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ABSTRACT

Motivation: The emergence of network medicine not only offers more

opportunities for better and more complete understanding of the mo-

lecular complexities of diseases, but also serves as a promising tool

for identifying new drug targets and establishing new relationships

among diseases that enable drug repositioning. Computational

approaches for drug repositioning by integrating information from mul-

tiple sources and multiple levels have the potential to provide great

insights to the complex relationships among drugs, targets, disease

genes and diseases at a system level.

Results: In this article, we have proposed a computational framework

based on a heterogeneous network model and applied the approach

on drug repositioning by using existing omics data about diseases,

drugs and drug targets. The novelty of the framework lies in the fact

that the strength between a disease–drug pair is calculated through an

iterative algorithm on the heterogeneous graph that also incorporates

drug-target information. Comprehensive experimental results show

that the proposed approach significantly outperforms several recent

approaches. Case studies further illustrate its practical usefulness.
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1 INTRODUCTION

Traditionally, drug discovery and drug development mainly rely

on cell-based or target-based screening of chemical compounds

to identify a small subset of ‘hits’, properties of which are then

studied to further increase their affinity, efficacy and selectivity,

before moving forward to animal tests and clinical trials (Paul
et al., 2010). Even with advance in technology and knowledge

about the molecular bases of diseases, the whole process of drug

development is still lengthy, expensive and with high-failure

rates. It is estimated that the cost for developing a new drug is

�$1.8 billion dollars, and the average time is �13.5 years (Paul
et al., 2010). Drug repositioning, which aims to identify new

indications of existing drugs, offers a promising alternative to

reduce the total time and cost because of existing safety, toler-

ation and efficacy data on known drugs (Ashburn and Thor,

2004). Several successfully repositioned drugs (e.g. sildenafil)

have generated significant revenues for their patent holders/

companies.
The generation of large-scale genomic, transcriptomic, prote-

omic data and their integration with signaling and metabolimic
data in a network framework have provided new insights of

molecular basis of complex diseases and have enabled a net-

work-based view of drug discovery and development (Hopkins,
2008). The emergence of network medicine not only offers more

opportunities for better and more complete understanding of
molecular complexities of diseases (Goh and Choi, 2012; Goh

et al., 2007), but also serves as a promising tool for identifying

new drug targets (Campillos et al., 2008; Yildirim et al., 2007)
and establishing new relationships among diseases that enable

drug repositioning (Barabasi et al., 2011). Since these earlier

works, many computational approaches have been proposed
either for target prediction (Bleakley and Yamanishi, 2009;

Campillos et al., 2008; Cheng et al., 2012; Emig, 2013; Keiser
et al., 2009; Perlman et al., 2011; Wang et al., 2013; Yamanishi

et al., 2008) or drug repositioning (Chiang and Butte, 2009;

Gottlieb et al., 2011; Lamb et al., 2006; Li et al., 2009; Sirota
et al., 2011), many of which have used network-based

algorithms.
In many of these studies, drug target prediction and drug re-

positioning were treated as two separate tasks. We argue that by
incorporating target information directly into drug repositioning,

we can potentially make more meaningful predictions. The

underlying assumption is based on the principle of rational
drug design: therapeutic effect of chemical compounds on dis-

eases is through their binding to biological targets that are rele-
vant to diseases themselves. Although it is not feasible to fully

adopt the rational drug-design strategy in large-scale systematic

assessment of relationships among all drugs and all diseases, it is
a promising direction to include target information in drug

repositioning. This principle has been recognized by many
researchers (e.g. Gottlieb et al., 2011; Li et al., 2009). What is

lacking is a systematic approach to automatically integrate drug-

target information into drug repositioning.
In this article, we propose a novel heterogeneous network

model that seamlessly integrates drug repositioning and target
prediction into one unified framework. The full heterogeneous

graph model consists of three different types of nodes: diseases,
drugs and drug targets (Fig. 1). Disease–drug relationships and

drug–target relationships are constructed based on prior know-

ledge from existing databases such as DrugBank (Knox et al.,
2011). Disease–disease, drug–drug and target–target relation-

ships are constructed based on their similarities. The drug*To whom correspondence should be addressed.
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repositioning is thus formulated as a missing edge prediction

problem on this heterogeneous graph. An iterative updating al-

gorithm that propagates information across the network is then

developed to solve the missing edge prediction problem. Our

approach is based on the guilt-by-association principle

(Altshuler et al., 2000) that has been validated repeatedly in

many studies, including studies on drug repositioning (Chiang

and Butte, 2009). A unique characteristic of our framework is

that it automatically incorporates drug-target information into

drug–disease association prediction.

