mg l�1; Liu and Whitman, 2008) comparable
to the reactors in phase 2 (average 4200 mg l� 1;
(Figures 1e and 2). FISH confirmed the presence of
this population as the characteristic tetrad clusters.
During phase 3, the methanogens increased in
relative abundance and this was correlated with
higher methane production and lower VFA concen-
trations (Figures 1 and 2). Members of the genus
Methanosaeta thrive at low acetate concentrations
(as low as 0.3–1.2 mg l� 1; Liu and Whitman, 2008)
because of their high acetate substrate affinity,
potentially explaining why they became the most
dominant methanogenic population when acetate
concentrations were low during phase 3 (average
o40 mg l� 1; Figures 1e and 2). Methanosaeta cells
have previously been observed together in a com-
mon sheath (Kamagata and Mikami, 1991, Ma et al.,
2006) and FISH confirmed clustering of these
filaments in the reactors during steady state. The
change in dominant methanogen likely corre-
sponded to a shift in primary methanogenic path-
way in the reactors from hydrogenotrophic to
acetoclastic methanogenesis. The increase in abun-
dance of Methanosaeta correlated with changes in
the bacterial community composition and transition
to steady-state performance; however, the causality
of this relationship is not yet fully understood.
Interestingly, the decrease in the relative abundance
of populations known to be capable of hydro-
genotrophic methanogenesis coincided with an
increased abundance of potentially syntrophic
acetogens. As H2 was not detected, other H2-
scavenging microorganisms may have functioned
as sinks within the reactors. Consistent with this
finding, the relative abundance of sulphate-reducing
bacteria, belonging to the orders Desulfobacterales
and Desulfovibrionales, increased during phase 3.
These bacteria can use the available acetate and H2

(Griffin et al., 1997); however, the low levels of
sulphate present in the medium may have restricted
their abundance and ability to out-compete the
methanogens (Dar et al., 2008).

The increase in functional stability during phase 3
was correlated with a major shift in community
composition on all functional levels and an increased
abundance of possible syntrophic acetogens and
methanogens (Figure 5), suggesting strong microbial
interactions. Despite this functional stability, the
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communities did not increase in similarity over time
(Supplementary Figure S9) and remained dynamic
(Figure 2 and Supplementary Figure S10). It has been
hypothesised that processes and interactions that
promote functional stability result from greater func-
tional redundancy and niche complementation by
ensuring a reservoir of species using parallel pathways
for substrate conversion (Briones and Raskin, 2003).
Based on the composition of the community in the
reactors over time, it is clear that many phylogeneti-
cally diverse populations are capable of fulfilling the
same functional guild within these systems (Figure 5).

Deterministic processes drive microbial community
structure in replicate anaerobic digesters
A major goal of this study was to test the relative
influence of deterministic and stochastic processes
on community assembly and dynamics over the
course of a year using a highly controlled replicated
model system. A complex inoculum of eight natural
and engineered anoxic environments was used to
provide a biologically diverse starting point from
which to monitor convergence or divergence of
communities between reactors over time.

The composition and diversity of the microbial
communities were statistically similar within the
three distinct performance phases. The commu-
nities were dynamic and changes in relative abun-
dance of many phylotypes were synchronised
between reactors over long time scales (Figures 2
and 3). Although the microbial communities in the
replicates showed minor differences at individual
time points, the communities followed equivalent
trajectories in terms of performance and composi-
tion (Figure 3b). Given that the reactors were closed
systems run under identical conditions, the largely
synchronised phylotype dynamics indicate that
reproducible changes in synergistic and competitive
interactions within the community are occurring
under the controlled conditions. Neutral theory, as a
null hypothesis, predicts random drift of popula-
tions under identical conditions because it assumes
that all individuals are ecologically identical
(Harpole, 2012). In this study, we endeavoured to
replicate the bioreactor operating conditions as
closely as possible to identify bona fide random
drift. Our results suggest that multiple populations
capable of fulfilling the same functional niche do
not randomly become dominant in the system;
instead, their abundance appears to be highly
controlled by deterministic processes such as
microbial interactions, substrate availability and
operational conditions. For example, many hydro-
genotrophic methanogens were present in the
inoculum that could have independently come to
dominance in the parallel reactors over the course of
the experiment. Instead, population synchronisa-
tion was observed among this functionally redun-
dant guild (Figure 2 and Supplementary Figure S5).
Our results reject the neutral theory null hypothesis

and suggest that niche differences between popula-
tions have a critical influence on community
assembly and dynamics.

Previous studies have observed reproducible
temporal community dynamics in replicate denitri-
fying reactors (McGuinness et al., 2006), ammonia-
oxidising membrane bioreactors (Falk et al., 2009)
and activated sludge bioreactors (Valentin-Vargas
et al., 2012), suggesting that these systems are not
driven by stochastic processes, but are highly
reproducible and predictable. In contrast, Zhou
et al. (2013) concluded that stochastic assembly of
communities dominated in replicate microbial
electrolysis cell reactors, invoking neutral theory
as the underlying model. The authors suggest that
initial stochastic colonisation of the anodes was
critical to random community drift and allowed
considerable site-to-site variation in community
composition. It was likely that deterministic pro-
cesses influenced subsequent dynamics as there was
a strong link between community structure and
function (Zhou et al., 2013). The population
dynamics in waste water treatment plants have also
been studied and were consistent with neutral
theory which the authors attributed to the open
design and continuous influx of microorganisms
and protozoa (Ofiteru et al., 2010). Our results
suggest that microbial community assembly and
dynamics in highly controlled anaerobic digesters is
primarily driven by deterministic rather than
stochastic processes. This observation also indicates
the importance of high-resolution monitoring of
microbial communities over long time periods to
determine the relative influence of niche and
neutral theory on population dynamics.

Conclusion

In this study, we identified multiple phylogeneti-
cally diverse populations associated with each of
the main steps in AD (hydrolysis, fermentation and
methanogenesis) that appear to have at least some
functional redundancy. However, community
dynamics were strongly linked with reactor perfor-
mance and numerous populations were synchro-
nised over long time periods, suggesting niche
specialisation. This rejects the null hypothesis of
neutral theory and highlights the importance of
deterministic factors such as operational conditions,
substrate availability and interspecies interactions.
It should be noted that 16S amplicon sequencing
only allows community member resolution down to
approximately genus (97% OTU)/species (100%
OTU) level, and it is possible therefore that
undetected stochastic changes occur at the strain
level. Recovery of population genomes from meta-
genomic data (Tyson et al., 2004; Albertsen et al.,
2013) will provide the resolution needed to confirm
the major role for deterministic processes within
these highly controlled, closed replicated systems.
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