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Abstract

Algorithms for Markov boundary discovery from data constitute an important recent development

in machine learning, primarily because they offer a principled solution to the variable/feature

selection problem and give insight on local causal structure. Over the last decade many sound

algorithms have been proposed to identify a single Markov boundary of the response variable.

Even though faithful distributions and, more broadly, distributions that satisfy the intersection

property always have a single Markov boundary, other distributions/data sets may have multiple

Markov boundaries of the response variable. The latter distributions/data sets are common in

practical data-analytic applications, and there are several reasons why it is important to induce

multiple Markov boundaries from such data. However, there are currently no sound and efficient

algorithms that can accomplish this task. This paper describes a family of algorithms TIE* that

can discover all Markov boundaries in a distribution. The broad applicability as well as efficiency

of the new algorithmic family is demonstrated in an extensive benchmarking study that involved

comparison with 26 state-of-the-art algorithms/variants in 15 data sets from a diversity of

application domains.
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1. Introduction

The problem of variable/feature selection is of fundamental importance in machine learning,

especially when it comes to analysis, modeling, and discovery from high-dimensional data

sets (Guyon and Elisseeff, 2003; Kohavi and John, 1997). In addition to the promise of cost

effectiveness (as a result of reducing the number of observed variables), two major goals of

variable selection are to improve the predictive performance of classification/regression

models and to provide a better understanding of the data-generative process (Guyon and

Elisseeff, 2003). An emerging class of filter algorithms proposes solution of the variable

selection problem by identification of a Markov boundary of the response variable of

interest (Aliferis et al., 2010a, 2003a; Mani and Cooper, 2004; Peña et al., 2007;

Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a,b). The Markov boundary M is a

minimal set of variables conditioned on which all the remaining variables in the data set,

excluding the response variable T, are rendered statistically independent of the response

variable T. Under certain assumptions about the learner and the loss function, Markov

boundary is the solution of the variable selection problem (Tsamardinos and Aliferis, 2003),

that is, it is the minimal set of variables with optimal predictive performance for the current

distribution and response variable. Furthermore, in faithful distributions, Markov boundary

corresponds to a local causal neighborhood of the response variable and consists of all its

direct causes, effects, and causes of the direct effects (Neapolitan, 2004; Tsamardinos and

Aliferis, 2003).

An important theoretical result states that if the distribution satisfies the intersection

property (which is defined in Section 2.2), then it is guaranteed to have a unique Markov

boundary of the response variable (Pearl, 1988). Faithful distributions, which constitute a

subclass of distributions that satisfy the intersection property, also have a unique Markov

boundary (Neapolitan, 2004; Tsamardinos and Aliferis, 2003). However, some real-life

distributions contain multiple Markov boundaries and thus violate the intersection property

and faithfulness condition. For example, a phenomenon ubiquitous in analysis of high-

throughput molecular data, known as the “multiplicity” of molecular signatures (i.e.,

different gene/biomarker sets perform equally well in terms of predictive accuracy of

phenotypes) suggests existence of multiple Markov boundaries in these distributions

(Dougherty and Brun, 2006; Somorjai et al., 2003; Aliferis et al., 2010a). Likewise, many

engineering systems such as digital circuits and engines typically contain deterministic

components and thus can lead to multiple Markov boundaries (Gopnik and Schulz, 2007;

Lemeire, 2007).

Related to the above, a distinguished statistician, the late Professor Leo Breiman, in his

seminal work (Breiman, 2001) coined the term “Rashomon effect” that describes the

phenomenon of multiple different predictive models that fit the data equally well. Breiman

emphasized that “multiplicity problem and its effect on conclusions drawn from models

needs serious attention” (Breiman, 2001).

There are at least three practical benefits of algorithms that could systematically discover

from data multiple Markov boundaries of the response variable of interest:
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First, such algorithms would improve discovery of the underlying mechanisms by not

missing causative variables. For example, if a causal Bayesian network with the graph X ←

Y → T → Z is parameterized such that variables X and Y contain equivalent information

about T (see section 2.3 and the work by Lemeire, 2007), then there are two Markov

boundaries of T: {X, Z} and {Y, Z}. If an algorithm discovers only a single Markov

boundary {X, Z}, then it would miss the directly causative variable Y.

Second, such algorithms can be useful in exploring alternative cost-effective but equally

predictive solutions in cases where different variables may have different costs associated

with their acquisition. For example, some variables may correspond to cheaper and safer

medical tests, while other equally predictive variables may correspond to more expensive

and/or potentially unsafe tests. The American College of Radiology maintains

Appropriateness Criteria for Diagnostic Imaging (http://www.acr.org/Quality-Safety/

Appropriateness-Criteria/) that list diagnostic protocols (sets of radiographic procedures/

variables) with the same sensitivity and specificity (i.e., these protocols can be thought of

Markov boundaries of the diagnostic response variable) but different cost and radiation

exposure level. Algorithms for induction of multiple Markov boundaries can be helpful for

de-novo identification of such protocols from patient data.

Third, such algorithms would shed light on the predictor multiplicity phenomenon and how

it affects the reproducibility of predictors. For example, in the domain of high-throughput

molecular analytics, induction of multiple Markov boundaries with subsequent validation in

independent data would allow testing whether multiple and equally predictive molecular

signatures are due to intrinsic information redundancy in the biological networks, small

sample statistical indistinguishability of signatures, correlated measurement noise,

normalization/data preprocessing steps, or other factors (Aliferis et al., 2010a).

Even though there are several well-developed algorithms for learning a single Markov

boundary (Aliferis et al., 2010a, 2003a; Mani and Cooper, 2004; Peña et al., 2007;

Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a,b), little research has been done

in development of algorithms for identification of multiple Markov boundaries. The most

notable advances in the field are stochastic Markov boundary algorithms that involve

running multiple times either a standard or approximate Markov boundary induction

algorithm initialized with a random seed, for example, KIAMB (Peña et al., 2007), EGS-

NCMIGS and EGS-CMIM (Liu et al., 2010b). Another approach exemplified in the EGSG

algorithm (Liu et al., 2010) involves first grouping variables into multiple clusters such that

each cluster (i) has variables that are similar to each other and (ii) contributes “unique”

information about the response variable, and then randomly sampling a representative from

each cluster for the output Markov boundaries. In genomics data analysis, researchers try to

induce multiple variable sets (that sometimes approximate Markov boundaries) via

application of a standard variable selection algorithm to resampled data, for example,

bootstrap samples (Ein-Dor et al., 2005; Michiels et al., 2005; Roepman et al., 2006).

Finally, other bioinformatics researchers proposed a multiple variable set selection algorithm

that iteratively applies a standard variable selection algorithm after removing from the data

all variables that participate in the previously discovered variable sets with optimal

classification performance (Natsoulis et al., 2005). As we will see in Sections 3 and 5 of this
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paper, the above early approaches are either highly heuristic and/or cannot be practically

used to induce multiple Markov boundaries in high-dimensional data sets with relatively

small sample size.

To address the limitations of prior methods, this work presents an algorithmic family TIE*

(which is an acronym for “Target Information Equivalence”) for multiple Markov boundary

induction. TIE* is presented in the form of a generative algorithm and can be instantiated

differently for different distributions. TIE* is sound and can be practically applied in typical

data-analytic tasks. We have previously introduced in the bioinformatics domain a specific

instantiation of TIE* for development of multiple molecular signatures of the phenotype

using microarray gene expression data (Statnikov and Aliferis, 2010a). The current paper

significantly extends the earlier work for general machine learning use. This includes a

detailed description of the generative algorithm, expanded theoretical and complexity

analyses, various instantiations of the generative algorithm and its implementation details,

and an extensive benchmarking study in 15 data sets from a diversity of application

domains.

The remainder of this paper is organized as follows. Section 2 provides general theory and

background. Section 3 lists prior algorithms for induction of multiple Markov boundaries

and variable sets. Section 4 describes the TIE* generative algorithm, traces its execution,

presents specific instantiations, proves algorithm correctness, and analyzes its computational

complexity. This section also introduces a simpler and faster algorithm iTIE* for special

distributions. Section 5 describes empirical experiments with the TIE* algorithm and

comparison with prior methods in simulated and real data. The paper concludes with Section

6 that summarizes main findings, reiterates key principles of TIE* efficiency, demonstrates

how the generative algorithm TIE* can be configured for optimal results, presents

limitations of this study, and outlines directions for future research. The paper includes

several appendices with additional details about our work: Appendix A proves theorems and

lemmas; Appendix B presents parameterizations of example structures; Appendix C

describes and performs theoretical analysis of prior algorithms for induction of multiple

Markov boundaries and variable sets; Appendix D provides details about the TIE* algorithm

and its implementations; Appendix E provides additional details about experiments with

simulated and real data.

2. Background and Theory

This section provides general theory and background.

2.1 Notation and Key Definitions

In this paper upper-case letters in italics denote random variables (e.g., A, B, C) and lower-

case letters in italics denote their values (e.g., a, b, c). Upper-case bold letters in italics

denote random variable sets (e.g., X, Y, Z) and lower-case bold letters in italics denote their

values (e.g., x, y, z). The terms “variables” and “vertices” are used interchangeably. If a

graph contains an edge X → Y, then X is a parent of Y and Y is a child of X. A vertex X is a

spouse of Y if they share a common child vertex. An undirected edge X – Y denotes an

adjacency relation between X and Y (i.e., presence of an edge directly connecting X and Y).
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A path p is a set of consecutive edges (independent of the direction) without visiting a

vertex more than once. A directed path p from X to Y is a set of consecutive edges with

direction “→” connecting X with Y, that is, X → … → Y. X is an ancestor of Y (and Y is a

descendant of X) if there exists a directed path p from X to Y. A directed cycle is a nonempty

directed path that starts and ends on the same vertex X. Three classes of graphs are

considered in this work: (i) directed graphs: graphs where vertices are connected only with

edges “→”; (ii) directed acyclic graphs (DAGs): graphs without directed cycles and where

vertices are connected only with edges “→”; and (iii) ancestral graphs: graphs without

directed cycles and where vertices are connected with edges “→” or “↔” (an edge X ↔ Y

implies that X is not an ancestor of Y and Y is not an ancestor of X).

When the two sets of variables X and Y are conditionally independent given a set of

variables Z in the joint probability distribution , we denote this as X ⊥ Y | Z. For notational

convenience, conditional dependence is defined as absence of conditional independence and

denoted as X  Y | Z . Two sets of variables X and Y are considered independent and denoted

as X ⊥ Y , when X and Y are conditionally independent given an empty set of variables.

Similarly, the dependence of X and Y is defined and denoted as X  Y.

We further refer the readers to the work by Glymour and Copper (1991), Neapolitan (2004),

Pearl (2009) and Spirtes et al. (2000) to review the standard definitions of collider, blocked

path, d-separation, m-separation, Bayesian network, causation, direct/indirect causation, and

causal Bayesian network that are used in this work. Below we state several essential

definitions:

Definition 1 Local Markov condition: The joint probability distribution  over variables V
satisfies the local Markov condition for a directed acyclic graph (DAG)  if and

only if for each W in V, W is conditionally independent of all variables in V excluding

descendants of W given parents of W (Richardson and Spirtes, 1999).

Definition 2 Global Markov condition: The joint probability distribution  over variables

V satisfies the global Markov condition for a directed graph (ancestral graph)  if

and only if for any three disjoint subsets of variables X, Y, Z from V, if X is d-separated (m-

separated) from Y given Z in  then X is independent of Y given Z in  (Richardson and

Spirtes, 1999, 2002).

It follows that if the underlying graph  is a DAG, then the global Markov condition is

equivalent to the local Markov condition (Richardson and Spirtes, 1999).

Finally, we provide several definitions of the faithfulness condition. This condition is

fundamental for causal discovery and Markov boundary induction algorithms.

Definition 3 DAG-faithfulness: If all and only the conditional independence relations that

are true in  defined over variables V are entailed by the local Markov condition applied to

a DAG , then  and  are DAG-faithful to one another (Spirtes et al., 2000).

The following definition extends DAG-faithfulness to any directed or ancestral graphs:
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Definition 4 Graph-faithfulness: If all and only the conditional independence relations that

are true in  defined over variables V are entailed by the global Markov condition applied to

a directed or ancestral graph , then  and  are graph-faithful to one another.

A relaxed version of the standard faithfulness assumption is given in the following

definition:

Definition 5 Adjacency faithfulness: Given a directed or ancestral graph  and

a joint probability distribution  defined over variables V,  and  are adjacency faithful to

one another if every adjacency relation between X and Y in  implies that X and Y are

conditionally dependent given any subset of V \ {X, Y} in  (Ramsey et al., 2006).

The adjacency faithfulness assumption can be relaxed to focus on the specific response

variable of interest:

Definition 6 Local adjacency faithfulness: Given a directed or ancestral graph

 and a joint probability distribution  defined over variables V,  and  are

locally adjacency faithful with respect to T if every adjacency relation between T and X in

 implies that T and X are conditionally dependent given any subset of V \ {T, X} in 

2.2 Basic Properties of Probability Distributions

The following theorem provides a set of useful tools for theoretical analysis of probability

distributions and proofs of correctness of Markov boundary algorithms. It is stated similarly

to the work by Peña et al. (2007) and its proof is given in the book by Pearl (1988).

Theorem 1 Let X, Y, Z, and W be any four subsets of variables from V.1 The following five

properties hold in any joint probability distribution  over variables V:

• Symmetry: X ⊥ Y | Z ⇔ Y ⊥ X | Z,

• Decomposition: X ⊥ (Y ∪ W) | Z ⇒ X ⊥ Y | Z and X ⊥ W | Z,

• Weak union: X ⊥ (Y ∪ W) | Z ⇒ X ⊥ Y | (Z ∪ W),

• Contraction: X ⊥ Y | Z and X ⊥ W | (Z ∪ Y) ⇒ X ⊥ (Y ∪ W) | Z,

• Self-conditioning: X ⊥ Z | Z.

If  is strictly positive, then in addition to the above five properties a sixth property holds:

• Intersection: X ⊥ Y | (Z ∪ W) and X ⊥ W | (Z ∪ Y) ⇒ X ⊥ (Y ∪ W) | Z.

If  is faithful to , then  satisfies the above six properties and:

• Composition: X ⊥ Y | Z and X ⊥ W | Z ⇒ X ⊥ (Y ∪ W) | Z.

The definition given below provides a relaxed version of the composition property that will

be used later in the theoretical analysis of Markov boundary induction algorithms.

1Pearl originally provided this theorem for disjoint sets of variables (Pearl, 1988). However, he stated that the disjoint requirement is
made for the sake of clarity, and that the theorem can be extended to include overlapping subsets as well.
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Definition 7 Local composition property: Let X, Y, Z be any three subsets of variables

from V. The joint probability distribution  over variables V satisfies the local composition

property with respect to T if T ⊥ X|Z and T ⊥ Y |Z ⇒ T ⊥ (X ∪ Y)|Z.

2.3 Information Equivalence

In this subsection we review relevant information equivalence theory (Lemeire, 2007). We

first formally define information equivalence that leads to violations of the intersection

property and eliminates uniqueness of the Markov boundary (see next subsection). We then

describe distributions that have information equivalence relations and point to a theoretical

result that characterizes violations of the intersection property.

Definition 8 Equivalent information: Two subsets of variables X and Y from V contain

equivalent information about a variable T iff the following conditions hold: T  X, T  Y, T

⊥ X | Y and T ⊥ Y | X.

It follows from the definition of equivalent information and the definition of mutual

information (Cover and Thomas, 1991) that both X and Y contain the same information

about T, that is, mutual information I(X, T) = I(Y,T) (Lemeire, 2007).

Information equivalences can result from deterministic relations. For example, if we

consider a Bayesian network with the graph  that is parameterized such that X =

AND(A, B) and T  X, then {X} and {A, B} contain equivalent information with respect to T

according to the above definition. However, information equivalences follow from a broader

class of relations than just deterministic ones (see Example 2 and Figure 1 in the next

subsection). We thus define the notion of equivalent partition that was originally introduced

in the work by Lemeire (2007). To do so we first provide the definition of T-partition:

Definition 9 T-partition: The domain of X, denoted by Xdom, can be partitioned into

disjoint subsets  for which P(T | x) is the same for all . We call this the T-

partition of Xdom. We define κT(X) as the index of the subset of the partition.

Accordingly, the conditional distribution can be rewritten solely based on the index of T-

partition, that is, P(T | X) = P(T | κT(X)).

Definition 10 Equivalent partition: A relation  (where the “×” operator denotes the

Cartesian product) defines an equivalent partition in Ydom to a partition of Xdom if:

• for any x1 and x2 ∈ Xdom that do not belong to the same partition and for any y1 ∈

Ydom with , it must be that .

• for all subsets  of the partition,  and ∃y1 ∈ Ydom such that .

In other words, for an equivalent partition, every partition  corresponds to a partition

. If an element of Ydom is related to an element of partition Xdom, then it is not related to

an element of another partition, and each partition of Xdom has at least one element that is

related to a partition of Ydom. An example of an equivalent partition is provided in Figure 1

in the next subsection.
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In the following theorem the concept of equivalent partition is used to characterize

violations of the intersection property; the proof of this theorem is given in the work by

Lemeire (2007).

Theorem 2 If T  X and T ⊥ Y | X then T ⊥ X | Y if and only if the relation  defined by

P(x,y) > 0 with x∈ Xdom and y ∈ Ydom defines an equivalent partition in Ydom to the T-

partition of Xdom.

It is worthwhile to mention that the above definitions of T-partition, equivalent partition, and

Theorem 2 can be trivially extended to sets of variables instead of individual variables X and

Y.

Next we provide two more definitions of equivalent information that take into consideration

values of other variables and also lead to violations of the intersection property.