Although the primary goal of this article is to investigate the

drug repositioning problem, it is also worth noting that by using

the newly proposed heterogeneous model and the iterative updat-

ing algorithm, new drug–target relationships will also be automat-

ically constructed simultaneously. When only diseases and drugs

are considered or only drugs and targets are considered, the triple

layer model is reduced to a two-layer model. The two-layer model

using drugs and targets for target prediction was investigated by

our group in a recent paper, and its iterative updating algorithm

was termed Heterogeneous Graph Based Inference (HGBI)

(Wang et al., 2013). The same algorithm can also be used for

the two-layer model consisting of diseases and drugs for drug

repositioning. However, it cannot be directly extended to the

tree-layer model, which will be the focus of this study.

To evaluate the newly proposed three-layer model (termed

TL_HGBI, for Triple Layer Heterogeneous Graph Based

Inference) for drug repositioning, wewill compare its performance

with the performance of the two-layer model consisting of only

diseases and drugs by using the HGBI algorithm originally de-

veloped for drug target prediction (Wang et al., 2013). The evalu-

ation ismainly based on leave-one-out cross-validation (LOOCV)

experiments on large-scale omics data fromexisting databases [e.g.

DrugBank, OMIM (Hamosh et al., 2005)]. Three additional state-

of-the-art approaches, namely, GBA (Chiang and Butte, 2009),

BLM (Bleakley and Yamanishi, 2009) and NBI (Cheng et al.,

2012) are also included in the comparison. Although BLM and

NBI (HGBI as well) were originally developed for drug–target

association prediction, the algorithms have been used on drug–

disease association prediction (Gottlieb et al., 2011; Perlman

et al., 2011) and can naturally be applied on drug repositioning.

Experimental results show that TL_HGBI performs the best with

highest AUC (area under the receiver operating characteristic, i.e.

ROC curve). In particular, when focusing on the top 1%predicted

drug–disease associations, TL_HGBI successfully retrieves 304

interactions of 1382 true disease–drug interactions, whereas

HGBI, BLM and NBI retrieve 290, 15 and 2 such interactions.

Furthermore, in a case study of five different diseases, many of the

top-ranked drugs are strongly supported by recent literature,

knowledge of which was not included in the experiment.

2 METHODS

2.1 A two-layer heterogeneous network model

for drug repositioning

We first introduce the two-layer heterogeneous network model for drug

repositioning. The network consists of two types of nodes, i.e. disease

nodes and drug nodes, and three types of edges, i.e. disease–disease edges,

drug–drug edges and disease–drug edges. Let D=fd1; d2; :::; dng denote

the n diseases; R=fr1; r2; :::; rmg denote the m drugs. Let Edd and Err

denote edges between diseases and drugs, respectively. Let Wdd and

Wrr denote edge weights, which reflect disease–disease and drug–drug

similarities. Let Edr denote the known disease–drug relationships. The

weights on all these disease–drug edges are initially assigned 1 and

denoted by Wdr. The drug repositioning problem can therefore be for-

mulated as missing edge prediction problem on the heterogeneous graph

GDR=ffD;Rg; fEdd;Err;Edrg; fWdd;Wrr;Wdrgg. The objective is to cap-

ture hidden relationships between drugs and diseases based on drug–drug

similarities, disease–disease similarities and known drug–target inter-

actions. Structure-wise, this model is the same as the two-layer model

we developed for drug target prediction (Wang et al., 2013). Therefore,

we will use the same iterative algorithm HGBI to solve the problem.

2.2 A three-layer heterogeneous network model

for drug repositioning

The three-layer heterogeneous network model consists of three types of

nodes: disease nodes, drug nodes and target nodes. Let D=fd1; d2; :::; dng

denote the n disease nodes, R=fr1; r2; :::; rmg denote the m drug nodes

and T=ft1; t2; :::; tlg denote the l target nodes. The edges among these

nodes are defined based on their relationships. For example, the intracon-

nections between the same types of nodes can be defined based on their

similarities or their relationships from other data sources. For our initial

investigations, we will use similarity measures to define intraconnections.

