All variables |
1 |
86 |
0.821 |
1 |
14,373 |
0.857 |
1 |
28,228 |
0.938 |
1 |
7,399 |
0.659 |
1 |
5,000 |
0.997 |
TIE* |
max-k = 3, α =0.05 |
41 |
4 |
0.825 |
2,497 |
37 |
0.776 |
5,330 |
18 |
0.908 |
4,533 |
16 |
0.635 |
227 |
54 |
0.990 |
KIAMB |
Number of runs = 5000, α = 0.05, K = 0.7 |
67 |
4 |
0.753 |
250 |
7 |
0.651 |
1,354 |
9 |
0.884 |
88 |
3 |
0.562 |
5,000 |
8 |
0.871 |
Number of runs = 5000, α = 0.05, K = 0.8 |
39 |
4 |
0.752 |
133 |
7 |
0.650 |
830 |
9 |
0.883 |
50 |
3 |
0.561 |
5,000 |
8 |
0.871 |
Number of runs = 5000, α = 0.05, K = 0.9 |
17 |
4 |
0.752 |
58 |
7 |
0.648 |
414 |
9 |
0.884 |
23 |
3 |
0.561 |
5,000 |
8 |
0.871 |
EGS-NCMIGS |
l = 7, δ = 0.015 |
6 |
4 |
0.809 |
6 |
4 |
0.584 |
6 |
3 |
0.743 |
7 |
3 |
0.591 |
7 |
3 |
0.913 |
l = 7, K = 10 |
3 |
10 |
0.874 |
1 |
10 |
0.691 |
3 |
10 |
0.780 |
5 |
10 |
0.615 |
7 |
10 |
0.952 |
l = 7, K = 50 |
1 |
50 |
0.821 |
1 |
50 |
0.828 |
3 |
35 |
0.842 |
3 |
50 |
0.662 |
5 |
50 |
0.986 |
l = 5000, δ = 0.015 |
84 |
4 |
0.806 |
4,999 |
4 |
0.564 |
4,999 |
4 |
0.770 |
4,992 |
3 |
0.574 |
4,999 |
5 |
0.920 |
l = 5000, K = 10 |
77 |
10 |
0.862 |
4,991 |
10 |
0.693 |
4,991 |
10 |
0.785 |
4,981 |
10 |
0.600 |
4,994 |
10 |
0.953 |
l = 5000, K = 50 |
39 |
50 |
0.822 |
4,951 |
50 |
0.830 |
4,981 |
31 |
0.843 |
4,947 |
50 |
0.653 |
4,957 |
50 |
0.987 |
EGS-CMIM |
l = 7, K = 10 |
2 |
10 |
0.865 |
1 |
10 |
0.696 |
2 |
10 |
0.915 |
6 |
10 |
0.577 |
7 |
10 |
0.956 |
l = 7, K = 50 |
1 |
50 |
0.829 |
1 |
50 |
0.843 |
1 |
32 |
0.917 |
4 |
50 |
0.608 |
5 |
50 |
0.987 |
l = 5000, K = 10 |
77 |
10 |
0.863 |
4,991 |
10 |
0.687 |
4,991 |
10 |
0.842 |
4,970 |
10 |
0.581 |
4,992 |
10 |
0.963 |
l = 5000, K = 50 |
38 |
50 |
0.827 |
4,951 |
50 |
0.841 |
4,982 |
31 |
0.857 |
4,942 |
50 |
0.613 |
4,957 |
50 |
0.987 |
EGSG |
Number of Markov boundaries = 30, t = 5 |
30 |
12 |
0.634 |
30 |
70 |
0.653 |
30 |
84 |
0.840 |
30 |
58 |
0.600 |
30 |
35 |
0.959 |
Number of Markov boundaries = 30, t = 10 |
30 |
12 |
0.568 |
30 |
70 |
0.634 |
30 |
84 |
0.835 |
30 |
58 |
0.616 |
30 |
35 |
0.946 |
Number of Markov boundaries = 30, t = 15 |
30 |
12 |
0.552 |
30 |
70 |
0.602 |
30 |
84 |
0.792 |
30 |
58 |
0.607 |
30 |
35 |
0.936 |
Number of Markov boundaries = 5,000, t = 5 |
991 |
12 |
0.631 |
5,000 |
70 |
0.649 |
5,000 |
84 |
0.837 |
5,000 |
58 |
0.604 |
5,000 |
35 |
0.961 |
Number of Markov boundaries = 5,000, t = 10 |
3,576 |
12 |
0.587 |
5,000 |
70 |
0.624 |
5,000 |
84 |
0.822 |
5,000 |
58 |
0.617 |
5,000 |
35 |
0.950 |
Number of Markov boundaries = 5,000, t = 15 |
4,272 |
12 |
0.556 |
5,000 |
70 |
0.606 |
5,000 |
84 |
0.780 |
5,000 |
58 |
0.609 |
5,000 |
35 |
0.941 |
Resampling+RFE |
without statistical comparison |
4,230 |
17 |
0.825 |
4,942 |
3,889 |
0.846 |
5,000 |
2,441 |
0.924 |
4,919 |
1,293 |
0.634 |
4,948 |
697 |
0.997 |
with statistical comparison (α = 0.05) |
3,222 |
9 |
0.814 |
5,000 |
914 |
0.836 |
5,000 |
308 |
0.864 |
4,962 |
45 |
0.587 |
5,000 |
134 |
0.995 |
Resampling+UAF |
without statistical comparison |
4,868 |
26 |
0.859 |
2,533 |
10,722 |
0.855 |
4,963 |
3,883 |
0.929 |
4,215 |
2,546 |
0.647 |
5,000 |
1,673 |
0.999 |
with statistical comparison (α = 0.05) |
3,141 |
15 |
0.777 |
4,925 |
7,690 |
0.864 |
5,000 |
1,600 |
0.918 |
4,895 |
195 |
0.600 |
5,000 |
1,088 |
0.998 |
IR-HITON-PC |
max-k = 3, α = 0.05 |
1 |
5 |
0.857 |
2 |
40 |
0.778 |
4 |
22 |
0.875 |
12 |
10 |
0.593 |
3 |
64 |
0.990 |
IR-SPLR |
without statistical comparison |
1 |
8 |
0.835 |
1 |
176 |
0.829 |
4 |
123 |
0.885 |
16 |
456 |
0.577 |
1 |
466 |
0.996 |
with statistical comparison (α = 0.05) |
1 |
2 |
0.828 |
3 |
122 |
0.728 |
5 |
26 |
0.844 |
139 |
47 |
0.572 |
1 |
261 |
0.996 |