Definition 11 Conditional equivalent information: Two subsets of variables X and Y from

V contain equivalent information about a variable T conditioned on a non-empty subset of

variables W iff the following conditions hold T  X | W, T  Y | W, T ⊥ X | (Y ∪ W), and T

⊥ Y | (X ∪ W).

Definition 12 Context-independent equivalent information: Two subsets of variables X and

Y from V contain context-independent equivalent information about a variable T iff X and Y
contain equivalent information about T conditioned on any subset of variables V \(X ∪ Y ∪

{T}).

Finally, we point out that, in general, equivalent information does not always imply context-

independent equivalent information. However, equivalent information due to deterministic

relations always implies context-independent equivalent information.

2.4 Markov Boundary Theory

In this subsection we first define the concepts of Markov blanket and Markov boundary and

theoretically characterize distributions with multiple Markov boundaries of the same

response variable. Then we provide examples of such distributions and demonstrate that the

number of Markov boundaries can even be exponential in the number of variables in the

underlying network. We also state and prove theoretical results that connect the concepts of

Markov blanket and Markov boundary with the data-generative graph. Finally, we define

optimal predictor and prove a theorem that links the concept of Markov blanket with optimal

predictor.

Definition 13 Markov blanket: A Markov blanket M of the response variable T ∈ V in the

joint probability distribution  over variables V is a set of variables conditioned on which

all other variables are independent of T, that is, for every X ∈ (V \M\{T}), T ⊥ X | M.

Trivially, the set of all variables V excluding T is a Markov blanket of T. Also one can take a

small Markov blanket and produce a larger one by adding arbitrary (predictively redundant

or irrelevant) variables. Hence, only minimal Markov blankets are of interest.
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Definition 14 Markov boundary: If no proper subset of M satisfies the definition of

Markov blanket of T, then M is called a Markov boundary of T.

The following theorem states a sufficient assumption for the uniqueness of Markov

boundaries and its proof is given in the book by Pearl (1988).

Theorem 3 If a joint probability distribution  over variables V satisfies the intersection

property, then for each X ∈ V, there exists a unique Markov boundary of X.

Since every joint probability distribution  that is faithful to  satisfies the intersection

property (Theorem 1), then there is a unique Markov boundary in such distributions

according to Theorem 3. However, Theorem 3 does not guarantee that Markov boundaries

will be unique in distributions that do not satisfy the intersection property. In fact, as we will

see below, Markov boundaries may not be unique in such distributions.

The following two lemmas allow us to explicitly construct and verify multiple Markov

blankets and Markov boundaries when the distribution violates the intersection property

(proofs are given in Appendix A).

Lemma 1 If M is a Markov blanket of T that contains a set Y, and there is a subset of

variables Z such that Z and Y contain context-independent equivalent information about T,

then Mnew = (M\Y)∪Z is also a Markov blanket of T.

Lemma 2 If M is a Markov blanket of T and there exists a subset of variables Mnew ⊆ V \

{T} such that T ⊥ M | Mnew, then Mnew is also a Markov blanket of T.

The above lemmas also hold when M is a Markov boundary and immediately imply that

Mnew is a Markov boundary assuming minimality of this subset.

The following three examples provide graphical structures and related probability

distributions where multiple Markov boundaries exist. Notably, these examples also

demonstrate that multiple Markov boundaries can exist even in large samples. Thus it is not

an exclusively small-sample phenomenon, as it was postulated by earlier research (Ein-Dor

et al., 2005, 2006).

Example 1 Consider a joint probability distribution  described by a Bayesian network with

graph A → B → T where A, B, and T are binary random variables that take values {0,1}.

Given the local Markov condition, the joint probability distribution can be defined as

follows: P(A = 0) = 0.3, P(B=0 |A=1)=1.0, P(B=1 |A=0)=1.0, P(T=0 | B=1)=0.2, P(T=0 |

B=0)=0.4. Two Markov boundaries of T exist in this distribution: {A} and {B}.

Example 2 Figure 1 shows a graph of a causal Bayesian network and constraints on its

parameterization.2 As can be seen, there is an equivalent partition in the domain of A to the

T-partition of the domain of B. The following hold in any joint probability distribution of a

causal Bayesian network that satisfies the constraints in the figure:

2This example has been previously published in the work by Statnikov and Aliferis (2010a) and is presented here with the intent to
illustrate the definition of equivalent partition.
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• A and B are not deterministically related, yet they contain equivalent information

about T;

• There are two Markov boundaries of T ({A, C} and {B, C});

• If an algorithm selects only one Markov boundary of T (e.g., {B, C}), then there is

danger to miss causative variables (i.e., direct cause A) and focus instead on

confounded ones (i.e., B);

• The union of all Markov boundaries of T includes all variables that are adjacent

with T ({A, C}).

Example 3 Consider a Bayesian network shown in Figure 2. It involves n + 1 binary

variables: X1,X2,…,Xn and a response variable T. Variables Xi can be divided into m groups

such that any two variables in a group contain context-independent equivalent information

about T. Assume that n is divisible by m. Since there are n/m variables in each group, the

total number of Markov boundaries is (n/m)m. Now assume that k = n/m. Then the total

number of Markov boundaries is km. Since k > 1 and m = O(n), it follows that the number of

Markov boundaries grows exponentially in the number of variables in this example.

Now we provide theoretical results that connect the concepts of Markov blanket and Markov

boundary with the underlying causal graph. Theorem 4 was proved in the work by

Neapolitan (2004) and Pearl (1988), Theorem 5 was proved in the work by Neapolitan

(2004) and Tsamardinos and Aliferis (2003), and the proof of Theorem 6 is given in

Appendix A.

Theorem 4 If a joint probability distribution  satisfies the global Markov condition for

directed graph , then the set of children, parents, and spouses of T is a Markov blanket of

T.

Theorem 5 If a joint probability distribution  is DAG-faithful to , then the set of children,

parents, and spouses of T is a unique Markov boundary of T.

Theorem 6 If a joint probability distribution  satisfies the global Markov condition for

ancestral graph , then the set of children, parents, and spouses of T, and vertices connected

with T or children of T by a bi-directed path (i.e., only with edges “↔”) and their respective

parents is a Markov blanket of T.

A graphical illustration of Theorem 6 is provided in Figure 3.

Definition 15 Optimal predictor: Given a data set  (a sample from distribution ) for

variables V, a learning algorithm , and a performance metric  to assess learner's models,

a variable set X ⊆ V \{T} is an optimal predictor of T if X maximizes the performance

metric  for predicting T using learner  in the data set .

The following theorem links together the definitions of Markov blanket and optimal

predictor, and its proof is given in Appendix A.
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Theorem 7 If  is a performance metric that is maximized only when P(T | V \{T}) is

estimated accurately3 and  is a learning algorithm that can approximate any conditional

probability distribution,4 then M is a Markov blanket of T if and only if it is an optimal

predictor of T.

2.5 Prior Algorithms for Learning a Single Markov Boundary

The Markov boundary algorithm IAMB is described in Figure 4 (Tsamardinos and Aliferis,

2003; Tsamardinos et al., 2003a). Originally, this algorithm was proved to be correct (i.e.,

that it identifies a Markov boundary) if the joint probability distribution  is DAG-faithful

to . Then it was proved to be correct when the composition property holds (Peña et al.,

2007). The following theorem further relaxes conditions sufficient for correctness of IAMB,

requiring that only the local composition property holds; the proof is given in Appendix A.

Theorem 8 IAMB outputs a Markov boundary of T if the joint probability distribution 

satisfies the local composition property with respect to T.

Notice that IAMB identifies a Markov boundary of T by essentially implementing its

definition and conditioning on the entire Markov boundary when testing variables for

independence from the response T. Conditioning on the entire Markov boundary may

become especially problematic in discrete data where the sample size required for high-

confidence statistical tests of conditional independence grows exponentially in the size of

the conditioning set. This in part motivated the development of the sample-efficient Markov

boundary induction algorithmic family Generalized Local Learning, or GLL (Aliferis et al.,

2010a). Figure 5 presents the Semi-Interleaved HITON-PC algorithm (Aliferis et al., 2010a),

an instantiation of the GLL algorithmic family that we will use in the present paper.

Originally, Semi-Interleaved HITON-PC was proved to correctly identify a set of parents

and children of T in the Bayesian network  if the joint probability distribution 

is DAG-faithful to  and the so-called symmetry correction is not required (Aliferis et al.,

2010a). The algorithm also retains its correctness for identification of a Markov boundary of

T under more relaxed assumptions stated in Theorem 9 (proof is given in Appendix A).

Theorem 9 Semi-Interleaved HITON-PC outputs a Markov boundary of T if there is a

Markov boundary of T in the joint probability distribution  such that all its members are

marginally dependent on T and are also conditionally dependent on T, except for violations

of the intersection property that lead to context-independent information equivalence

relations.

Theorem 9 can be also restated and proved using sufficient assumptions that are motivated

by the common assumptions in the causal discovery literature: (i) the joint probability

distribution  and directed or ancestral graph  are locally adjacency faithful with respect to

T with the exception of violations of the intersection property that lead to context-

3For example,  can be negative mean squared error between estimated and true values of P(T | V \{T}) (Tsamardinos and Aliferis,
2003).
4For example,  can be feed-forward neural networks or support vector machines that are known to have universal approximation
capabilities (Hammer and Gersmann, 2003; Pinkus, 1999; Scarselli and Chung Tsoi, 1998).
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independent information equivalence relations; (ii)  satisfies the global Markov condition

for ; (iii) the set of vertices adjacent with T in  is a Markov blanket of T.

The proofs of correctness for the Markov boundary algorithms in Theorems 8 and 9

implicitly assume that the statistical decisions about dependence and independence are

correct. This requirement is satisfied when the data set  is a sufficiently large i.i.d.

(independent and identically distributed) sample of the underlying probability distribution .

When the sample size is small, the statistical tests of independence will incur type I and II

errors. This may affect the correctness of the algorithms output Markov boundary.

In the empirical experiments of this work, we use Semi-Interleaved HITON-PC without

“symmetry correction” as a primary method for Markov boundary induction because prior

research has demonstrated empirical superiority of this algorithm compared to the version

with the “symmetry correction”; the GLL-MB family of algorithms (including Semi-

Interleaved HITON-MB) that can identify Markov boundary members that are non-adjacent

spouses of T (and thus may be marginally independent with T); IAMB algorithms

(Tsamardinos et al., 2003a); and other comparator Markov boundary induction methods

(Aliferis et al., 2010a,b).

3. Prior Algorithms for Learning Multiple Markov Boundaries and Variable

Sets

Table 1 summarizes the properties of prior algorithms for learning multiple Markov

boundaries and variable sets, while a detailed description of the algorithms and their

theoretical analysis is presented in Appendix C. As can be seen, there is no algorithm that is

simultaneously theoretically correct, complete, computationally and sample efficient, and

does not rely on extensive parameterization. This was our motivation for introducing the

TIE* algorithmic family that is described in Section 4.

We would like to note that not all algorithms listed in Table 1 are designed for identification

of Markov boundaries; methods Resampling+RFE, Resampling+UAF, and IR-SPLR are

designed for variable selection. However, sometimes variable sets output by these methods

can approximate Markov boundaries, that is why we included these methods in our study

(Aliferis et al., 2010a,b).

4. TIE*: A Family of Multiple Markov Boundary Induction Algorithms

In this section we present a generative anytime algorithm TIE* (which is an acronym for

“Target Information Equivalence”) for learning from data all Markov boundaries of the

response variable. This generative algorithm describes a family of related but not identical

algorithms which can be seen as instantiations of the same broad algorithmic principles. We

decided to state TIE* as a generative algorithm in order to facilitate a broader understanding

of this methodology and devise formal conditions for correctness not only at the algorithm

level but also at the level of algorithm family. The latter is achieved by specifying the

general set of assumptions (admissibility rules) that apply to the generative algorithm and

provide a set of flexible tools for constructing numerous algorithmic instantiations, each of
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which is guaranteed to be correct. This methodology thus significantly facilitates

development of new correct algorithms for discovery of multiple Markov boundaries in

various distributions.

4.1 Pseudo-Code and Trace

The pseudo-code of the TIE* generative algorithm is provided in Figure 6. On input TIE*

receives (i) a data set  (a sample from distribution ) for variables V, including a response

variable T; (ii) a single Markov boundary induction algorithm ; (iii) a procedure  to

generate data sets  from the so-called embedded distributions that are obtained by

removing subsets of variables from the full set of variables V in the original distribution ;

and (iv) a criterion  to verify Markov boundaries of T. The inputs , ,  are selected to

be suitable for the distribution at hand and should satisfy admissibility rules stated in Figure

7 for correctness of the algorithm (see next two subsections for details). The algorithm

outputs all Markov boundaries of T that exist in the distribution .

In step 1, TIE* uses a Markov boundary induction algorithm  to learn a Markov boundary

M of T from the data set  for variables V (i.e., in the original distribution). Then M is

output in step 2. In step 4, the algorithm uses a procedure  to generate a data set  that

spans over a subset of variables that participate in . The motivation is that  may lead to

identification of a new Markov boundary of T that was previously “invisible” to a single

Markov boundary induction algorithm because it was “masked” by another Markov

boundary of T. Next, in step 5 the Markov boundary algorithm  is applied to , resulting

in a Markov boundary Mnew in the embedded distribution. If Mnew is also a Markov

boundary of T in the original distribution according to criterion , then Mnew is output (step

6). The loop in steps 3–7 is repeated until all data sets  generated by procedure  have

been considered.

Next we provide a high-level trace of the algorithm. Consider running an instance of the

TIE* algorithm with admissible inputs , ,  implemented by an oracle in the data set 

generated from the example causal Bayesian network shown in Figure 8.5 The response

variable T is directly caused by C, D, E, and F. The underlying distribution is such that

variables A and C contain equivalent information about T; likewise two variables {D,E}

jointly and a single variable B contain equivalent information about T. In step 1 of TIE*

(Figure 6), a Markov boundary induction algorithm  is applied to learn a Markov boundary

of T, resulting in M = {A,B,F}. Then M is output in step 2. In step 4, a procedure 

considers removing G = {F} and generates a data set  for variables V \ G. Then in step 5

the Markov boundary induction algorithm  is run on the data set . This yields a Markov

boundary of T in the embedded distribution Mnew = {A,B}. The criterion  in step 6 does not

confirm that Mnew is also Markov boundary of T in the original distribution; thus Mnew is

not output. The loop is run again. In step 4 the procedure  considers removing G = {A}

and generates a data set  for variables V \ G. The Markov boundary induction algorithm

 in step 5 yields a Markov boundary of T in the embedded distribution Mnew = {C,B,F}.

5Specific examples of inputs , ,  are given in the next subsection and are omitted here in order to emphasize core algorithmic
principles of TIE*.
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The criterion  in step 6 confirms that Mnew is also a Markov boundary in the original

distribution, thus it is returned. Similarly, when the Markov boundary induction algorithm 

is run on the data set  where G = {B} or G = {A,B}, two additional Markov

boundaries of T in the original distribution, {A,D,E,F} or {C,D,E,F}, respectively, are found

and output. The algorithm terminates shortly. In total, four Markov boundaries of T are

output by the algorithm: {A,B,F}, {C,B,F}, {A,D,E,F} and {C,D,E,F}. These are exactly all

Markov boundaries of T that exist in the distribution.

4.2 Specific Instantiations

In this subsection we give several specific instantiations of the generative algorithm TIE*

(Figure 6) and in the next subsection we prove their admissibility (i.e., that they satisfy rules

stated in Figure 7). An instantiation of TIE* is specified by assigning its inputs , ,  to

well-defined algorithms.

Input : This is a Markov boundary induction algorithm. For example, we can use IAMB

(Figure 4) or Semi-Interleaved HITON-PC (Figure 5) algorithms that were described in

Section 2.5. Other sound Markov boundary induction algorithms can be used as well

(Aliferis et al., 2010a, 2003a; Mani and Cooper, 2004; Peña et al., 2007; Tsamardinos and

Aliferis, 2003; Tsamardinos et al., 2003a,b).

Input : This is a procedure to generate data sets from the embedded distributions that

would allow identification of new Markov boundaries of T. Before we give specific

examples of this procedure, it is worthwhile to understand its use in TIE*. The main

principle of TIE* is to first identify a Markov boundary of T in the original distribution and

then iteratively run a Markov boundary induction algorithm in data sets from the embedded

distributions (that are obtained by removing subsets of variables from M) in order to identify

new Markov boundaries in the original distribution. Generating such data sets from the

embedded distributions is the purpose of procedure . The reason why we need to remove

subsets of variables from the original data and rerun Markov boundary induction algorithm

in the data set  is because some variables “mask” Markov boundaries during

operation of conventional single Markov boundary induction algorithms by rendering some

of the Markov boundary members conditionally independent of T. One possible approach is

to generate data sets by removing subsets of the original Markov boundary, or, more

broadly, subsets from all currently identified Markov boundaries. The procedure termed IGS

(which is an acronym for “Incremental Generation of Subsets”) implements the above stated

approach and is described in Figure 9.6

Below and in Table 2 we revisit the trace of TIE* that was given in the previous subsection,

now focusing on the operation of the procedure IGS ( ) from Figure 9. Recall that

6To retain simplicity of the TIE* pseudo-code (Figure 6), we implicitly assume that  are stored during operation of the
generative algorithm TIE*. This can be implemented by setting a counter of all identified Markov boundaries in the original
distribution (i) and a counter of all identified Markov boundaries in the embedded distribution that are not Markov boundaries the

original distribution (j). Then the following assignments should be made: M1←M and  after step 1 of TIE*;M←Mnew and

 in step 6 of TIE* if Mnew is a Markov boundary in the original distribution; and  in step 6 of TIE* if Mnew is
not a Markov boundary in the original distribution.
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application of the Markov boundary induction algorithm in step 1 of TIE* resulted in M =

{A,B,F}. In step 4 of TIE*, the procedure IGS can generate data sets  from the

embedded distributions by removing any of the three possible subsets G = {A} or {B} or

{F} from V (it will not consider larger subsets because of the requirement of the smallest

subset size in step 1 of IGS, see Figure 9). Recall that next we considered a data set 

obtained by removing G = {F} and identified via algorithm  a Markov boundary in the

embedded distribution Mnew ={A,B} that did not turn out to be a Markov boundary in the

original distribution. When the procedure IGS is executed in the following iterations of steps

3–7, it will never generate data set  without {F} because  and we require that G

does not include  for j = 1,…,m. In the next iteration, IGS can generate two possible data

sets  by removing G = {A} or {B} from V. In order to be consistent with our previous

trace, assume that the procedure IGS output a data set  obtained by removing G = {A}

which led to identification of a new Markov boundary both in the original and embedded

distribution Mnew={C,B,F}. When the procedure IGS is executed in the next iteration, it will

generate a data set  by removing a subset G = {B} from V (all other subsets will have two

or more variables and thus will not be considered). This would lead to identification of a

new Markov boundary both in the original and embedded distribution Mnew ={A,D,E,F}.