Disease similarities can be calculated based on their phenotypic descrip-

tions (Van Driel et al., 2006). Drug similarities can be calculated based on

their chemical structures (Steinbeck et al., 2006). Target similarities can be

calculated based on their protein sequence similarities (Bleakley and

Fig. 1. Procedure of predicting disease–drug associations with

TL_HGBI. (A) Constructing a triple-layer network with intra similarities

and interactions among diseases, drugs and targets. (B) Calculating pre-

diction scores in two steps. (C) Ranking candidate drugs based on their

prediction scores
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Yamanishi, 2009). Distributions of these similarity measures will be inves-

tigated, and proper thresholds will be selected to construct the network.

Two nodes of the same type will be connected if and only if their simi-

larity measure is greater than the selected threshold, and the similarity is

treated as edge weight. The interconnections between different types of

nodes can be established based on existing knowledge. Initial disease–

drug interactions can be obtained from previous studies (Gottlieb et al.,

2011). Initial drug–target interactions can be collected from the

DrugBank database. The weights of all disease–drug and drug–target

edges are originally assigned as one. Direct links between diseases and

targets are generally unknown.

Let Edd, Err, Ett, Edr and Ert represent the sets of edges between disease–

disease, drug–drug, target–target, disease–drug and drug–target, respect-

ively, and Wdd, Wrr, Wtt, Wdr and Wrt represent the weight matrices on

these edges. The heterogeneous disease–drug–target graph can be repre-

sented as GDRT=ffD;R;Tg; fEdd;Ett;Err;Edr;Ertg; fWdd;Wrr;Wtt;

Wdr;Wrtgg.Ourgoalofdrugrepositioningbasedonthisgraphis toestablish

new edges between drugs and diseases and to assess their reliability.

Essentially, the original heterogeneous graph GDRT is considered as an in-

complete graph with missing edges between disease nodes and drug nodes.

The objective is to capture those interactions based on disease–disease,

drug–drug and target–target similarities, as well as known disease–drug,

drug–target interactions.

2.3 An iterative updating algorithm

Based on the guilt-by-association principle (e.g. Barabasi et al., 2011;

Chiang and Butte, 2009), new disease–drug relationships can be inferred

through existing relationships between similar diseases and similar drugs.

Likewise, novel drug–target relationship can be inferred through existing

relationships between similar drugs and similar targets (Wang et al.,

2013). Therefore, we infer new disease–drug relationships in the newly

proposed three-layer model by using an information flow-based method.

Intuitively, to establish the relationship between a drug r and a disease d

that have no connections originally, one can calculate a new weight

wðd; rÞ=
X

di2D

X

rj2R

wðd; diÞ � wðdi; rjÞ � wðr; rjÞ ð1Þ

where there is a direct link between disease di and drug rj, and w(d, di) and

w(r, rj) represent disease–disease and drug–drug similarities. This serves as

a baseline method for a two-layer mode. We further improve this simple

model in four aspects. First, based on the principle of rational drug

design, we incorporate target information into our model. Second, new

links between diseases and targets will be established and updated. Third,

once a new weight is estimated, it can also be used to update other

weights. Therefore, an iterative updating algorithm is proposed. Fourth,

during the process, the initial links need to be treated differently from

newly established links because the initial links represent existing

knowledge, whereas the newly established links represent predictions.To

incorporate target information, we first propose an association coeffi-

cient/weight between a disease d and a target t as follows:

wðd; tÞ=
X

ri2R

X

rj2R

wðd; riÞ � wðri; rjÞ � wðrj; tÞ ð2Þ

which incorporates all drugs connected to d and t, as well as their simila-

rities. Once the relationships between diseases and targets are established,

new weights between diseases and drugs can be defined by considering

these relationships:

wðd; rÞ=
X

ti2T

X

tj2T

wðd; tiÞ � wðti; tjÞ � wðtj; rÞ ð3Þ

The definition in Equation 3 is potentially more powerful in capturing

drug–disease relationship than the one in Equation 1 because of the con-

sideration of targets. As a by-product from themodel, we can also obtain a

new weight between each drug and target pair by incorporating disease

information, which can be used to predict novel target for existing drugs:

wðr; tÞ=
X

di2D

X

dj2D

wðr; diÞ � wðdi; djÞ � wðdj; tÞ ð4Þ

Equations 2–4 can be rewritten in a matrix format,

Wnew
dt =Wdr �Wrr �Wrt;

Wnew
dr =Wdt �Wtt �WT

rt; W
new
rt =WT

dr �Wdd �Wdt

ð5Þ

The superscript T represents the transpose of the corresponding matrix.