When the procedure IGS is executed in the next iteration, it can generate data sets  by

removing G ={A,B} or{A,C} or {B,D} or {B,E} from V. Assume that the procedure

generated a data set  by removing G ={A,B}, which would lead to identification of a new

Markov boundary both in the original and embedded distribution Mnew ={C,D,E,F}. Several

more iterations will follow, but no new Markov boundaries in the original distribution will

be identified (see Table 2 for one more iteration), and TIE* will terminate.

As it follows from the above example, we may have several possibilities for the subset G
(and thus for defining a data set ) in the procedure IGS and we need to define rules in

order to select a single subset. We therefore provide three specific implementations of the

procedure IGS:

• IGS-Lex (“Lex” stands for “lexicographical”): Procedure IGS from Figure 9 where

one chooses a subset G with the smallest lexicographical order of its variables;

• IGS-MinAssoc (“MinAssoc” stands for “minimal association”): Procedure IGS

from Figure 9 where one chooses a subset G with the smallest association with the

response variable T;

• IGS-MaxAssoc (“MaxAssoc” stands for “maximal association”): Procedure IGS

from Figure 9 where one chooses a subset G with the largest association with the

response variable T.

The above three instantiations of the procedure IGS may lead to different traces of the TIE*

algorithm, however the final output of the algorithm will be the same (it will discover all

Markov boundaries of T).

Input : This is a criterion that can verify whether Mnew, a Markov boundary in the

embedded distribution (that was found by application of the Markov boundary induction

algorithm  in step 5 of TIE* to the data set ) is also a Markov boundary in the original
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distribution. In other words, it is a criterion to verify the Markov boundary property of Mnew

in the original definition. For example, we can use the following two criteria given in

Figures 10 and 11. Criterion Independence from Figure 10 is closely related to the definition

of the Markov boundary, and essentially implies its verification. Criterion Predictivity from

Figure 11 verifies Markov boundaries by assessing their predictive (classification or

regression) performance using some learning algorithm and performance metric.

Appendix D provides two concrete admissible instantiations of the generative algorithm

TIE*(admissibility follows from theoretical results presented in the next subsection). The

instantiation in Figure 17 is obtained using  = Semi-Interleaved HITON-PC,  = IGS,  =

Predictivity. The instantiation in Figure 18 is obtained using  = Semi-Interleaved HITON-

PC,  = IGS,  = Independence. Appendix D also gives practical considerations for

computer implementations of TIE*.

4.3 Analysis of the Algorithm Correctness

In this subsection we state theorems about correctness of TIE* and its specific instantiations

that were described in the previous subsection and Appendix D. The proofs of all theorems

are given in Appendix A.

First we show that the generative algorithm TIE* is sound and complete:

Theorem 10 The generative algorithm TIE* outputs all and only Markov boundaries of T

that exist in the joint probability distribution  if the inputs  are admissible (i.e.,

satisfy admissibility rules in Figure 7).

Now we show that IAMB (Figure 4) and Semi-Interleaved HITON-PC (Figure 5) are

admissible Markov boundary algorithms for TIE* under sufficient assumptions. In the case

of the IAMB algorithm, the sufficient assumptions for TIE* admissibility are the same as

sufficient assumptions for the general algorithm correctness (see Theorem 8). This leads to

the following theorem.

Theorem 11 IAMB is an admissible Markov boundary induction algorithm for TIE* (input

) if the joint probability distribution  satisfies the local composition property with respect

to T.

However, the sufficient assumptions for the general correctness of Semi-Interleaved

HITON-PC (Theorem 9) are not sufficient for TIE* admissibility and require further

restriction. Specifically, we need to require that all members of all Markov boundaries retain

marginal and conditional dependence on T, except for certain violations of the intersection

property. This leads to the following theorem.

Theorem 12 Semi-Interleaved HITON-PC is an admissible Markov boundary induction

algorithm for TIE* (input ) if all members of all Markov boundaries of T that exist in the

joint probability distribution  are marginally dependent on T and are also conditionally

dependent on T, except for violations of the intersection property that lead to context-

independent information equivalence relations.
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The next theorem states that the procedure IGS (Figure 9) is admissible for TIE*:

Theorem 13 Procedure IGS to generate data sets from the embedded distributions (input )

is admissible for TIE*.

Finally we show that both criteria Independence (Figure 10) and Predictivity (Figure 11) for

verification of Markov boundaries are admissible for TIE* and state sufficient assumptions

for the latter criterion. The former criterion implicitly assumes correctness of statistical

decisions, similarly to IAMB and Semi-Interleaved HITON-PC (see end of Section 2.5 for

related discussion).

Theorem 14 Criterion Independence to verify Markov boundaries (input ) is admissible for

TIE*

Theorem 15 Criterion Predictivity to verify Markov boundaries (input ) is admissible for

TIE* if the following conditions hold: (i) the learning algorithm  can accurately

approximate any conditional probability distribution, and (ii) the performance metric  is

maximized only when P(T| V \ {T}) is estimated accurately.

As mentioned in the beginning of Section 4, the generative nature of TIE* facilitates design

of new algorithms for discovery of multiple Markov boundaries by simply instantiating

TIE* with input components , , . Furthermore, if , , {  are admissible, then TIE*

will be sound and complete according to Theorem 10, otherwise the algorithm will be

heuristic. For example, one can take an established Markov boundary induction algorithm,

prove its admissibility, and then plug it into TIE* with admissible components  and 

(e.g., ones presented above). This will yield a new correct algorithm and significant

economies in the proof of its correctness because one has only to prove admissibility of new

input components.

4.4 Complexity Analysis

We first note that the computational complexity of TIE* depends on a specific instantiation

of its input components  (Markov boundary induction algorithm),  (procedure for

generating data sets from the embedded distributions) and  (criterion for verifying Markov

boundaries), and on the underlying joint probability distribution over a set variables V. In

this subsection we will consider the complexity of the following two specific instantiations

of TIE*: ( = Semi-Interleaved HITON-PC, =IGS-Lex, =Independence) and ( = IAMB,

=IGS-Lex, =Independence).

Since in our experiments we found that Markov boundary induction (with input component

) was the most computationally expensive step in TIE* and accounted for > 99% of

algorithm runtime, we will omit from consideration the complexity of components  and ,

and will use the complexity of component  to derive an estimate of the total computational

complexity of TIE*. Following general practice in complexity analysis of Markov boundary

and causal discovery algorithms, we measure computational complexity in terms of the

number of statistical tests of conditional independence.7 For completeness we also note that

there exist efficient implementations of the G2 test for discrete variables that can take only
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time nlog(n) in the number of training instances n. The time for computation of Fishers Z-

test for continuous variables is also bounded by a low order polynomial in n because this test

essentially involves solution of a linear system. See the work by Aliferis et al. (2010a) and

Anderson (2003) for more details and discussion.

As with all sound and complete computational causal discovery algorithms, discovery of all

Markov boundaries (and even one Markov boundary) is worst-case intractable. However we

are interested in the average-case complexity of TIE* in real-life distributions that is more

instructive to consider. Complexities of Markov boundary induction algorithms IAMB and

Semi-Interleaved HITON-PC are O(|V||M|) and O(|V|2|M|), respectively, assuming that the

size of the candidate Markov boundary M obtained in the Forward phase is close to the size

of the true Markov boundary obtained after the Backward phase (see Figures 4 and 5),

which is typically the case in practice (Aliferis et al., 2010a; Tsamardinos and Aliferis,

2003; Tsamardinos et al., 2003a). When TIE* is parameterized with the IGS procedure (as

the component ) and there is only one Markov boundary M in the distribution, TIE* will

invoke a Markov boundary induction algorithm , |M|+ 1 number of times. Thus, the total

computational complexity of TIE* in this case becomes O(|V ||M|2) if  and O(|V ||

M| | 2|M|) if  HITON-PC. When N Markov boundaries with the

average size |M| are present in the distribution, TIE* with IGS procedure will invoke a

Markov boundary induction algorithm no more than O(N2|M|) times. Therefore, the total

complexity of TIE* with the IGS procedure is O(N2|M||V ||M|)) when  and O(N|V |

22|M|) when  HITON-PC.

In practical applications of TIE* with Semi-Interleaved HITON-PC, we use an additional

caching mechanism for conditional independence decisions, which alleviates the need to

repeatedly conduct the same conditional independence tests during Markov boundary

induction when we have only slightly altered the data set by removing a subset of variables

G. In this case, induction of the first Markov boundary still takes O(|V |2|M|) independence

tests, but all consecutive Markov boundaries typically require less than O(|V |) conditional

independence tests. Thus, the overall complexity of TIE* with the IGS procedure and Semi-

Interleaved HITON-PC becomes O(|V |2|M| + (N −1)|V |2|M|), or equivalently O(N|V |2|M|).

Finally, in practice we use parameters max-card for IGS procedure in TIE* and max-k for

Semi-Interleaved HITON-PC to limit the number of conditional independence tests (see

Appendix D). Thus, complexity of TIE* with the IGS procedure becomes O(N|V ||

M|max-card+1) when  and O(|V ||M|max-k + (N − 1)|V ||M|max-card) when

 HITON-PC.

4.5 A Simple and Fast Algorithm for Special Distributions

The TIE* algorithm allows to find all Markov boundaries when there are information

equivalence relations between arbitrary sets of variables. A simpler and faster algorithm can

be obtained by restricting consideration to distributions where all information equivalence

7Since we use negative p-values from a conditional independence test as the measure of association in IAMB and Semi-Interleaved
HITON-PC (see Appendix D), we assume that complexity of computing an association is equal to the complexity of conditional
independence testing.
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relations follow from context-independent information equivalence relations between

individual variables. The resulting algorithm is termed iTIE*(which is an acronym for

“Individual Target Information Equivalence”) and is described in Figure 12. As can be seen,

iTIE* can be described as a modification to Semi-Interleaved HITON-PC (or GLL-PC in

general).

Consider running the iTIE* algorithm on data  generated from the example causal

Bayesian network shown in Figure 13. The response variable T is directly caused by C, D,

F. The underlying distribution is such that variables A and C contain equivalent information

about T; likewise variables B and D contain equivalent information about T. iTIE* starts by

executing Semi-Interleaved HITON-PC with the modified steps 6 and 7. Assume that we are

running the loop in steps 3–8 of Semi-Interleaved HITON-PC and currently E = {C,D} and

M = {A,B,F}; variables E and J were eliminated conditioned on F in previous iterations of

the loop. In step 4 of Semi-Interleaved HITON-PC, the algorithm may select Y = C. Next the

modified steps 6 and 7 of Semi-Interleaved HITON-PC proceed as described in Figure 12,

namely: 1(a) we find that a subset Z={A} renders T independent of Y = C; 1(c) T is

marginally dependent on Y = C,T is marginally dependent on Z = {A}, and Y = C renders T

independent of Z = {A}, thus 1(d) we record in Θ that Y = C and Z = {A} contain equivalent

information with respect to T. In the next iteration of the loop in steps 3– 8 of the modified

Semi-Interleaved HITON-PC, we record in Θ that Y = D and Z = {B} contain equivalent

information with respect to T. The Backward phase in steps 9–13 of Semi-Interleaved

HITON-PC does not result in variable eliminations in this example, thus we have M =

{A,B,F}. Finally, we build Cartesian product of information equivalence relations for

subsets of M that are stored in Θ and obtain 4 Markov boundaries of T: {A,B,F},{A,D,F},

{C,B,F}, and {C,D,F}.

The iTIE* algorithm correctly identifies all Markov boundaries under the following

sufficient assumptions: (a) all equivalence relations in the underlying distribution follow

from context-independent equivalence relations of individual variables, and (b) the

assumptions of Theorem 12 hold. The proof of correctness of iTIE* can be obtained from

the proofs of Theorems 9 and 12 and Lemma 1.

It is also important to notice that in some cases iTIE* can identify all Markov boundaries

even if the above stated sufficient assumption (a) is violated; that is why we do not exclude

the possibility that Z can be a set of variables in steps 1(c,d) of iTIE*. Consider a Bayesian

network with the graph  that is parameterized such that a variable C and the set of

variables {A,B} jointly contain context-independent equivalent information about T, and T is

marginally dependent on A,B,C. Thus, there are two Markov boundaries of T in the joint

probability distribution: {C} and {A,B}. Now consider a situation when iTIE* first admits

{A,B} to M during execution of the modified Semi-Interleaved HITON-PC or another

instance of GLL-PC. Then the step 1(c) of iTIE* will reveal that while T ⊥ C | {A,B}, the

following relations hold T  C, T  {A,B}, and T ⊥ {A,B} | C. Thus, the algorithm will

identify that C and {A,B} contain equivalent information about T and will correctly find all

Markov boundaries in the distribution. However, if iTIE* first admits C to M, then the

algorithm will output only one Markov boundary of T that consists of a single variable C,
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because variables A and B, when considered separately, will be eliminated by conditioning

on C and no equivalence relations will be found.

Notice that unlike TIE*, iTIE* does not rely on repeated invocation of a Markov boundary

induction algorithm and instead extends Semi-Interleaved HITON-PC by potentially

performing at most one additional independence test for each variable in V during the

Forward phase, as shown in Figure 12.8 This allows iTIE* to maintain computational

complexity of the same order as Semi-Interleaved HITON-PC, namely, O(|V |2|M|)

conditional independence tests. As before, |M| denotes the average size of a Markov

boundary and the above complexity bound assumes that the size of a candidate Markov

boundary obtained in the Forward phase is close to the size of a true Markov boundary

obtained at the end of the Backward phase (see Figure 5). In practical applications of iTIE*,

we also use parameter max-k that limits the maximum size of a conditioning test, which

brings complexity of iTIE* to O(|V ||M|max-k). Interestingly, iTIE* can efficiently identify all

Markov boundaries in the distribution shown in Figure 2. This is due to the fact that the

distribution in Figure 2 satisfies the assumption underlying iTIE* (i.e., that all information

equivalences in a distribution follow from context-independent equivalences between

individual variables) and thus allows it to capture all equivalence relationships between

variables within groups in a single run of the Forward phase of the modified Semi-

Interleaved HITON-PC. All Markov boundaries in the example in Figure 2 can then be

reconstructed by taking the Cartesian product over sets of variables found to be equivalent

with respect to T in step 2 of iTIE* (Figure 12).

For experiments reported in this work, we implemented and ran iTIE* based on the Causal

Explorer code of Semi-Interleaved HITON-PC (Aliferis et al., 2003b; Statnikov et al., 2010)

with values of parameters and statistical tests of independence that are described in

Appendix D.

5. Empirical Experiments

In this section, we present experimental results obtained by applying methods for learning

multiple Markov boundaries and variable sets on simulated and real data. The evaluated

methods and their parameterizations are shown in Table 9 in Appendix E. These methods

were chosen for our evaluation as they are the current state-of-the-art techniques for

discovery of multiple Markov boundaries and variable sets. In order to study the behavior of

these methods as a function of parameter settings, we considered several distinct

parameterizations of each algorithm. In cases when parameter settings have been

recommended by the authors of a method, we included these settings in our evaluation. A

detailed description of parameters of prior methods for induction of multiple Markov

boundaries and variable sets is provided in Appendix C.

All experiments involving assessment of classification performance were executed by

holdout validation or cross-validation (see below), whereby Markov boundaries and variable

sets are discovered in a training subset of data samples (training set), classification models

8This is a test T ⊥ Z | Y. Other necessary tests T  Y and T  Z have been previously computed in step 4 of Semi-Interleaved HITON-
PC algorithm, and their results can be retrieved from the cache.
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based on the above variables are also developed in the training set, and the reported

performance of classification models is estimated in an independent testing set. Assessment

of classification performance of the extracted Markov boundaries and variable sets was done

using Support Vector Machines (SVMs) (Vapnik, 1998). We chose to use SVMs due to their

excellent empirical performance across a wide range of application domains (especially with

high-dimensional data and relatively small sample sizes), regularization capabilities, ability

to learn both simple and complex classification functions, and tractable computational time

(Cristianini and Shawe-Taylor, 2000; Schölkopf et al., 1999; Shawe-Taylor and Cristianini,

2004; Vapnik, 1998). When the response variable was multiclass, we applied SVMs in one-

versus-rest fashion (Schölkopf et al., 1999). We used libSVM v.2.9.1 (http://

www.csie.ntu.edu.tw/~cjlin/libsvm/) implementation of SVMs in all experiments (Fan et al.,

2005). Polynomial kernels were used in SVMs as they have shown good classification

performance across the data domains considered in this study. The degree d of the

polynomial kernel and the penalty parameter C of SVM were optimized by cross-validation

on the training data. Each variable in a data set was scaled to [0,1] range to facilitate SVM

training. The scaling constants were computed on the training set of samples and then

applied to the entire data set.

All experiments presented in this section were run on the Asclepius Compute Cluster at the

Center for Health Informatics and Bioinformatics (CHIBI) at New York University Langone

Medical Center (http://www.nyuinformatics.org) and the Advanced Computing Center for

Research and Education (ACCRE) at Vanderbilt University (http://

www.accre.vanderbilt.edu/). For comparative purposes all experiments used exclusively the

latest generation of Intel Xeon Nehalem (x86) processors. Overall, it took >50 years of

single CPU time to complete all reported experiments.

5.1 Experiments with Simulated Data

Below we present an evaluation of methods for extraction of multiple Markov boundaries

and variable sets in simulated data. Simulated data allows us to evaluate methods in a

controlled setting where the underlying causal process and all Markov boundaries of the

response variable T are known exactly. Two data sets were used in this evaluation. One of

these data sets, referred to as TIED, was previously used in an international causality

challenge (Statnikov and Aliferis, 2010b). TIED contains 30 variables, including the

response variable T. The underlying causal graph and its parameterization are given in the

work by Statnikov and Aliferis (2010b). There are 72 distinct Markov boundaries of T. Each

Markov boundary contains 5 variables: variable X10 and one variable from each of the four

subsets {X1,X2,X3,X11}, {X5,X9}, {X12,X13,X14} and {X19,X20,X21}. Another simulated data

set, referred to as TIED1000, contains 1,000 variables in total and was generated by the

causal process of TIED augmented with an additional 970 variables that have no association

with T. TIED1000 has the same set of Markov boundaries of T as TIED. TIED1000 allows

us to study the behavior of different methods for learning multiple Markov boundaries and

variable sets in an environment where the fraction of variables carrying relevant information

about T is small.
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For each of the two data sets, 750 observations were used for discovery of Markov

boundaries/variable sets and training of the SVM classification models of the response

variable T (with the goal to predict its values from the inferred Markov boundary variables),

and an independent testing set of 3,000 observations was used for evaluation of the models'

classification performance.

All methods for extracting multiple Markov boundaries and variable sets were assessed

based on the following six performance criteria:

I. The number of distinct Markov boundaries/variable sets output by the method.

II. The average size of an output Markov boundary/variable set (number of variables).

III. The number of true Markov boundaries identified exactly, that is, without false

positives and false negatives.9

IV. The average Proportion of False Positives (PFP) in the output Markov boundaries/

variable sets.10

V. The average False Negative Rate (FNR) in the output Markov boundaries/variable

sets.11

VI. The average classification performance (weighted accuracy) over all output

Markov boundaries/variable sets.12 We also compared the average classification

performance of the SVM models with the maximum a posteriori classifier in the

true Bayesian network (denoted as MAP-BN) using the same data sample.

Technical details about computing performance criteria III–V are given in Appendix E.

The results presented in Figure 14 in the manuscript, and Tables 10 and 11 and Figure 19 in

Appendix E show that only TIE* and iTIE* identified exactly all and only true Markov

boundaries of T in both simulated data sets, and their classification performance with the

SVM classifier was statistically comparable to performance of the MAP-BN classifier. None

of the comparator methods, regardless of the number of Markov boundaries/variable sets

output, were able to identify exactly any of the 72 true Markov boundaries, except for

Resampling+RFE (without statistical comparison) and IR-HITON-PC that identified exactly

1–2 out of 72 true Markov boundaries, depending on the data set. Overall prior methods had

either large proportion of false positives or large false negative rate, and often their

classification performance was significantly worse that the performance of the MAP-BN

classifier. However, in some cases the classification performance of other methods was

comparable to the MAP-BN classifier, regardless of the number of Markov boundaries

identified exactly. This can be attributed to (i) the relative insensitivity of the SVM

9False positives are variables that do not belong to any true Markov boundary of T in the causal graph, but are included in a Markov
boundary/variable set extracted by some method. False negatives are variables that belong to a true Markov boundary of T, but are
absent in the extracted Markov boundary/variable set.
10PFP is the number of false positives in an output Markov boundary/variable set divided by its size.
11FNR is the number of false negatives in an output Markov boundary/variable set divided by the size of the true Markov boundary.
12Given that the response variable T had four possible values, classification performance was measured by the weighted accuracy
metric that allows to measure classification performance independent of class priors and can be applied to multiclass responses
(Guyon et al., 2006). In brief, weighted accuracy is obtained by computing proportion of correct classifications in each class and
combining these proportions by weighting using prior probabilities in each class.
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classifiers to false positives, (ii) connectivity in the underlying graph that compensates false

negatives with other weakly relevant variables, and (iii) differences between the employed

classification performance metric (weighted accuracy) and the metric which is maximized

by the Markov boundary variables (that requires accurate estimation of P(T | V \{T}), which

is a harder task than maximizing proportions of correct classification in the weighted

accuracy metric). Thus, we remind the reader that a high classification performance is often

a necessary but not sufficient condition for correct identification of Markov boundaries.

Detailed discussion of the performance of comparator methods is given in Appendix E.

5.2 Experiments with Real Data

For evaluation of methods for learning multiple Markov boundaries and variable sets in real

data, we used 13 data sets that cover a broad range of application domains (clinical outcome

prediction, gene expression, proteomics, drug discovery, text categorization, digit

recognition, ecology and finance), dimensionalities (from 86 to over 100,000), and sample

sizes (from hundreds to thousands) that are representative of those appearing in practical

applications. These data sets have recently been used in a broad benchmark (Aliferis et al.,

2010a) of the current state-of-the-art single Markov boundary induction and feature

selection methods, which is another reason why we chose to use the same data in this study.

The data sets are described in detail in Table 12 in Appendix E. The data sets were

preprocessed (imputed, discretized, etc.) as described in the work by Aliferis et al. (2010a).

In data sets with relatively large sample sizes (> 600), classification performance of the

output Markov boundaries and variable sets was estimated by holdout validation with 75%

of samples used for Markov boundary/variable set induction and SVM classifier training,

and the remaining 25% of samples used for estimation of classification performance. In

small-sample data sets, 10- fold cross-validation was used instead. Markov boundary/

variable set induction and classifier training were both performed on the training sets from

the 10-fold cross-validation design, with classification performance being subsequently

estimated on the respective testing sets.

Evaluation of Markov boundary/variable selection methods in real data is challenging due to

the lack of knowledge of the true Markov boundaries. In practical applications, however, the

interest typically lies in the most compact subsets of variables that give the highest

classification performance for reasonable and widely used classifiers (Guyon and Elisseeff,

2003). This consideration motivated the following two primary evaluation criteria (with the

averages taken over all Markov boundaries/variable sets output by each method):

I. The average Proportion of Variables (PV) in the output Markov boundaries/

variable sets.13

II. The average classification performance (AUC) of the output Markov boundaries/

variable sets.14

13The PV of an output Markov boundary/variable set measures its compactness and is defined as the number of variables in the output
Markov boundary/variable set divided by the total number of variables in the data set.
14Classification performance was measured using area under ROC curve (AUC) (Fawcett, 2003), because all response variables were
binary.

Statnikov et al. Page 23

J Mach Learn Res. Author manuscript; available in PMC 2014 October 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In addition to the above two primary criteria, in some problems we are also interested in

extracting as many of the maximally compact and predictive variable sets (i.e., optimal

solutions to the variable selection problem) as possible. Therefore, we also considered a

third criterion in our evaluation:

III The number of distinct Markov boundaries/variable sets output by each method

(N).

We note that criterion I (PV) on its own can be optimized independently of the actual

classification problem by taking small subsets of variables (e.g., 1 or 2 variables in each

subset) to be the presumed Markov boundaries of the response variable T. Criterion I may

therefore be biased towards methods that output Markov boundaries/variable sets of a user-

defined size (e.g., some parameterizations of EGS-NCMIGS). Similarly, criterion III (N)

can be maximized independently of the response T by simply taking all 2|V|−1 − 1 non-empty

subsets of the variable set V \{T} to be the presumed Markov boundaries of T. This criterion

could be potentially biased towards Markov boundary/variable set extraction methods that

output a number of Markov boundaries specified by a user-defined parameter (e.g., EGSG)

rather than by a data driven process (e.g., TIE*). Criterion II (AUC) served as a modulator

for criteria I and III, because high performance on the latter two criteria does not necessarily

imply high classification performance.

We also ranked all methods on each of the three criteria averaged over all 13 real data sets,

as described in Appendix E. The ranks incorporated permutation-based statistical

comparison of difference in the performance of algorithms, in order to ensure that methods

with statistically comparable performance receive the same rank.

Finally, given ranks on the individual criteria I (PV) and II (AUC), we defined a combined

(PV, AUC) ranking criterion which reflects the ability of methods to find Markov

boundaries in real data. This is because Markov boundaries are expected to maximize

performance of the classifiers with universal approximation capabilities (maximize AUC of

SVMs in our study) and be of minimal size (minimize PV in our study) (Tsamardinos and

Aliferis, 2003). The combined (PV, AUC) criterion was defined as follows: First, the ranks

on the individual criteria PV and AUC were normalized to the [0,1] interval to account for

varying rank ranges that resulted from ties in performance. Second, the normalized ranks on

the two criteria were averaged. Third, the resulting averages were used to establish a new

ranking of methods, aided by a permutation-based testing approach to ensure that methods

with statistically comparable performance receive the same rank (see Appendix E).

Other alternative combined (PV, AUC) ranking criteria, for example, one that performs

ranking based on some combination of raw PV and AUC scores, can also be used for

performance assessment in our study. We have confirmed that the best performing method

remains the same when either combining normalized ranks of PV and AUC (our criterion)

or raw scores of PV and AUC (alternative criterion) by an average function. This can be

evidenced from Figure 15 and Tables 3 and 4 which are discussed below.

The results of experiments are presented in Figure 15 and Tables 3 and 4.15 Figure 15 shows

a 2-dimensional plot of PV versus AUC and a 3-dimensional plot of PV versus AUC versus
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the number of extracted distinct Markov boundaries or variable sets (N). Each point in

Figure 15 corresponds to the results of one of the methods considered in this evaluation,

averaged over all 13 data sets. The Pareto frontier shown in Figure 15 was constructed based

on the two primary evaluation criteria PV and AUC over the prior methods (i.e., non-TIE*).

Methods on the Pareto frontier are such that no other non-TIE* method had both lower PV

and higher AUC when averaged over all data sets. For ease of visualization, results on all

variables (i.e., without variable selection) were omitted from Figure 15. When all variables

were used for classification, the average PV and AUC were 100% and 0.902, respectively.

These results did not alter the Pareto set of prior methods in Figure 15 and are reported in

Table 13, 14 and 15 in Appendix E. The results averaged over all data sets are shown in

Table 3. The results for all methods in each data set individually are presented in Table 13,

14 and 15 in Appendix E. Ranks of the methods were computed as described above and are

shown in Table 4.

As can be seen in Figure 15 and Tables 3 and 4, none of the prior methods had both more

compact Markov boundaries or variable sets (lower PV) and better classification

performance (higher AUC) than TIE*. This is evidenced by TIE*s performance laying

beyond the Pareto frontier constructed over the prior methods in Figure 15. While a few

methods had comparable or slightly higher AUC (Table 3), their Markov boundaries or

variable sets were substantially larger with the average PV reaching as high as 41% (see

Resampling+UAF in Table 3). In contrast, Markov boundaries output by TIE* were much

more compact with an average PV of 2.3%. On the other hand, methods that had PV lower

than TIE* also had lower AUC. KIAMB, for example, had a PV of 1% and an AUC of

about 0.8, which was 7–8% lower than the AUC of TIE*. Overall, TIE* ranked first out of

15 on the combined (PV, AUC) criterion. Please see Appendix E for a detailed discussion of

the results of prior methods.

It is worth noting that use of the AUC metric for verification of Markov boundaries in the

Predictivity criterion of TIE* can result in some spurious multiplicity of the output Markov

boundaries. This can happen due to a possible mismatch between subsets of variables that

lead to maximization of the AUC metric for a given classifier and those that render the

response variable T conditionally independent of all other variables (thus effectively

optimizing a metric that requires accurate estimation of P(T | V \{T})). Consider an example

where only a subset of variables from some Markov boundary is sufficient to obtain the

same AUC as the entire Markov boundary. Suppose there are in total five variables

{A,B,C,D,T} in the data set and M1 = {A,B,C,D} is the only Markov boundary of the

response variable T. Suppose also that the subset M2 = {A,B,C} yields the same

classification performance as the Markov boundary M1 according to the AUC metric. Once

TIE* discovers the Markov boundary M1 = {A,B,C,D}, it will consider removing {D}, as

well as other subsets of M1, to discover other possible Markov boundaries. After removing

subset {D} from the data, TIE* would identify M2 = {A,B,C} as a candidate Markov

boundary to be verified by the Predictivity criterion. Because M1 and M2 have the same

classification performance (AUC), M2 will be admitted as a Markov boundary by the

15We did not include iTIE* in this comparison, because we anticipated that it will be outperformed by TIE* due to its broader
distributional assumptions than the ones of iTIE*.
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Predictivity criterion. In order to control for possible presence of such spurious Markov

boundaries in the output of TIE*, we performed an additional analysis of its output whereby

for each data set, we considered only those Markov boundaries that were not proper subsets

of any other Markov boundary extracted by TIE* in the same data set. We refer to such

Markov boundaries as minimal. The average number of minimal Markov boundaries

identified by TIE* was 1,484 (versus the average number of all Markov boundaries

identified by TIE* equal to 1,993). The average size (2.3% PV) and classification

performance (0.872 AUC) of the minimal Markov boundaries were statistically

indistinguishable from the results obtained on all Markov boundaries identified by TIE* and

so were the ranks on the PV, AUC and (PV, AUC) criteria.

In summary, TIE* extracted multiple compact Markov boundaries with high classification

performance and surpassed all other methods on the combined (PV, AUC) criterion. Since

the data-generative process in experiments with real data sets is unknown, a question that

arises is: do multiple Markov boundaries exist in real data? Prior work using the same data

has established that performance patterns of single Markov boundaries identified by Semi-

Interleaved HITON-PC (an instantiation of the GLL framework) are highly consistent with

the Markov boundary induction theory and that GLL algorithms dominated an extensive

panel of prior state-of-the-art Markov boundary and variable selection methods in terms of

compactness and classification performance (Aliferis et al., 2010a). In this paper, we

showed that TIE* parameterized with Semi-Interleaved HITON-PC as the base Markov

boundary induction algorithm was able to identify multiple compact Markov boundaries

with consistently high classification performance in real data. For example, in the ACPJ

Etiology data set, TIE* identified 5,330 distinct Markov boundaries (and 4,263 minimal

ones) that on average contained 18 variables out of 28,228 and had an AUC of 0.91. Out of

all prior methods for learning multiple Markov boundaries and variable sets applied to the

same data set, Resampling+UAF had the highest classification performance with an AUC of

0.93, which was statistically non-distinguishable from TIE*, while variable sets extracted by

Resampling+UAF, on average, were more than two orders of magnitude larger and

contained 3,883 variables. A similar pattern can be observed in the Dexter data set where

TIE* identified 4,791 distinct Markov boundaries (and 3,498 minimal ones) with an average

size of 17 variables out of 19,999 and an AUC of 0.96. The best performer among prior

methods in the same data was EGS-CMIM with Markov boundaries containing 50 variables

each and an average AUC of 0.98, the latter being statistically non-distinguishable from

TIE*. The compactness of Markov boundaries extracted by TIE* coupled with their high

classification performance provides strong evidence that there are indeed multiple Markov

boundaries in many real-life problem domains.

6. Discussion

This section summarizes main findings, reiterates key principles of TIE* efficiency,

demonstrates how the generative algorithm TIE* can be configured for optimal results,

presents limitations of this study, and outlines directions for future research.
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6.1 Main Findings

There are two major contribution of this study. First, we presented TIE*, a generative

anytime algorithm for discovery of multiple Markov boundaries. TIE* is sound under well-

defined sufficient conditions and can be practically applied to high-dimensional data sets

with relatively small sample. We performed a theoretical analysis of the algorithm

correctness and derived estimates of its computational complexity. To make our paper

valuable for practitioners, we provided several specific instantiations of the generative

algorithm TIE* and described their implementation details.

Second, we conducted an empirical comparison of TIE* with 26 state-of-the-art methods for

discovery of multiple Markov boundaries and variable sets. The empirical study was

performed on 2 simulated data sets with exactly known Markov boundaries and 13 real data

sets from a diversity of application domains. We found that unlike prior methods, TIE*

identifies exactly all true Markov boundaries in simulated data, and in real data it yields

Markov boundaries with simultaneously better classification performance and smaller

number of variables compared to prior methods.

Other notable contributions of this work include: (i) developing a deeper theoretical

understanding of distributions with multiple Markov boundaries of the same variable

(Sections 2.2–2.4), (ii) theoretical analysis of prior state-of-the-art algorithms for discovery

of multiple Markov boundaries and variable sets (Appendix C), (iii) a novel simple and fast

algorithm iTIE* for learning multiple Markov boundaries in special distributions (Section

4.5), and (iv) evidence that multiple Markov boundaries exist in real data (Section 5.2).