We treatWdt as a temporary value and replace it in the right sides of the last

two equations using the right hand side of the first equation in 5, which

results in Equations 6 and 7, respectively.

Wnew
dr =Wdr �Wrr �Wrt �Wtt �WT

rt=Wdr � ðWrr �Wrt �Wtt �WT
rtÞ

ð6Þ

Wnew
rt =WT

dr �Wdd �Wdr �Wrr �Wrt

=ðWT
dr �Wdd �Wdr �WrrÞ �Wrt

ð7Þ

Once the new weights (Wdr andWrt) are obtained, they can be fed into the

right hand side of Equations 6 and 7, so we will have an iterative updating

procedure. Finally, to treat the initial links between diseases and drugs and

initial links between drugs and targets differently from those predicted

ones, our final model can be written as:

Wk+1
dr =�Wk

dr � ðWrr �Wk
rt �Wtt �Wk

rt
TÞ+ð1� �ÞW0

dr ð8Þ

Wk+1
rt =�ðWk

dr
T �Wdd �Wk

dr �WrrÞ �Wk
rt+ð1� �ÞW

0
rt ð9Þ

Here 1� � is a decay factor in the range of (0–1).W0
dr andW

0
rt represent the

initial disease–drug and drug–target interactions, respectively. These two

equations can be solved in an iterative propagation-based manner, after

proper normalization, which is summarized as a theorem.

THEOREM. Wk
dr and Wk

rt defined in Equations 8 and 9 will converge after

proper normalization (the proof can be found in the Appendix).

Although conceptual, the three-layer model is a straightforward ex-

tension of our previous two-layer model (Wang et al., 2013); to ensure

convergence, the iterative algorithm proposed here is different from the

one for two-layer model. For example, the iterative algorithm above can

only predict new interactions betweendiseases and drugswith known inter-

actions, whereas the original iterative algorithm for the two-layer model

can also predict new interactions for disease–drug pairs without known

interactions (Wang et al., 2013). To predict interactions between disease–

drug pairs with no known interactions, we take a two-step approach: first,

apply the algorithm proposed here, and then apply the algorithm in (Wang

et al., 2013) on the newly obtained graph but only consistingof diseases and

drugs, and their interactions with new weights (Fig. 1B, right panel).

2.4 Datasets

To construct the network, we first downloaded drug, target and disease

information from different data sources. All pairwise disease–disease,

drug–drug and target–target similarities were then calculated. Nodes of

the same types were connected if their similarities are greater than a

threshold, which was determined using cross-validation. Known dis-

ease–drug and the drug–target interactions were obtained from existing

databases. The methods in calculating these similarities and connections

are outlined here.

2.4.1 Drug–drug similarities We first obtained all the approved

drugs from the DrugBank database (Knox et al., 2011). Drug–drug simi-

larities were calculated based on their chemical structures. First, chemical

structures of all drug compounds in the Canonical Simplified Molecular-

Input Line-Entry System (SMILES) format (Weininger, 1988) were
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downloaded from DrugBank. Then, the Chemical Development Kit

(Steinbeck et al., 2006) was used to calculate a binary fingerprint for

each drug. Finally, Tanimoto score (Tanimoto, 1957) of two drugs was

calculated based on their fingerprints, which is in the range of [0, 1].

2.4.2 Target–target similarities Our target database not only

includes known drug targets, but also includes potential targets, i.e. pro-

teins encoded by druggable genes. A druggable gene is defined

as a human protein coding gene that contributes to a disease

phenotype and can be modified by a small molecule drug. The term

‘druggable genome’ has been used to denote a list of computationally

predicted genes that their proteins can serve as suitable targets for de-

veloping therapeutic drugs. The list of druggable genes/targets was down-

loaded from the Sophic Integrated Druggable Genome Database

(http://www.sophicalliance.com/). The target–target similarities were cal-

culated using the Smith–Waterman algorithm (Smith and Waterman,

1981) based on the amino acid sequences of their corresponding proteins.

The similarities were normalized using the same method proposed in

(Bleakley and Yamanishi, 2009).