6.2 Key Principles of TIE* Efficiency

We will illustrate key principles of TIE* efficiency using a simple example. Consider a

distribution that spans over variables M = {T,X1,X2,X3,X4,X5,Y1,Y2,Z1,…,Z1000} and

contains two Markov boundaries of T: M1 = {X1,X2,X3,X4,X5} and M2 = {X1,X2,X3,

X4,Y1,Y2}, because X5 and {Y1,Y2} contain context-independent equivalent information

about T. Assuming that we can apply a standard single Markov boundary induction

algorithm to identify M1, one naive approach to discover multiple Markov boundaries in this

distribution is to exhaustively consider whether a variable subset in M1 can be substituted

with a variable subset in V \ M1 \ {T} to obtain a new Markov boundary. In this example we

will have to substitute 31 non-empty subsets in M1 with approximately 21002 − 1 non-empty

subsets of V \ M1 \ {T} (the latter number being orders of magnitude larger than the number

of atoms in the universe). This approach is clearly computationally prohibitive in high-

dimensional data sets. The first core efficiency principle in TIE* is to avoid explicit search

of all possible subsets of V \ M1 \ {T} and repeatedly run a fast Markov boundary induction

algorithm on the data for variables in V \ G, where G is a subset of the previously found

Markov boundaries. In the example stated above, this would lead to running a Markov

boundary induction algorithm 27 = 128 times (because there are 7 members in the union of

all Markov boundaries) to find all Markov boundaries that exist in the distribution. The

second core efficiency principle in TIE* dictates to consider removing from V only certain

subsets G of the previously found Markov boundaries. Specifically, we consider only

subsets G that do not include a subset of variables G* (i.e., G* ⊄ G) that did not result in
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discovery of a Markov boundary when the Markov boundary induction algorithm has been

previously run on the data for variables in V \ G*. Coupled with the heuristic to first

generate subsets G of the smallest size, this principle can significantly decrease the number

of runs of the Markov boundary induction algorithm. In the example stated above, this

principle as exemplified in IGS procedure would lead to running a single Markov boundary

induction algorithm only 8 times in order to find all Markov boundaries that exist in the

distribution. Specifically, we will have to consider G = ⊘,{X1},{X2},{X3},{X4},{X5},

{X5,Y1}, and {X5,Y2}. We would not need to consider G = {X1,X2} because its subset (G* =

{X1} or {X2}) did not lead to discovery of any Markov boundary when the algorithm was

run on the data for variables in V \ G*. Finally, since very fast single Markov boundary

induction algorithms have been recently introduced (Aliferis et al., 2010a, 2003a; Peña et

al., 2007; Tsamardinos et al., 2003a,b), the overall TIE* operation is very fast.

6.3 The Generative Nature of TIE* Allows to Configure the Algorithm for Optimal Results

TIE* is a generative algorithm that can be instantiated differently for different distributions.

For example, distributions that violate the local composition property with respect to T for

members of Markov boundaries (e.g., when T is defined as a parity function of its Markov

boundary members that are unrelated and have balanced priors) are incompatible with the

assumptions of Markov boundary induction algorithms IAMB and Semi-Interleaved

HITON-PC that were considered in this work. The generative nature of TIE* suggests to use

an admissible Markov boundary induction algorithm that is suitable for the distribution at

hand.

Consider running TIE* algorithm on data  generated from the example causal Bayesian

network shown in Figure 16. There are 25 distinct Markov boundaries of T in this

distribution. Each of these Markov boundaries contains 3 or 5 variables: (i) X9 or {X5,X6} or

{X1,X2} or {X1,X6} or {X5,X2}, (ii) X10, and (iii) X11 or {X7,X8} or {X3,X4} or {X3,X8} or

{X7,X4}. The local composition property with respect to T is violated here because T =

XOR(X9,X10,X11). To illustrate applicability to such distributions, we ran TIE* with a

Markov boundary induction algorithm SVM-FSMB (Brown et al., 2012; Tsamardinos and

Brown, 2008) as input component  and , . In brief, SVM-

FSMB works by first extracting features from the polynomial SVM feature space that have

largest SVM weights and then running a Markov boundary induction algorithm Semi-

Interleaved HITON-MB in the SVM feature space on the constructed features. This allows

SVM-FSMB to circumvent the requirement for the local composition property. We found

that in a sufficiently large sample size (≥ 2,000), TIE* can discover all 25 true Markov

boundaries with only 1 false positive in each extracted Markov boundary. This showcases

how the generative nature of TIE* allows to optimally configure the algorithm for the

distribution at hand.

6.4 Limitations and Open Problems

The empirical evaluation of TIE* performed in this study used 13 real data sets from a

diversity of application domains and provided evidence about existence of multiple Markov

boundaries in real-life data, primarily based on compactness of output variable sets and high

classification performance. The absence of knowledge about the true Markov boundaries in
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real data sets is a limitation of the study, which is in our opinion mitigated by strong

empirical evidence for existence of multiple Markov boundaries.

Related to the above, the present work does not address the source of multiplicity of Markov

boundaries induced in real data. In other words, we do not separate intrinsic multiplicity of

Markov boundaries (that exists in the underlying probability distribution) from apparent

multiplicity due to various factors including (but not limited to) small sample size, hidden

variables, correlated measurement noise, and artifacts of normalization and/or data pre-

processing (Statnikov and Aliferis, 2010a).

Also, as we have pointed out, the use of the AUC metric for verification of Markov

boundaries in the Predictivity criterion of TIE* can result in a small percentage of spurious

Markov boundaries in the output of the algorithm. This can happen due to a possible

mismatch between subsets of variables that lead to maximization of the AUC metric for a

given classifier and those that render the response variable T conditionally independent of all

other variables (thus effectively optimizing a metric that requires accurate estimation of P(T

| V \{T})). In this paper we experimented with one approach to reduce spurious multiplicity

of TIE* by filtering extracted Markov boundaries to the minimal ones. A more conventional

approach to this problem is to augment the Markov boundary induction method with an

additional backward wrapping step (Aliferis et al., 2010a; Kohavi and John, 1997).

However, backward wrappers are prone to overfitting because they evaluate a large number

of classifier models with various variable subsets (Aliferis et al., 2010a), thus negatively

affecting generalizability of TIE*. We have conducted preliminary experiments with a

backward wrapping method applied on 13 real data sets, and indeed the results revealed a

significant reduction in classification performance, as theoretically expected. We believe

that it is still worthwhile to explore more sophisticated wrapping strategies (especially ones

that guard against overfitting) in order to optimize the output of a Markov boundary inducer

for a specific performance metric and classifier.

Finally, another limitation of this study is that we included in empirical experiments both

algorithms for discovery of multiple Markov boundaries and algorithms for discovery of

multiple variable sets. Even though the latter family of algorithms are not theoretically

designed for Markov boundary induction, many researchers use them (Pellet and Elisseeff,

2008). This motivated us to include in our study methods for selection of multiple variable

sets.

6.5 Directions for Future Research

In addition to addressing open problems outlined in the previous subsection, there are

several promising directions for future research.

First, it is interesting to routinely apply TIE* to discover multiple Markov boundaries in

various application domains. This would allow one to learn whether some problem domains

are more prone to multiplicity of Markov boundaries than others. These results would

instruct data-analysts about potential existence of many more solutions and can form

guidelines for performing analysis in such data.
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Second, it is important to extend existing causal graph discovery methods to take into

account violations of the intersection property that lead to multiple Markov boundaries. For

example, recent work was able to modify the PC algorithm to account for information

equivalence relations between variables (Lemeire et al., 2010). However, many more

algorithms remain to be improved upon.

Third, a useful direction for future research is to improve computational efficiency and run

time of TIE* by using high-performance computers with parallel and/or distributed

architectures. We have previously designed parallel versions of Markov boundary induction

algorithms (Aliferis et al., 2010b, 2002) and in some cases were able to achieve more than

linear increase of computational efficiency. At face value, this suggests that modifications of

TIE* that run on parallel/distributed architectures can discover multiple Markov boundaries

in domains where TIE*'s run time was prohibitive.
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Appendix A. Proofs of Theorems and Lemmas

Proof Lemma 1 : Assume that M ∩ Mnew = N. Then it follows that M=N ∪ Y and Mnew =

N∪Z. Since M is a Markov blanket, T ⊥ (V \{T}\(N ∪ Y)) | (N ∪ Y). By the self-

conditioning property, it follows that T ⊥ (V \{T}) | (N ∪ Y). The previous independence

relation is equivalent to T ⊥ ((V \{T}\Z) ∪ Z) | (N ∪ Y). By the weak union property, T ⊥ (V
\{T}\Z) | (N ∪ Y ∪ Z). By the self-conditioning property, T ⊥ (V \{T}) | (N ∪ Y ∪ Z).

Equivalently, we can rewrite the previous relation as T ⊥ (V \{T}) | ((N ∪ Y) ∪ (N ∪ Z)).

Since Z and Y provide context independent equivalent information about T and by the self-

conditioning property T ⊥ (N ∪ Y) | (N ∪ Z). By the contraction property, T ⊥ (V \{T}) | ((N
∪ Y) ∪ (N ∪ Z)) and T ⊥ (N ∪ Y) | (N ∪ Z) imply that T ⊥ ((V \{T}) ∪ (N ∪ Y)) | (N ∪ Z).

This is equivalent to T ⊥ (V \{T}) | (N ∪ Z). By the decomposition property this implies that

Mnew = N ∪ Z is also a Markov blanket of T. (Q.E.D.)

Proof Lemma 2 : By definition of the Markov blanket, T ⊥ (V \M\{T}) | M. By the self-

conditioning property, it follows that T ⊥ (V \{T}) | M. Since (V \{T}) = (V \{T}) ∪ Mnew

and according to the weak union property, T ⊥ (V \{T}\Mnew) | (M ∪ Mnew). By the self-

conditioning property, it follows that T ⊥ (V \{T}) | (M ∪ Mnew). Since T ⊥ M | Mnew and T

⊥ (V \{T}) | (M ∪ Mnew), the contraction property implies that T ⊥ ((V \{T}) ∪ M) | Mnew.

Next, since (V \{T}) = (V \{T}) ∪ M, it follows that T ⊥ (V \{T}) | Mnew. By the

decomposition property this implies that Mnew is a Markov blanket of T. (Q.E.D.)

Proof Theorem 6 : Given an ancestral graph , let M denote the set containing

all parents and children of T and every variable X connected to T by a path from T to X in 

such that: (i) the first edge on the path is either bi-directed or away from T, (ii) all other
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edges except the last are bi-directed, and (iii) the last edge is either bi-directed or is away

from X. Note that spouses of T satisfy the above conditions and are therefore included in M.

We first show that set M m-separates T and every other variable Y ∈ V \M\{T}. To see this,

suppose that M does not m-separate T from some variable Y ∈ V \M\{T}. Then, there must

exist a path p connecting Y and T that is not blocked by M. By definition of M, Y cannot be

directly connected to T and not be in M. Additionally, path p cannot be through parents of T,

its spouses, or parents of variables connected to T or its children by bi-directed paths,

because any such variable would act as a non-collider that is in M and would therefore block

the path p. The only remaining possibility is for path p to contain a variable X ∈ V \M\{T}

that is a child of a variable Z ∈ M that is either (i) a child of T, or (ii) connected to T by a bi-

directed path, or (iii) connected to a child of T by a bi-directed path. However, in this case,

variable Z would be a non-collider on path p and would therefore block it. It follows that set

M m-separates T and every other variable Y ∈ V \M\{T}.

From the definition of the global Markov condition it follows that every m-separation

relation in  implies conditional independence in every joint probability distribution  that

satisfies the global Markov condition for . Thus, we have T ⊥ Y | M in  for every variable

Y ∈ V \M\{T}, from which it follows that M is a Markov blanket of T. (Q.E.D.)

Proof Theorem 7 : First we prove that any Markov blanket of T is an optimal predictor of

T. If M is a Markov blanket of T, then by definition it is the optimal predictor of T because

P(T | M) = P(T | V \{T}) and this distribution can be accurately approximated by , which

implies that  will be maximized.

Now we prove that any optimal predictor of T is a Markov blanket of T. Assume that X ⊆ V
\{T} is an optimal predictor of T but it is not a Markov blanket of T. This implies that, P(T |

X) ≠ P(T | V \{T}). By definition, V \{T} is always a Markov blanket of T. By first part of

the theorem, V \{T} is an optimal predictor of T similarly to X. Therefore, the following

should hold: P(T | X) = P(T | V \{T}). This contradicts the assumption that X is not a Markov

blanket of T. Therefore, X is a Markov blanket of T. (Q.E.D.)

Proof Theorem 8 : First we prove that M is a Markov blanket of T at the end of Phase I.

Suppose it is not, that is, T  (V \M\{T}) | M. By the local composition property with respect

to T, there exists Y ∈ (V \M\{T}) such that T  Y | M. This contradicts the exit condition

from the loop in step 9 that states that E should be empty, which can be the case if and only

if for every Y ∈ (V \M\{T}), T ⊥ Y | M. Therefore, M is a Markov blanket of T at the end of

Phase I.

Next we prove that M remains a Markov blanket of T at the end of Phase II. Assume that a

variable Y ∈ M can be rendered independent from T by conditioning on the remaining

variables in M, that is, T ⊥ Y | (M\{Y}). From Phase I it follows that T ⊥ (V \M\{T}) | M.

The above two independence relations by the contraction property imply that T ⊥ (V \(M\

{Y})\{T}) | (M\{Y}). Thus, M is a Markov blanket of T at the end of Phase II of the

algorithm.
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Finally we prove that M is a Markov boundary of T at the end of Phase II. Suppose it is not

and thus there exists N ⊂ M that is a Markov blanket of T. Let Y ∈ M\N and Z ⊆ (V \N\{T}\

{Y}). By definition of the Markov blanket, T ⊥ (V \N\{T}) | N. By the decomposition

property, T ⊥ (Z ∪ {Y}) | N. The latter independence relation implies T ⊥ Y | (N ∪ Z) by the

weak union property. Therefore, any variable Y ∈ M\N would be removed by the algorithm

in step 12 which contradicts the assumption that the algorithm output M and N ⊂ M is

another Markov blanket of T. Therefore, M is a Markov boundary of T at the end of Phase

II. (Q.E.D.)

Proof Theorem 9 : First we prove that the set M is a Markov blanket of T at the end of

Phase I. Because of the assumptions of the theorem, there are only two reasons for existence

of a subset Z that renders Y independent of T: either Y is a non-Markov boundary member or

there is a violation of the intersection property that leads to context-independent information

equivalence relations. The former case does not compromise the Markov blanket property of

M, thus we consider only the latter case. For example, we can consider the following

situation T ⊥ Y | Z, T ⊥ Z | Y and T  ({Y} ∪ Z) that led to removal of Y. From Lemma 1 we

know that if Y is a member of some Markov blanket M1 = N ∪ {Y}, then M2 = N ∪ Z is also

a Markov blanket of T because Y and Z contain context-independent equivalent information

about T. Therefore the set M is a Markov blanket of T at the end of Phase I.

The proofs that M remains a Markov blanket of T at the end of Phase II and that M is a

Markov boundary of T at the end of Phase II are similar to the ones in IAMB algorithm

(Theorem 8) and will not be repeated here. (Q.E.D.)

Proof Theorem 10 : TIE* will output only Markov boundaries of T when the inputs  and

 are admissible (see Figure 7). Assume that there exists a Markov boundary W that is not

output by TIE*. Because of admissibility of inputs  and  (Figure 7), Mnew = W was not

identified in step 5 of the algorithm. However, because of admissibility of input  (Figure

7), in some iteration of the algorithm in step 4 a data set  will be generated where a

Markov boundary W can be discovered by  in step 5. The admissibility of input  implies

that W will be successfully verified and output in step 6. Therefore, a contradiction is

reached, and TIE* would never miss Markov boundaries. (Q.E.D.)

Proof Theorem 11 : Since (i) all variables from each embedded distribution belong to the

original distribution, and (ii) the joint probability distribution of variables in each embedded

distribution is the same as marginal in the original one, the local composition property with

respect to T also holds in each embedded distribution. Therefore according to Theorem 8,

IAMB will correctly identify a Markov boundary in every embedded distribution. Thus,

IAMB is an admissible Markov boundary induction algorithm for TIE*. (Q.E.D.)

Proof Theorem 12 : The proof follows from fact that assumptions of Theorem 9 are

satisfied in each embedded distribution that contains a Markov boundary of T. Thus, Semi-

Interleaved HITON-PC is an admissible Markov boundary induction algorithm for TIE*.

(Q.E.D.)
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Proof Theorem 13 : The procedure IGS is executed iteratively in TIE* and generates data

sets  from the embedded distributions by removing subsets G from the full set

of variables V. Such procedure is admissible if it uses as G all possible subsets of V. This is

because eventually the procedure will generate a data set  for every Markov boundary of

T such that each data set contains all members of only one Markov boundary and thus a

single Markov boundary induction algorithm  can discover it. By similar argument, the

procedure to generate embedded distributions is admissible if it uses as G all possible

subsets of all Markov boundaries. Notice that in IGS, G is constructed iteratively from all

possible subsets of the previously found Markov boundaries with the following modification

in order to increase efficiency of TIE* (see Section 6.2). If we find that for some subset G* a

data set  leads to a Markov boundary Mnew in the embedded distribution (as

determined in step 5 of TIE*) that is not a Markov boundary in the original distribution (as

determined in step 6 of TIE*), then IGS does not consider generating data sets

 where G includes G*. Below we prove by contradiction that this

modification does not compromise admissibility of IGS.

Assume that there is W that is a Markov boundary of T in the original distribution and it was

not output by TIE* because  for some G+ : G+ ⊃ G* has not been generated

by IGS.

• • Since W is a Markov blanket of T in the original distribution and Mnew is not,

Theorem 7 implies that performance of a learning algorithm  (that can

approximate any conditional probability distribution) for prediction of T measured

by the metric  (that is maximized only when P(T | V \{T}) is estimated

accurately) is larger for W than for Mnew.

• • Since W satisfies T ⊥ (V \W \{T}) | W by the definition of Markov blanket,

decomposition property implies that T ⊥ (V \W \G*\{T}) | W, that is, W similarly to

Mnew is a Markov blanket of T in the embedded distribution after removal of G*.

Therefore by Theorem 7, performance of a learning algorithm  (that can

approximate any conditional probability distribution) for prediction of T measured

by metric  (that is maximized only when P(T | V \{T}) is estimated accurately)

should be the same for W and Mnew.

The above two points are contradictory, thus W does not exist. (Q.E.D.)

Proof Theorem 14 : Consider that there exists a set of variables Mnew ⊆ V \ {T} such that T

⊥ M | Mnew. Since M is a Markov boundary of T in the original distribution, it is also a

Markov blanket of T in the original distribution. From Lemma 2 we know that Mnew is a

Markov blanket of T in the original distribution. Since Mnew is a Markov boundary of T in

the embedded distribution and it is a Markov blanket of T in the original distribution, it is

also a Markov boundary of T in the original distribution. (Q.E.D.)

Proof Theorem 15 : The proof that this criterion can identify whether Mnew is a Markov

blanket of T in the original distribution or not follows from Theorem 7. If Mnew is a Markov
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blanket of T in the original distribution, it is also a Markov boundary of T in the original

distribution because Mnew is a Markov boundary of T in the embedded distribution. (Q.E.D.)

Appendix B. Parameterizations of Example Structures

This appendix provides parameterizations of example structures from the manuscript that are

shown in Tables 5, 6, 7, and 8.

Appendix C. Description and Theoretical Analysis of Prior Algorithms for

Learning Multiple Markov Boundaries and Variable Sets

This appendix provides description and theoretical analysis of prior algorithms for learning

multiple Markov boundaries and variable sets.

C.1 Stochastic Markov Boundary Algorithms: KIAMB

Reference

The work by Peña et al. (2007).

Description—Recall that the IAMB algorithm (Figure 4) requires only the local

composition property for its correctness (per Theorem 8) which is compatible with the

existence of multiple Markov boundaries of the response variable T. However, due to

IAMB's reliance on a greedy deterministic strategy for adding variables into the (candidate)

Markov boundary in Phase I (Forward), the algorithm can identify only a single Markov

boundary of T. KIAMB addresses this limitation of IAMB by employing a stochastic search

heuristic that repeatedly disrupts the order in which variables are selected for inclusion into

the Markov boundary, thereby introducing a chance of discovering alternative Markov

boundaries of T. KIAMB allows the user to control the tradeoff between stochasticity and

greediness of the search by setting the value of a single parameter K ∈ [0,1]. Specifically,

instead of picking the conditionally maximally associated variable Y from the set E in step 4

of IAMB, in KIAMB a maximally associated variable is selected from a randomly chosen

subset of all the associated variables outside the current Markov boundary M. The size of

this subset relative to the size of the complete set of associated variables is determined by

parameter K. Setting K equal to 0 results in a purely stochastic search where a single

randomly chosen associated variable is added into M on each iteration in Phase I. Setting K

equal to 1 results exactly in IAMB algorithm with its greedy deterministic search.

Analysis—KIAMB correctly identifies Markov boundaries assuming the local composition

property. Theoretically, KIAMB can identify all Markov boundaries if given the chance to

explore a large enough number of different sequences of additions of associated variables

into the current Markov boundary in Phase I. However, KIAMB is computationally

inefficient, because a large fraction of its runs may yield previously identified Markov

boundaries. For example, suppose the causal graph consists of 11 variables: a response

variable T and variables X1,…,X10 such that T ← X10 ← X9 ← … ← X1 and each Xi(i = 1,

…,10) contains equivalent information about T and is significantly associated with it. Thus,

there are 10 Markov boundaries {X1}, …,{X10} of T in this distribution. Suppose also that

Statnikov et al. Page 34

J Mach Learn Res. Author manuscript; available in PMC 2014 October 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



parameter K was set equal to 0.7, which would mean that in Phase I, KIAMB will first

randomly select 7 variables out of 10 and will then select out of these 7 variables, one with

the highest association with T. Because all variables in this example contain equivalent

information about T, all variables will have equal association with T (Lemeire, 2007).

Selection of a single variable for inclusion in the Markov boundary could then be done

based on lexicographic ordering. There are 120 ways to select 7 variables out of 10, but 84

(or 70%) of such subsets of size 7 will contain variable X1 that precedes all other variables in

lexicographic ordering. Therefore, on average, we can expect 70% of the runs of KIAMB to

return Markov boundary {X1} in this example. In order for KIAMB to identify Markov

boundary {X1}, variables X1,X2,X3 must not be among the 7 randomly selected variables. On

average, this would happen in only roughly 0.8% of the runs of KIAMB. Note also that in

the above scenario, KIAMB will not be able to discover Markov boundaries {X5}, …,{X10},

because there is no way to select 7 variables out of 10 and avoid including at least one

variable from the subset {X1, …,X4}. KIAMB could eventually discover all 10 Markov

boundaries if instead of lexicographic ordering, ties were broken by random selection, or

alternatively if parameter K was set equal to a smaller value. In both of these cases,

however, the probability that KIAMB will discover all 10 Markov boundaries after 10 runs

is only about 0.04%, indicating that a large number of runs may be necessary to recover all

10 Markov boundaries. Thus, in order to produce the complete set of Markov boundaries,

the value of parameter K and the number of runs of KIAMB must be determined based on

the topology of the causal graph and the number of Markov boundaries of T, neither of

which are known in real-world causal discovery applications. Finally, KIAMB suffers from

the same sample inefficiency as IAMB, which arises from conditioning on the entire

Markov boundary when testing variables for independence from the response variable T.

C.2 Stochastic Markov Boundary Algorithms: EGS-CMIM and EGS-NCMIGS

Reference

The work by Liu et al. (2010b).

Description—These algorithms attempt to extract multiple Markov boundaries by

repeatedly invoking single Markov boundary extraction methods CMIM (Fleuret, 2004) and

NCMIGS (Liu et al., 2010b), respectively. Conceptually, CMIM and NCMIGS are very

similar and differ primarily in the types of measures of association between variables. Both

methods employ only a greedy forward selection strategy similar to Phase I of IAMB and

rely on mutual information-based functions for measuring (conditional) association between

variables and the response T. The algorithmic framework of CMIM and NCMIGS is as

follows. First, all variables are ordered by decreasing association with the response T. A

Markov boundary M is initialized to be the empty set. The t-th highest associated variable

(where t is a user-defined parameter) is then added into M and an iterative addition of other

variables begins. On each iteration, a new variable that maximizes the value of a selection

criterion J(X) (discussed below) is added to the Markov boundary M. The algorithm stops

once a termination condition is reached. CMIM terminates when the Markov boundary

reaches a user-defined size k. NCMIGS offers two different stopping criteria that the user

could choose from. The first stopping criterion is the same as in CMIM controlled by the
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parameter k. The other termination criterion alleviates the requirement of explicitly

specifying the size of the Markov boundary and forces iterative selection to stop if the value

of the selection criterion J(X) changes from one iteration to the next by no more than δ (a

user-defined parameter), that is, if | J(Xi) − J(Xi−1) |≤ δ, where Xi denotes the variable

selected for addition into M on the i-th iteration of NCMIGS.

CMIM employs an approximation to the conditional mutual information I(X,T | M) as the

selection criterion JCMIM(X) for adding variables into the Markov boundary. The

approximation is achieved by conditioning on a single variable instead of the entire Markov

boundary M (as in KIAMB), that is, JCMIM(X) = argminY∈M I(X,T |Y). NCMIGS uses a

very similar selection criterion that is based on a normalized conditional mutual information

JNCMIGS(X) = argminY∈M I(X,T | Y)/H(X,T), where H(X,T) denotes the joint entropy of

variable X and response T. Conditioning on a single variable instead of the entire Markov

boundary makes CMIM and NCMIGS sample efficient by circumventing the problem of

exponential growth in the number of parameters and sample size required for estimating the

conditional mutual information I(X,Y | M) in discrete data as the size of the Markov

boundary M increases.

Analysis—Recall that EGS-CMIM (EGS-NCMIGS) extracts multiple Markov boundaries

by calling CMIM (NCMIGS) with different values of the input parameter t = 1, …,l, where l

is a user-defined parameter that bounds from above the total number of Markov boundaries

that will be output. Therefore, EGS-CMIM and EGS-NCMIGS require prior knowledge/

estimate of the number of Markov boundaries. Note that while admissible values of t (and

therefore of l) are by design bounded from above by the number of variables in the data, the

actual number of true Markov boundaries may be much higher. There is also no guarantee

that different values of t will yield different Markov boundaries, which makes these methods

computationally inefficient (similarly to KIAMB). In addition, because CMIM and

NCMIGS implement only forward selection and employ conditioning on a single variable,

these methods are prone to inclusion of false positives in their output. False positives may

enter a Markov boundary for two reasons: (i) when more than one variable from the current

Markov boundary is required to establish independence of the response T from some other

variable being considered for addition into the Markov boundary, and (ii) when some of the

variables added into the Markov boundary are independent of the response T conditional on

variables that were added in later iterations. Furthermore, the stopping criteria in CMIM and

NCMIGS are heuristic, which may lead to an arbitrary number of false negatives in the

output. This may happen, for instance, if the value of parameter k (size of a Markov

boundary) is set smaller than the true size of the Markov boundary. The alternative stopping

criterion of NCMIGS does not fully solve the problem of false negatives, because the

absolute difference | J(Xi) − J(Xi−1) | may be small, while the individual values J(Xi) and

J(Xi−1) of the selection criterion may still be large indicating that the considered variable Xi

is highly associated with the response T and that it may be too early to stop. In summary,

EGS-CMIM and EGS-NCMIGS offer no formal guarantees of neither correctness nor

completeness of their output, require prior knowledge/estimate of the number of Markov

boundaries and their size, are computationally inefficient, but are sample efficient.
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C.3 Variable Grouping Followed by Random Sampling of Variables from

Each Group: EGSG

Reference

The work by Liu et al. (2010).

Description—EGSG uses normalized version of mutual information JEGSG(X,Y) =

I(X,Y)/H(X,Y) for measuring pair-wise association between variables and partitions them

into disjoint groups. Each group has a “centroid”, which is the first variable that formed the

group. A variable X is added into a group if (i) X has a higher association with the groups

centroid C than with the response T (i.e., if JEGSG(X,C) ≥ JEGSG(X,T)), and (ii) X has lower

association with T than does C (i.e., if JEGSG(C,T) ≥ JEGSG(X,T)). If no such group is found,

then a new group is created with X as the groups centroid. Variables within a group are

implicitly assumed to carry similar information about T. Under this assumption, it is

sufficient to select one variable from each group to form a Markov boundary of T. In EGSG,

one of the top t variables most associated with the response T is sampled at random from

each group to form a single Markov boundary. Here, the value of parameter t is given by the

user. In order to extract multiple Markov boundaries, the above sampling is repeated a

number of times determined by the user.

Analysis—From the point of view of soundness and completeness, EGSG suffers from two

major drawbacks. First, the number of Markov boundaries output by EGSG is an arbitrary

parameter and is independent of the data-generating causal graph. Second, Markov

boundaries output by EGSG may contain an arbitrary number of false positives as well as

false negatives. False positives may appear, for instance, if a variable from one group is

independent of the response T conditional on a variable from another group. EGSG does not

test for conditional independence and could include both variables in a Markov boundary.

Moreover, since only one variable is sampled from each group, false negatives may appear

in the output of EGSG if several variables within a group in reality belong to the same

Markov boundary. Therefore, no guarantees can be made regarding the correctness and

completeness of the output of EGSG. The method is not computationally efficient for

discovery of distinct Markov boundaries, because EGSG may produce the same Markov

boundary multiple times due to random sampling of variables from each group. However, its

computationally efficiency can be improved by constructing Markov boundaries from the

Cartesian product of top-t members of each group. EGSG is sample efficient, because it

does not conduct any conditional independence tests, but only computes pair-wise

associations between variables.

C.4 Resampling-based Methods: Resampling+RFE and Resampling+UAF

Reference

The work by Ein-Dor et al. (2005), Michiels et al. (2005), Roepman et al. (2006) and

Statnikov and Aliferis (2010a).
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Description—In resampling-based methods, multiple variable sets are extracted by

repeatedly applying a variable selection method to different bootstrap samples of the data

(Ein-Dor et al., 2005; Michiels et al., 2005; Roepman et al., 2006; Statnikov and Aliferis,

2010a). The two variable selection methods employed in the resampling framework in this

paper are Univariate Association Filtering (UAF) (Hollander and Wolfe, 1999; Statnikov et

al., 2005) and Recursive Feature Elimination (RFE) (Guyon et al., 2002). These methods

implement only the backward selection akin to Phase II of IAMB. Namely, given a

bootstrap sample, all variables are first ordered by decreasing association with the response

T. UAF orders variables using p-values and test statistics from Kruskal-Wallis non-

parametric ANOVA (Hollander and Wolfe, 1999). RFE orders variables by decreasing

absolute values of the SVM weights (Guyon et al., 2002). Once all variables have been

ordered, a portion of the least significant variables is removed, performance of the remaining

variables for predicting the response T is evaluated, and this variable elimination process is

recursively applied to the remaining variables. The smallest nested subset of variables with

the maximum predictive performance is then output. The proportion of variables to be

removed on each iteration is controlled by a user-defined parameter called “reduction

coefficient”.16 Assessment of predictive performance can be performed by training and

evaluating a classifier model (e.g., SVM). One can also use variants of UAF and RFE,

where the smallest nested subset of variables with predictive performance statistically

indistinguishable from the nominally maximum predictive performance is output. This often

produces smaller variable sets than the former approach.

Analysis—Neither UAF nor RFE, which are at the core of resampling-based methods,

offer formal guarantees of the correctness of their output, because both methods are based

on a heuristic approach to finding the most predictive subset of variables and not the Markov

boundary (Aliferis et al., 2010b). Therefore, neither Resampling+UAF nor Resampling

+RFE are sound and complete for extraction of multiple Markov boundaries. Resampling

+UAF and Resampling+RFE are also computationally inefficient, because runs of UAF and

RFE on different bootstrap samples may produce identical variable sets, especially when the

sample size is large. In addition, the number of runs is a user-defined parameter that requires

prior knowledge of the number of Markov boundaries in the data. Both resampling

techniques are sample efficient, because UAF does not rely on conditional independence

tests and because RFE leverages SVMs regularized loss function that allows for parameter

estimation in high-dimensional data with small sample sizes.

C.5 Iterative Removal Methods: IR-HITON-PC and IR-SPLR

Reference

The work by Natsoulis et al. (2005) and Statnikov and Aliferis (2010a).

Description—Iterative removal methods identify multiple Markov boundaries (IR-

HITON-PC) or multiple variable sets (IR-SPLR) by repeatedly executing the following two

steps. Step 1: Extract a Markov boundary/variable set M from the current set W of variables

16Reduction coefficient = 1.2 means that every iteration retains 1/1.2 = 83% of variables from the previous iteration.
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(initially W = V \{T}). Step 2: If M is the first Markov boundary/variable set extracted or if

its predictive performance is statistically indistinguishable from performance of the first

Markov boundary/variable set, then output M, remove all of its variables from further

consideration (W ← W \M) and go to Step 1. Otherwise, terminate. IR-HITON-PC uses

Semi-Interleaved HITON-PC as the base Markov boundary extraction method. IR-SPLR

extracts variable sets using regularized Logistic regression with a L1 norm penalty term,

which induces sparsity in the regression coefficients. All variables with non-zero

coefficients are taken to belong to an output variable set.

Analysis—IR-HITON-PC is correct because it uses Semi-Interleaved HITON-PC to

identify Markov boundaries (per Theorem 9). On the other hand, IR-SPLR relies on a

heuristic regression-based approach to finding the most predictive subset of variables and

not the Markov boundary; thus this method has no theoretical guarantees for correct

identification of Markov boundaries. Furthermore, neither iterative removal method is

guaranteed to be complete, because these methods output disjoint Markov boundaries or

variable sets, while in general multiple Markov boundaries may share a number of variables.

IR-HITON-PC and IR-SPLR neither require prior knowledge of the number of Markov

boundaries nor their size, and these methods are computationally and sample efficient.

Appendix D. Details about the TIE* Algorithm

This appendix provides details about the generative TIE* algorithm.

D.1 Example Instantiations of the Generative Algorithm

Example instantiations of the generative algorithm TIE* are given in Figures 17 and 18.

D.2 Specific Implementation Details

We proceed below with details about TIE* implementations. We discuss Markov boundary

induction algorithm ( ), procedure to generate data sets from the embedded distributions

( ), and criterion to verify Markov boundaries of T ( ).

Markov boundary induction algorithm IAMB (Figure 4)

We used the Matlab implementation of the algorithm from the Causal Explorer toolkit

(Aliferis et al., 2003b; Statnikov et al., 2010). When the algorithm was run on discrete data,

we assessed independence of variables with G2 test at significance level α = 0.05. In our

implementation of G2 test, we required at least 5 samples per cell in the contingency tables.

For continuous data, one can use Fishers Z test to assess independence of variables. To

measure association Association(T,X | M) in step 4 of the algorithm we used negative p-

values returned by the corresponding test of independence T ⊥ X | M.17 Since the IAMB

algorithm can be run multiple times in TIE*, we programmed on top of the Causal Explorer

code a caching method to store and retrieve results of conditional independence tests.