2.4.3 Disease–disease similarities A phenotype based disease–

disease similarity dataset was downloaded from MimMiner (Van Driel

et al., 2006), which was constructed by calculating similarities based on

the numbers of occurrences of MeSH (medical subject headings vocabu-

lary) terms in the medical descriptions of each pair of diseases from the

OMIM database (Hamosh et al., 2005). According to the MimMiner

database description, the similarities have already been normalized to

the range [0, 1].

2.4.4 Drug target interactions Initial drug–target interactions were

collected from the DrugBank database, but limited to drugs that have

associated diseases in OMIM database (Hamosh et al., 2005), which are

the same as the one used in Gottlieb et al. (2011). The corresponding

value in the matrix W0
rt was set to 1 if an interaction exists and 0

otherwise.

2.4.5 Disease–drug interactions Initial disease–drug interactions

were obtained from Gottlieb et al. (2011), where disease and drug inter-

actions were assembled for diseases listed in the OMIM database

(Hamosh et al., 2005) and their associated drugs [but limit to the ones

registered in the DrugBank database (Knox et al., 2011)]. The corres-

ponding value in the matrixW0
dr was set to 1 if an interaction exists and 0

otherwise.

2.5 Experimental design

To systematically evaluate the proposed approach on the collected data-

sets, we adopt a LOOCV strategy for the experiments. Basically, for each

disease, at each iteration, one of its disease–drug connections is treated as

the test data and all the remaining observations as the training data. After

we perform the algorithm on the training data, the tested drug is ranked

together with all other drugs in descending order according to their final

connection weights to the disease. For each specific ranking threshold, if

the rank of the testing connection is above the threshold, it is regarded as

a true positive. The number of times that a true positive is discovered over

all possible disease–drug relationships is regarded as the true-positive rate

corresponding to the specified threshold. On the other hand, if the rank of

an unknown connection is above the threshold, it is regarded as a false

positive. True-positive rate and false-positive rate are calculated with

varying ranking thresholds to construct the ROC curve. AUC represents

the overall performance of the algorithm. In addition, we also examine

the performance of the algorithm on the top-ranked results, i.e. the num-

bers of correctly retrieved testing connections based on various top per-

centiles (the most left side of the ROC curve), because the top-ranked

results are more important in practice. Finally, to test the capacity of the

algorithm in detecting novel interactions for diseases with no known

drugs, we collect all diseases that only have a single known drug and

perform the experiment by removing the only interaction.

3 RESULTS

3.1 Preliminary analysis of datasets

The dataset consists of 5080 diseases, 1409 drugs and 3989 tar-

gets. Majority of similarity values among the same type of nodes
are small (Supplementary Appendix Fig. A1 in Appendix). Based

on previous studies (Chen et al., 2011a; Van Driel et al., 2006;

Vanunu et al., 2010), low-level similarity values provide little
information or even adversely affect prediction performance

for interaction inference. We chose the same similarity threshold

(0.3) as the one in Vanunu et al. (2010), which used the same
disease set in their study. We chose the value of the decay factor

� to be 0.4, so the initial connections have slightly more weights.

After we obtained the main results, we performed a sensitivity
study using a 10-fold cross-validation on different combinations

of similarity thresholds and the decay factor. The results

(Supplementary Appendix Table A1 in Appendix) show that
for a fixed decay factor, a similarity score of 0.4 gives the best

results for TL_HGBI. For a fixed similarity score of 0.3, the

model is very robust, and the performance does not change
much for the decay factor from 0.1–0.7, though smaller values

(more weight on original data) have slightly better performance.
The interconnections between different types of nodes are

sparse. There are only 1461 connections between 233 diseases

and 549 drugs, and 2098 connections between 554 drugs and
602 targets. Furthermore, among the nodes with connections,

many of them have more than one connection (Supplementary

Appendix Fig. A2 in Appendix), which indicates that known
information about diseases, drugs and targets is highly concen-

trated on a small subset of all diseases/drugs/targets.