17For the Fishers Z test and G2 test, p-value is inversely related to the test statistic, given a fixed degree of freedom. Thus, larger test
statistics correspond to smaller p-values, and vice-versa.
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Markov boundary induction algorithm Semi-Interleaved HITON-PC (Figure 5)

We used the Matlab implementation of the algorithm from the Causal Explorer toolkit

(Aliferis et al., 2003b; Statnikov et al., 2010). Semi-Interleaved HITON-PC was

implemented without so-called “symmetry correction” (Aliferis et al., 2010a). Similarly to

IAMB, to assess independence of variables in discrete data we used G2 test at α = 0.05, and

one can use Fisher's Z test for continuous data. To measure Association(T,X) in step 4 of the

algorithm, we used negative p-values returned by the corresponding test of independence T

⊥ X. The parameter max-k which denotes the upper bound on the size of the conditioning set

in Semi-Interleaved HITON-PC (i.e., the maximum size of the subset Z in steps 6 and 10 of

the algorithm) was set equal to 3. The choice of this value for max-k parameter is justified

by empirical performance in a variety of data distributions, as well as by sample size

limitations in our data (Aliferis et al., 2010a,b). Since the Semi-Interleaved HITON-PC

algorithm can be run multiple times in TIE*, we programmed on top of the Causal Explorer

codes a caching method to store and retrieve results of conditional independence tests.

Procedures IGS-Lex, IGS-MinAssoc, and IGS-MaxAssoc to generate data sets from the
embedded distributions (Figure 9)

These procedures were implemented by (i) constructing all subsets G such that {Gi} ⊂ G ⊆

{Mi ∪ Gi} and |G| ≤ parameter max-card, (ii) excluding subsets that either include  or

coincide with Gk, (iii) considering first subsets with the smallest number of variables, and

(iv) using a subset G with the either smallest lexicographical order of variables, or minimum

association with T, or maximum association with T (depending on the employed procedure).

The association with T was assessed with the appropriate statistical test, as described above

for the Markov boundary induction algorithms. The parameter max-card was set equal to 4

in all experiments except for experiments with simulated data where it was set equal to 8.

The purpose of this parameter is to trade off completeness of the TIE* output for execution

speed. We also experimented with larger values of max-card until no more new Markov

boundaries can be obtained.

Criterion Independence to verify Markov boundaries (Figure 10)

This criterion was implemented using statistical tests that were described above for the

Markov boundary induction algorithms. Since the Markov boundary in the original

distribution (M) and the examined Markov boundary in the embedded distribution (Mnew)

are often significantly overlapping, we used a sample efficient implementation where we do

not need to condition on the entire Markov boundary in the embedded distribution Mnew.

Consider that M ∩ Mnew = W, M\Mnew = S1, and Mnew\M = S2. Then context-independent

information equivalence of S1 and S2 implies information equivalence of M= S1 ∪ W and

Mnew = S2 ∪ W. Therefore, it suffices to verify that T ⊥ S1 | S2 and T ⊥ S2 | S1 instead of T

⊥ M | Mnew. This was the essence of our implementation of the Independence criterion for

Markov boundary verification.

Criterion Predictivity to verify Markov boundaries (Figure 11)

As a learning algorithm , we used linear support vector machines (SVMs) with default

value of the penalty parameter C = 1 (Fan et al., 2005; Vapnik, 1998). As a performance
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metric , we used area under ROC curve (AUC) (Fawcett, 2003) and weighted accuracy

(Guyon et al., 2006) for binary and multiclass responses, respectively. We estimated

classification performance (using either AUC or weighted accuracy) by holdout validation

(Weiss and Kulikowski, 1991), whereby 2/3 of data samples were used for Markov

boundary induction and classifier training and remaining 1/3 for classifier testing. Statistical

comparison of AUC estimates was performed using DeLong's test at α = 0.05 (DeLong et

al., 1988) and comparison of weighted accuracy estimates was performed by permutation-

based testing with 10,000 permutations of the vectors of classifier predictions (Good, 2000).

We also experimented with other SVM kernels and parameters in the criterion Predictivity,

but the final results were similar because SVMs are used here only for relative assessment of

the classifier performance (i.e., to compare performance of the Markov boundary M from

the original distribution with performance of the new Markov boundary Mnew from the

embedded distribution). Final assessment of the classifier performance for induced Markov

boundary variables was carried out using SVMs with polynomial kernel and parameters C

and degree d optimized by holdout validation or cross-validation, as described in Section 5.

Appendix E. Additional Information about Empirical Experiments

This appendix provides additional information about empirical experiments.

E.1 Parameterizations of Methods in Empirical Experiments

Parameterizations of methods in empirical experiments are given in Table 9.

E.2 On Computation of Performance Criteria in Experiments with Simulated

Data

Since the number of distinct Markov boundaries/variable sets extracted by a given method in

our evaluation may differ from the number of true Markov boundaries in the causal graph, it

is necessary to establish a matching between the true Markov boundaries and the extracted

Markov boundaries/variable sets before computing values of criteria III–V. This matching

was performed by finding a minimum-weight matching in a complete bipartite graph

, where vertices in V1 corresponded to the true Markov boundaries and

vertices in V2 corresponded to the extracted Markov boundaries/variable sets. The weight of

an edge (u,v) ∈ E,u ∈ V1,v ∈ V2, was set equal to the sum of PFP and FNR that would have

resulted from matching the true Markov boundary u with the extracted Markov boundary/

variable set v. The extracted Markov boundaries/variable sets that were not matched to any

true Markov boundary did not participate in the computation of criteria III–V. A limitation

of this approach to evaluation of different methods is that methods that are parameterized to

produce a number of Markov boundaries/variable sets that is much larger than the number of

true Markov boundaries could potentially show better performance on criteria III–V than

methods/parameterizations that output only a few Markov boundaries/variable sets. In order

to control for this effect, whenever a method allowed it, some of its parameterizations were

targeted towards producing the same “large” number of Markov boundaries/variable sets

(5,000 in our case). In addition, since the true Markov boundaries are unknown in practical

applications, the average classification performance (criterion VI) was computed over all
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distinct Markov boundaries/variable sets extracted by a method. This way of computing the

average classification performance, in a sense, counteracts the potential bias in criteria III–V

towards methods that produce large numbers of Markov boundaries/variable sets, since if

many of the extracted Markov boundaries/variable sets do not contain the variables truly

relevant to prediction of T (i.e., members of its true Markov boundaries), the classification

performance may suffer.

E.3 Additional Discussion of the Results of Experiments with Simulated

Data

KIAMB did not identify any true Markov boundaries exactly due to this method's sample

inefficiency arising from conditioning on the entire (candidate) Markov boundary. The

average classification performance of Markov boundaries extracted by KIAMB was about

20% lower than of the MAP-BN classifier in both data sets.

Performance of EGS-NCMIGS and EGS-CMIM was very similar and varied widely

depending on parameterization, with the average PFP ranging from 29% to 76% and average

FNR ranging from 0% to 27% in TIED. The high ends (i.e., worse results) of these measures

increased to 95% PFP and 51% FNR in TIED1000 demonstrating the sensitivity of these

methods to the presence of irrelevant variables in the data. The alternative stopping criterion

of EGS-NCMIGS helped reduce the PFP relative to other parameterizations, but failed to

reduce the FNR. The other stopping criterion that requires the size K of Markov boundaries

to be specified, was able to achieve 0% FNR in TIED (for large enough K; see Table 10).

This suggests that, even though the alternative stopping criterion has the advantage of not

requiring prior knowledge of the size of Markov boundaries, it makes EGS-NCMIGS

susceptible to premature termination as discussed in Appendix C. The average classification

performance of Markov boundaries extracted by EGS-NCMIGS and EGS-CMIM was

statistically comparable to the MAP-BN classification performance for all parameterizations

except those with K = 50 in both data sets and also for (l = 7, δ = 0.015) in TIED1000. The

reduction in classification performance relative to MAP-BN reached as high as 10% and was

due to presence of false positives and false negatives in the extracted Markov boundaries.

EGSG proved to be extremely sensitive to the presence of irrelevant variables with PFP and

FNR increasing across all parameterizations from highs of 55% PFP and 37% FNR in TIED

to uniformly above 93% PFP and high of 78% FNR in TIED1000. In addition, the average

size of Markov boundaries extracted by EGSG increased almost 10-fold, from 7 in TIED to

67 in TIED1000, while the number of variables conditionally dependent on T in the

underlying network remained unchanged. Consistent with the theoretical analysis in

Appendix C, these results demonstrate the lack of control for false positives as well as false

negatives in the output of EGSG. Classification performance was sensitive to the values of

parameter t, with increasing values resulting in degradation of classification performance in

both data sets, which is due to the fact that as t increases, Markov boundaries extracted by

EGSG increasingly resemble subsets of randomly selected variables from the complete set

of variables. Classification performance of Markov boundaries extracted by EGSG was

lower than performance of the MAP-BN classifier by 9–23% (depending on parameter
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settings) in TIED and by 27–55% in TIED1000. In addition, classification performance in

TIED1000 was lower than in TIED uniformly across all parameterizations of EGSG.

Variable sets extracted by Resampling+UAF were 24–50% larger than those found by

Resampling+RFE, which helped Resampling+UAF reach slightly lower FNR (by 3–6% in

TIED and by 2–4% in TIED1000), but also resulted in significantly higher PFP (by about

42–46% in TIED and by 30–35% in TIED1000). The larger size of the extracted variable

sets and higher PFP are likely due to UAF's ranking of variables based solely on univariate

association with the response T, whereas RFE's ranking is “multivariate” in a sense that it

takes into account not only each variable's individual classification performance, but also the

information that other variables in the current nested subset carry about T (Guyon et al.,

2002). In fact, Resampling+RFE produced more compact variable sets than Resampling

+UAF in every simulated and real data set considered in this study. In simulated data,

parameterizations of Resampling+RFE and Resampling+UAF with statistical comparison of

classification performance estimates produced variable sets that were on average 60–70%

smaller than those found by parameterizations without statistical comparison, resulting in

about 20% decreases in PFP, but causing roughly 30–36% increases in FNR. The average

classification performance of variable sets extracted by Resampling+RFE in simulated data

was statistically indistinguishable from Resampling+UAF with similar parameterizations.

The average classification performance of both methods parameterized without statistical

comparison was comparable with performance of the MAP-BN classifier in TIED and was

slightly lower (by about 1–2%) in TIED1000. Parameterizations with statistical comparison

underperformed the MAP-BN classifier by about 2–3% in both data sets. The results in both

simulated data sets also show that the number of distinct variable sets out of the 5,000

extracted by each parameterization of Resampling+RFE and Resampling+UAF ranged from

0.24% to 50%, and hence roughly 99% to 50% of computational resources were spent

retrieving the same variable sets multiple times.

IR-HITON-PC was able to identify exactly only a single true Markov boundary in both data

sets. This was a direct consequence of a violation of the iterative removal's underlying

assumption that the true Markov boundaries are disjoint sets of variables. All true Markov

boundaries in TIED and TIED1000 share variable X10. However, once that variable was

found to be in a Markov boundary by an iterative removal method, it was then removed

from further consideration thus preventing all other extracted Markov boundaries from

containing this variable. Markov boundaries extracted by IR-HITON-PC had 8–10% PFP

(depending on the data set) and 10–20% FNR. The low PFP was due to Semi-Interleaved

HITON-PC's built-in control for the false discovery rate (Aliferis et al., 2010b), while the

high FNR was a consequence of the iterative removal scheme. As a result of high FNR in

TIED, the average classification performance of Markov boundaries extracted by IR-

HITON-PC was about 2% lower than of the MAP-BN classifier in the same data set. The

FNR was lower in TIED1000 than in TIED, which resulted in classification performance

becoming statistically comparable with the MAP-BN performance.

IR-SPLR was not able to identify any true Markov boundaries exactly in neither TIED or

TIED1000. Each parameterization of IR-SPLR extracted only one variable set in both

simulated data sets. Variable sets extracted by IR-SPLR in simulated data were 4–6 times
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larger than those found by IR-HITON-PC, which resulted in about 60–70% increase in PFP

(depending on the data set), but zero FNR. The PFP of IR-SPLR did not increase

significantly in TIED1000 relative to TIED, which demonstrates the often-cited benefit of

the L1-norm regularization, that is, its ability to exclude irrelevant variables from the model.

Classification performance of the extracted variable sets was statistically comparable to the

MAP-BN performance in TIED and was about 2% lower in TIED1000 due to an increase in

PFP.

E.4 Real Data sets Used in the Experiments

The list of real data sets used in the experiments is given in Table 12.

E.5 On Computation of Performance Criteria in Experiments with Real Data

In order to rank all methods based on a given performance criterion, the average value of

this criterion was first computed over all evaluation data sets for each method. The methods

were then ordered from best to worst performing according to these averages. The best

performer was assigned rank 1 and designated as the current “reference method”.

Performance of the next unranked method in the ordered list was compared to performance

of the reference method using permutation-based testing at significance level 5% and with

10,000 permutations of the vectors of criterion values computed on each data set. If

performance of the two methods was found to be statistically comparable, the unranked

method received the same rank as the reference method. Otherwise, the next lowest rank

was assigned to the unranked method and this method was designated as the new reference

method. This process was repeated until each method was assigned a rank.

E.6 Additional Discussion of the Results of Experiments with Real Data

KIAMB produced some of the more compact Markov boundaries with the average PV of

1% and ranked second out of 11 by that criterion. Small sizes of the extracted Markov

boundaries were, to a large extent, due to KIAMB's sample inefficiency resulting in inability

to perform some of the required tests of independence as discussed in Appendix C. As a

result, classification performance of Markov boundaries extracted by KIAMB was lower

than of most other methods with KIAMB ranking 4 out of 5 by AUC. Consequently,

KIAMB ranked 5 out of 15 on the (PV, AUC) criterion. Although, KIAMB was

parameterized to produce 5,000 Markov boundaries, only about 30% of them were distinct,

which means that 70% of computational time was spent on repeated retrieval of the same

Markov boundaries.

EGS-NCMIGS with the alternative stopping criterion produced the smallest Markov

boundaries at the expense of a significant reduction in AUC (~ 9% below TIE*).

Parameterizations of EGS-NCMIGS with the alternative stopping criterion ranked first and

second out of 11 by PV and fourth out of 5 by AUC. Overall, performance of EGS-

NCMIGS and EGS-CMIM varied widely depending on parameterization. Ranks of these

methods ranged from 2 to 11 out of 15 on the (PV, AUC) criterion.
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EGSG showed an overall poor performance, ranking between 10 and 15 out of 15 on (PV,

AUC). Markov boundaries extracted by EGSG were larger than Markov boundaries

identified by many other methods and had the lowest average classification performance.

Resampling+RFE and Resampling+UAF extracted variable sets that were the largest in

comparison with other methods, but that also had highest classification performance.

Resampling+RFE and Resampling+UAF ranked between 9 and 11 out of 11 by PV and

between 1 and 3 by AUC. Notably, variable sets extracted by Resampling+UAF had an

average PV between 24% and 41%, depending on parameterization. Resampling+RFE

extracted more compact variable sets than Resampling+UAF in every data set, with the

average PV between 5% and 17%. Due to poor performance on the PV criterion,

Resampling+RFE and Resampling+UAF ranked in the mid to poor range on the combined

(PV, AUC) criterion, scoring between 7 and 11 out of 15.

Iterative removal methods IR-HITON-PC and IR-SPLR extracted small numbers of Markov

boundaries/variable sets and ranked between 5 and 6 out of 6 by that criterion. IR-HITON-

PC produced more compact Markov boundaries than the variable sets of IR-SPLR. Markov

boundaries extracted by IR-HITON-PC had an average PV of 2.3%, which was significantly

smaller than the 11%–15% average PV of IR-SPLR. IR-HITON-PC method ranked 5 out of

11 by PV while IR-SPLR methods ranked 9 and 10 by the same criterion. Despite the

smaller average size of the extracted Markov boundaries, IR-HITON-PC ranked on par with

IR-SPLR (parameterized with statistical comparison) by AUC, scoring third out of 5.