3.2 Validation of guilt-by-association assumption

To validate the basic assumption that similar drugs tend to be

associated with similar diseases on the collected datasets, simila-

rities of drugs from the same diseases and similarities of drugs
from different diseases were compared. The overall average simi-

larity score of drug pairs from the same diseases, calculated by

averaging the similarities of all drug pairs that belong to the same
diseases for all diseases, is 0.177. In contrast, the average simi-

larity score of drug pairs from different diseases is 0.143. Further

test using Wilcoxon rank-sum indicates that the difference is
statistically significant (P51E-159). Likewise, the average simi-

larity score of disease pairs from the same drugs is 0.157, whereas

the average similarity score of disease pairs from different drugs
is only 0.103, which is significantly different (Wilcoxon rank-sum

test, P51E-53). In addition, similar results exist in drug–target
relationships. The average similarity score of drug pairs from the

same targets and the average similarity score of target pairs from

the same drugs are 0.251 and 0.106, respectively. In contrast, the
average similarity of drug pairs from different targets and the

average similarity of target pairs from different drugs are 0.143

and 0.022, respectively. The differences are also significant based
on Wilcoxon rank-sum test (both P-values are smaller than

1E-250). Based on these results (more details can be found in

Supplementary Appendix Fig. A3 in Appendix), the dataset
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shows that drugs for the same diseases and drugs targeting the

same proteins are more likely to be similar. The guilt-by-associ-

ation principle can be used in this study.

3.3 Comparison with existing methods on disease with

known drugs

To evaluate the performance of the proposed approach, we com-

pared it with three popular approaches: GBA (Chiang and Butte,

2009), BLM (Bleakley and Yamanishi, 2009) and NBI (Cheng

et al., 2012), as well as HGBI (Wang et al., 2013). GBA (Chiang

and Butte, 2009) is a simple application of the guilt-by-associ-

ation principle where drugs for one disease is used for another

disease if the two diseases sharing some common drugs. BLM

(Bleakley and Yamanishi, 2009) uses a supervised learning ap-

proach [i.e. support vector machine (SVM)] on a bipartite graph

model. We used the scores generated by SVM as the ranking

criterion. The number of negative samples for SVM training

was chosen based on cross-validation results (Supplementary

Appendix Fig. A4). The final result of BLM was obtained by

averaging results from five runs, with the same configuration but

different negative training samples. NBI (Cheng et al., 2012) is a

network-based inference approach based on a two-step diffusion

model on a bipartite graph.
The LOOCV experiment for disease–drug association predic-

tion was conducted on all diseases, which has at least two known

drugs. In total, there are 154 such diseases and 1382 initial dis-

ease–drug interactions. The ROC curves and AUC values are

given in Figure 2A. It shows that TL_HGBI (AUC: 0.915)

outperforms all other methods significantly. HGBI (AUC:

0.837) and BLM (AUC: 0.830) perform similarly, while NBI

has the worst performance (AUC: 0.580), indicating that a

two-step diffusion is not sufficient to accurately predict dis-

ease–drug associations. Because GBA does not rank its

prediction, a full ROC curve could not be constructed. Instead,

the true-positive rate of GBA is 0.739, with a false positive rate of

0.158 (the point in the figure, which is below the ROC curve of

TL_HGBI). The numbers of correctly retrieved disease–drug

interactions according to different percentiles are given in

Figure 2B. For a specified percentile, a true disease–drug inter-

action is considered as correctly retrieved if the predicted ranking

of this interaction is higher than the specified percentile. Clearly,

TL_HGBI performs the best among all approaches. More im-
portantly, when focusing on the top-ranked results, TL_HGBI

(as well as HGBI) significantly outperformed NBI and BLM.
For example, among the 1382 true disease–drug interactions,

304/290 of them are among the top 1% ranked predictions
based on TL_HGBI/HGBI. However, only 15 and 2 are

among the top 1% predictions for BLM and NBI, respectively.
The top-ranked predictions are particularly important because

they contain smaller number of false positives. Therefore,
TL_HGBI can be more useful in practice than other approaches.
The differences between TL_HGBI and HGBI illustrate that

including target information can indeed improve disease–drug
association predictions. To systematically evaluate the advantage

of using target information in drug repositioning, we further
performed more experiments by randomly removing 15%,

30% and 60% of known drug–target links in the graph.
Results show that AUC values gradually decrease when more

links are removed (Supplementary Appendix Fig. A5), which
demonstrates the contribution of target information in drug

repositioning.

3.4 Evaluation on diseases with no known drugs

To illustrate the effectiveness of the proposed approach in pre-

dicting drugs for diseases with no known drugs, all diseases that
have exactly one associated drug in the dataset were collected.