Among all parameterizations of iterative removal methods, IR-SPLR without statistical

comparison produced the largest variable sets, which helped this method reach a higher

average classification performance and rank second out of 5 by AUC. Higher average PV of

variable sets extracted by IR-SPLR caused these methods to rank 9 and 11 out of 15 on the

combined (PV, AUC) criterion. IR-HITON-PC ranked sixth on the same criterion as a result

of moderate ranks on PV and AUC.
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Figure 1.
Graph of a causal Bayesian network with four variables (top) and constraints on its

parameterization (bottom). Variables A, B, T take three values {0,1,2}, and variable C takes

two values {0,1}. Red dashed arrows denote non-zero conditional probabilities of each

variable given its parents. For example, P(T = 0 | A = 1) ≠ 0, while P(T = 0 | A = 2) = 0.
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Figure 2.
Graph of a Bayesian network used to demonstrate that the number of Markov boundaries

can be exponential in the number of variables in the network. The network parameterization

is provided in Table 5 in Appendix B. The response variable is T. All variables take values

{0,1}. All variables Xi in each group provide context-independent equivalent information

about T.
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Figure 3.
Graphical illustration of a Markov blanket in an ancestral graph. a) Data-generative DAG,

variables H1 and H2 are latent. b) Corresponding ancestral graph. The set of parents,

children, and spouses of T are shown in blue. Vertices connected with T or children of T by

a bi-directed path and their respective parents are shown in red and are underlined. If the

global Markov condition holds for the graph and joint probability distribution, a Markov

blanket of T consists of vertices shown in blue and red. All grey vertices will be then

independent of T conditioned on the Markov blanket.
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Figure 4.
IAMB algorithm.
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Figure 5.
Semi-Interleaved HITON-PC algorithm (without “symmetry correction”), member of the

Generalized Local Learning (GLL) algorithmic family. The algorithm is restated in a fashion

similar to IAMB for ease of comparative understanding. Original pseudo-code is given in

the work by Aliferis et al. (2010a).
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Figure 6.
TIE* generative algorithm.
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Figure 7.
Admissibility rules for inputs , ,  of the TIE* algorithm.
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Figure 8.
Graph of a causal Bayesian network used to trace the TIE* algorithm. The network

parameterization is provided in Table 6 in Appendix B. The response variable is T. All

variables take values {0,1} except for B that takes values {0,1,2,3}. Variables A and C

contain equivalent information about T and are highlighted with the same color. Likewise,

two variables {D,E} jointly and a single variable B contain equivalent information about T

and thus are also highlighted with the same color.
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Figure 9.
Procedure IGS ( ) to generate data sets from the embedded distributions Note that IGS is a

procedure (not a function), and we assume that  and G are accessible in the scope of

TIE*.
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Figure 10.
Criterion Independence ( ) to verify Markov boundaries.
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Figure 11.
Criterion Predictivity ( ) to verify Markov boundaries.
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Figure 12.
iTIE* algorithm, presented as a modification of Semi-Interleaved HITON-PC. Similar

algorithms may be obtained by modification of other members of the GLL-PC algorithmic

family (Aliferis et al., 2010a).
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Figure 13.
Graph of a causal Bayesian network used to trace the iTIE* algorithm. The network

parameterization is provided in Table 7 in Appendix B. The response variable is T. All

variables take values {0,1}. Variables A and C contain equivalent information about T and

are highlighted with the same color. Likewise, variables B and D contain equivalent

information about T and thus are also highlighted with the same color.
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Figure 14.
Results for average classification performance (weighted accuracy), average false negative

rate, and average proportion of false positives that were obtained in TIED (top figure) and

TIED1000 (bottom figure) data sets. The style and color of a vertical line connecting each

point with the plane shows whether the average SVM classification performance of a

method is statistically comparable with the MAP-BN classifier in the same data sample (red

solid line) or not (black dotted line). The Pareto frontier was constructed based on the

average false negative rate and the average proportion of false positives over the comparator

methods (i.e., non-TIE*). Results of TIE* and iTIE* were identical in both data sets.
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Figure 15.
Average performance of the evaluated methods across 13 real data sets. The Pareto frontier

was constructed based on the average proportion of variables and the average AUC over the

prior methods (i.e., non-TIE*). Detailed results are provided in Tables 3 and 4.

Statnikov et al. Page 63

J Mach Learn Res. Author manuscript; available in PMC 2014 October 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 16.
Graph of a causal Bayesian network used to trace the TIE* algorithm. The network

parameterization is provided in Table 8 in Appendix B. The response variable is T. All

variables take values {0,1}. Variables that contain equivalent information about T are

highlighted with the same color, for example, variables X1 and X5 provide equivalent

information about T; variable X9 and each of the four variable sets {X5,X6}, {X1,X2},

{X1,X6}, {X5,X2} provide equivalent information about T.
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Figure 17.
An example of instantiated TIE* algorithm. This algorithm was used in experiments with

real data in Section 5.2.
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Figure 18.
An example of instantiated TIE* algorithm. This algorithm was used in experiments with

simulated data in Section 5.1.
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Figure 19.
Results for average false negative rate and average proportion of false positives obtained in

TIED (left) and TIED1000 (right) data sets. Results of TIE* and iTIE* were identical.
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Table 1

Prior algorithms for learning multiple Markov boundaries and variable sets. “+” means that the corresponding

property is satisfied by a method, “−” means that the property is not satisfied, and “+/−” denotes cases where

the property is satisfied under certain conditions.

Markov boundary
identification (assuming
faithfulness except for

violations of the intersection
property)

Parameterization: does not
require prior knowledge of

Computationally efficient sample efficient

correct
(identifies
Markov

boundaries)

complete
(identifies all

Markov
boundaries)

the number
of Markov

boundaries/
variable sets

the size of
Markov

boundaries/
variable sets

KIAMB + + − + − −

EGS-CMIM − − − − − +

EGS-NCMIGS − − − +/− − +

EGSG − − − + − +

Resampling+RFE − − − + − +

Resampling+UAF − − − + − +

IR-HITON-PC + − + + + +

IR-SPLR − − + + + +
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Table 2

Part of the trace of TIE*, focusing on operation of the procedure .
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Table 3

Number of distinct Markov boundaries or variable sets identified by the evaluated methods (N), proportion of

variables in them (PV) and their classification performance (AUC) averaged across all 13 real data sets for

each method. The color of highlighting signifies relative performance on each criterion with dark red

corresponding to the best performance and light yellow to the worst. See Table 4 for ranks of methods that

also incorporate formal statistical comparison of the observed differences between methods.
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Table 4

Ranks of methods based on individual and combined criteria. Smaller ranks correspond to better methods

according to each criterion. As described in text, ranks were obtained using formal statistical comparison of

the observed differences between methods; that is why they do not necessarily range between 1 and 27 (total

number of tested methods).

Method Rank

N PV AUC (PV, AUC)

TIE* max-k = 3, α = 0.05 4 5 2 1

KIAMB

Number ofruns = 5000, α = 0.05, K = 0.7 4 2 4 5

Number of runs = 5000, α = 0.05, K = 0.8 4 2 4 5

Number of runs = 5000, α = 0.05, K = 0.9 4 2 4 5

EGS-NCMIGS

l = 7, δ = 0.015 6 1 4 3

l = 7, K = 10 6 5 3 6

l = 7, K = 50 6 9 3 11

l = 5000, δ = 0.015 3 2 4 5

l = 5000, K = 10 3 4 3 4

l = 5000, K = 50 3 9 3 11

EGS-CMIM

l = 1, K = 10 6 5 3 6

l = 7, K = 50 6 9 2 8

l = 5000, K = 10 3 3 3 2

l = 5000, K = 50 3 9 2 8

EGSG

Number of Markov boundaries = 30, t = 5 5 6 4 10

Number of Markov boundaries = 30, t = 10 5 6 4 10

Number of Markov boundaries = 30, t = 15 5 6 5 13

Number of Markov boundaries = 5,000, t = 5 2 9 4 14

Number of Markov boundaries = 5,000, t = 10 2 8 4 12

Number of Markov boundaries = 5,000, t = 15 1 7 5 15

Resampling+RFE
without statistical comparison 2 10 2 9

with statistical comparison (α = 0.05) 2 9 3 11

Resampling+UAF
without statistical comparison 3 11 1 7

with statistical comparison (α = 0.05) 3 10 2 9

IR-HITON-PC max-k = 3, α = 0.05 6 5 3 6

IR-SPLR
without statistical comparison 6 10 2 9

with statistical comparison (α = 0.05) 5 9 3 11
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Table 5

Parameterization of the Bayesian network shown in Figure 2
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Table 6

Parameterization of the causal Bayesian netwoxrk shown in Figure 8.
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Table 7

Parameterization of the causal Bayesian network shown in Figure 13.
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Table 8

Parameterization of the causal Bayesian network shown in Figure 16. All variables are binary and take values

{0,1}.
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Table 9

Parameterizations of methods for discovery of multiple Markov boundaries and variable sets. Parameter

settings that have been recommended by the authors of prior methods are underlined.
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Table 10

Results obtained in simulated data set TIED. “MB” stands for “Markov boundary”, and “VS” stands for

“variable set”. The 95% interval for weighted accuracy denotes the range in which weighted accuracies of

95% of the extracted Markov boundaries/variable sets fell. Classification performance of the MAP-BN

classifier in the same data sample was 0.966 weighted accuracy. Highlighted in bold are results that are

statistically comparable to the MAP-BN classification performance.

Method

I.
Number

of
distinct
MBs or

VSs

II.
Average
size of

extracted
distinct
MBs or

VSs

III.
Number
of true
MBs

identified
exactly

IV.
Average

proportion
of false

positives

V.
Average

false
negative

rate

VI. Weighted accuracy
over all extracted MBs or

VSs

Average 95% Interval

TIE* max-k = 3, α = 0.05 72 5.0 72 0.000 0.000 0.951 0.938 0.965

iTIE* max-k = 3, α = 0.05 72 5.0 72 0.000 0.000 0.951 0.938 0.965

KIAMB

Number of runs = 5000, α =
0.05, K = 0.7 377 2.8 0 0.000 0.400 0.727 0.479 0.946

Number of runs = 5000, α =
0.05, K = 0.8 377 2.8 0 0.000 0.400 0.727 0.479 0.946

Number of runs = 5000, α =
0.05, K = 0.9 377 2.8 0 0.000 0.400 0.727 0.479 0.946

EGS-NCMIGS

l = 7, δ = 0.015 6 7.0 0 0.286 0.000 0.964 0.963 0.965

l = 7, K = 10 6 10.0 0 0.500 0.000 0.964 0.963 0.965

l = 7, K = 50 6 21.0 0 0.762 0.000 0.941 0.937 0.943

l = 5000, δ = 0.015 24 7.3 0 0.469 0.267 0.954 0.843 0.967

l = 5000, K = 10 20 10.0 0 0.610 0.220 0.964 0.954 0.970

l = 5000, K = 50 9 21.0 0 0.762 0.000 0.944 0.937 0.954

EGS-CMIM

l = 7, K = 10 6 10.0 0 0.500 0.000 0.963 0.963 0.965

l = 7, K = 50 6 21.0 0 0.762 0.000 0.939 0.937 0.942

l = 5000, K = 10 20 10.0 0 0.595 0.190 0.963 0.951 0.969

l = 5000, K = 50 9 21.0 0 0.762 0.000 0.943 0.937 0.954

EGSG

Number of Markov
boundaries = 30, t = 5 30 7.0 0 0.476 0.267 0.840 0.605 0.968

Number of Markov
boundaries = 30, t = 10 30 7.0 0 0.548 0.367 0.722 0.379 0.962

Number of Markov
boundaries = 30, 1 = 15 30 7.0 0 0.548 0.367 0.722 0.379 0.962

Number of Markov
boundaries = 5,000, t = 5 1,997 7.0 0 0.286 0.000 0.863 0.620 0.965

Number of Markov
boundaries = 5,000, t = 10 3,027 7.0 0 0.286 0.000 0.774 0.500 0.965

Number of Markov
boundaries = 5,000, t = 15 3,027 7.0 0 0.286 0.000 0.774 0.500 0.965

Resampling+RFE

without statistical comparison 1,374 14.9 1 0.397 0.058 0.955 0.932 0.979

with statistical comparison (α
= 0.05) 188 4.9 0 0.171 0.378 0.930 0.917 0.967

Resampling+UAF without statistical comparison 184 20.8 0 0.752 0.000 0.953 0.934 0.966
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Method

I.
Number

of
distinct
MBs or

VSs

II.
Average
size of

extracted
distinct
MBs or

VSs

III.
Number
of true
MBs

identified
exactly

IV.
Average

proportion
of false

positives

V.
Average

false
negative

rate

VI. Weighted accuracy
over all extracted MBs or

VSs

Average 95% Interval

with statistical comparison (α
= 0.05) 19 8.4 0 0.592 0.347 0.930 0.917 0.938

IR-HITON-PC max-k = 3, α = 0.05 3 4.3 1 0.083 0.200 0.946 0.936 0.965

IR-SPLR

without statistical comparison 1 26.0 0 0.808 0.000 0.958 0.958 0.958

with statistical comparison (α
= 0.05) 1 17.0 0 0.706 0.000 0.959 0.959 0.959
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Table 11

Results obtained in simulated data set TIED1000. “MB” stands for “Markov boundary”, and “VS” stands for

“variable set”. The 95% interval for weighted accuracy denotes the range in which weighted accuracies of

95% of the extracted Markov boundaries/variable sets fell. Classification performance of the MAP-BN

classifier in the same data sample was 0.972 weighted accuracy. Highlighted in bold are results that are

statistically comparable to the MAP-BN classification performance.

Method

I.
Number

of
distinct
MBs or

VSs

II.
Average
size of

extracted
distinct
MBs or

VSs

III.
Number
of true
MBs

identified
exactly

IV.
Average

proportion
of false

positives

V.
Average

false
negative

rate

VI. Weighted accuracy
over all extracted MBs or

VSs

Average 95% Interval

TIE* max-k = 3, α = 0.05 72 5.0 72 0.000 0.000 0.957 0.952 0.960

iTIE* max-k = 3, α = 0.05 72 5.0 72 0.000 0.000 0.957 0.952 0.960

KIAMB Number of runs = 5000, α =
0.05, K = 0.7 349 2.8 0 0.000 0.400 0.722 0.450 0.959

Number of runs = 5000, α =
0.05, K = 0.8 349 2.8 0 0.000 0.400 0.722 0.450 0.959

Number of runs = 5000, α =
0.05, K = 0.9 349 2.8 0 0.000 0.400 0.722 0.450 0.959

EGS-NCMIGS

l = 7, δ = 0.015 6 7.0 0 0.286 0.000 0.953 0.952 0.956

l = 7, K = 10 6 10.0 0 0.500 0.000 0.968 0.967 0.969

l = 7, K = 50 6 50.0 0 0.900 0.000 0.877 0.866 0.887

l = 5000, δ = 0.015 995 8.0 0 0.648 0.508 0.960 0.950 0.968

l = 5000, K = 10 990 10.0 0 0.747 0.494 0.961 0.952 0.968

l = 5000, K = 50 950 50.0 0 0.949 0.494 0.868 0.857 0.882

EGS-CMIM l = 7, K = 10 6 10.0 0 0.500 0.000 0.967 0.965 0.968

l = 7, K = 50 6 50.0 0 0.900 0.000 0.904 0.895 0.915

l = 5000, K = 10 990 10.0 0 0.676 0.353 0.961 0.953 0.967

l = 5000, K = 50 950 50.0 0 0.935 0.353 0.897 0.885 0.910

EGSG

Number of Markov
boundaries = 30, t = 5 30 67.0 0 0.958 0.440 0.688 0.383 0.850

Number of Markov
boundaries = 30, t = 10 30 67.0 0 0.977 0.693 0.485 0.253 0.769

Number of Markov
boundaries = 30, 1 = 15 30 67.0 0 0.984 0.780 0.422 0.246 0.739

Number of Markov
boundaries = 5,000, t = 5 5,000 67.0 0 0.927 0.028 0.662 0.441 0.850

Number of Markov
boundaries = 5,000, t = 10 5,000 67.0 0 0.944 0.250 0.476 0.248 0.780

Number of Markov
boundaries = 5,000, t = 15 5,000 67.0 0 0.953 0.369 0.406 0.247 0.710

Resampling+RFE

without statistical comparison 2,492 16.7 2 0.434 0.039 0.951 0.931 0.968

with statistical comparison (α
= 0.05) 214 6.0 0 0.225 0.336 0.947 0.917 0.964

Resampling+UAF without statistical comparison 1,207 28.7 0 0.721 0.000 0.952 0.935 0.964
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Method

I.
Number

of
distinct
MBs or

VSs

II.
Average
size of

extracted
distinct
MBs or

VSs

III.
Number
of true
MBs

identified
exactly

IV.
Average

proportion
of false

positives

V.
Average

false
negative

rate

VI. Weighted accuracy
over all extracted MBs or

VSs

Average 95% Interval

with statistical comparison (α
= 0.05) 12 7.8 0 0.577 0.367 0.949 0.931 0.959

IR-HITON-PC max-k = 3, α = 0.05 2 5.0 1 0.100 0.100 0.958 0.958 0.959

IR-SPLR

without statistical comparison 1 30.0 0 0.833 0.000 0.949 0.949 0.949

with statistical comparison (α
= 0.05) 1 30.0 0 0.833 0.000 0.949 0.949 0.949
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Table 12

Real data sets used in the experiments.

Name Domain # of samples # of variables Response type Data type CV design References

Infant_Mortality clinical 5,337 86 Death within the
first year

Discrete Holdout Mani and Cooper
(1999)

Ohsumed Text 5,000 14,373 Relevant to
neonatal diseases

Continuous Holdout Joachims (2002)

ACPJ_Etiology Text 15,779 28,228 Relevant to etiology Continuous Holdout Aphinyanaphongs
et al. (2006)

Lymphoma Gene Expression 227 7,399 3-year survival:dead
vs. alive

Continuous 10-fold Rosenwald et al.
(2002)

Gisette Digit recognition 7,000 5,000 4 vs. 9 Continuous Holdout NIPS 2003
Feature Selection
Challenge Guyon
et al. (2006)

Dexter Text 600 19,999 Relevant to
corporate
acquisitions

Continuous 10-fold NIPS 2003
Feature Selection
Challenge Guyon
et al. (2006)

Sylva Ecology 14,394 216 Ponderosa vs. rest Continuous Holdout WCCI 2006 Perf.
Prediction
Challenge

Ovarian_Cancer Proteomics 216 2,190 Cancer vs. normal Continuous 10-fold Conrads et al.
(2004)

Thrombin Drug discovery 2,543 139,351 Binding to thrombin Discrete Holdout KDD Cup 2001

Breast_Cancer Gene Expression 286 17,816 ER+vs. ER− Continuous 10-fold Wang et al.
(2005)

Hiva Drug discovery 4,229 1,617 Activity to HIV
AIDS infection

Discrete Holdout WCCI 2006
Perf.Prediction
Challenge

Nova Text 1,929 16,969 Political topics vs.
religious

Discrete Holdout WCCI 2006 Perf.
Prediction
Chanllenge

Bankruptcy Financial 7,063 147 Personal bankruptcy Continuous Holdout Foster and Stine
(2004)
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