There are 79 such diseases in total. The single interaction was
removed in this experiment to test capacity of each algorithm to

recover it. Because GBA and BLM cannot predict novel drugs
for diseases with no known drugs, we only compared NBI,

HGBI and TL_HGBI. The ROC curves and AUC values are
given in Figure 3A. Once again, TL_HGBI (AUC: 0.789) and

HGBI (AUC: 0.784) performed significantly better than NBI
(AUC: 0.606). In this case, TL_HGBI and HGBI performed

similarly, and both of them were not as good as their own results
using diseases with known drugs. Nevertheless, the steep curves

on the left side of Figure 3A still show their good performance
for top-ranked predictions.

3.5 Case studies

In addition to the leave-one-out cross-validation experiments, we
also applied TL_HGBI on all the collected data to make novel

drug usage predictions. Results for all diseases will be made
available on our Web site once the article gets published. We

present results of five selected diseases here, which include
Huntington disease (HD, OMIM 143100), Non–small-cell lung

cancer (NSCLC, OMIM 211980), Alcohol dependence (AD,
OMIM 103780), Small-cell lung cancer (SCLC, OMIM

182280) and Polysubstance abuse, Susceptibility to (PSAB,
OMIM 606581). For each disease, all the drugs that are

known for the disease and the top 10 ranked predictions can
be found in Table 1. The diseases, drugs and their connections

are also shown in Figure 3B (only showing the top three pre-
dicted drugs of each disease for clarity). Even this small set of

examples shows some interesting observations. First, similar dis-
eases such as NSCLC and SCLC do share some common pre-

dictions, although these drugs were not known for any of the
diseases. Second, TL_HGBI predicted some novel usage of drugs

for diseases with no known drugs (e.g. PSAB). In this case, as the

Fig. 2. (A) ROC curves of disease–drug association predictions by differ-

ent approaches. The single gray point is the result of GBA. (B) The

number of correctly retrieved drug–disease interactions out of total

1382 true interactions for different percentiles by different approaches

2927

Drug repositioning by integrating target information

utilized 
utilizes 
(
,
)
&hyphen;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu403/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu403/-/DC1
-
ve
-
-
-
-
-
,
-
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu403/-/DC1
(
)
paper 
-
small 
,
3 
 indeed
,
since 


disease is only connected to disease alcohol dependence (node

ALCOHOLISM in Fig. 3B), it is not surprising that its top-

ranked predictions are from drugs for alcohol dependence.
We further searched the literature and found that some top-

ranked drugs are supported by recently published papers, know-

ledge of which was not found in the databases used in this study.

For HD, all top fiveranked drugs have already been studied for

this disease (Alpay and Koroshetz, 2006; Bonelli et al., 2003;

Duff et al., 2008; Paleacu et al., 2002; Van Vugt et al., 1997).

The top three predicted drugs for NSCLC have also been studied

for the disease (Ardizzoni et al., 2007; Dziadziuszko et al., 2003).

For AD, the drug Lorazepam (DB00186) has already been tested

in clinical trial (Clinicaltrials.Gov, 2012a). For SCLC, it was also

found that Carboplatin (DB00958) and Temozolomide

(DB00853) had already been tested in clinical trials for curing

this disease (Clinicaltrials.Gov, 2012b, 2012c). All these results

have shown that the proposed approach can potentially be very

effective in predicting novel drugs for diseases.

To assess the effectiveness of incorporating target information

in these case studies, for the above top candidates with reference

support, we compared their ranks by TL_HGBI and by HGBI

(Supplementary Appendix Table A2). Results show that for

NSCLC and SCLC, the ranks of these candidates by

TL_HGBI and HGBI have little differences. This is not

Table 1. Case study results: the top 10 predictions for five selected diseases

Disease Known drugs (DrugBank IDs) Top 10 ranked predictions

HD (OMIM

ID: 143100)

Baclofen (DB00181) Olanzapine (DB00334), Quetiapine (DB01224), Ziprasidone (DB00246),

Clozapine (DB00363), Risperidone (DB00734), Amitriptyline

(DB00321), Doxepin (DB01142), Methotrimeprazine (DB01403),

Aripiprazole (DB01238), Tramadol (DB00193)

Tetrabenazine (DB04844)

NSCLC

(OMIM ID:

211980)

Doxorubicin (DB00997) Cisplatin (DB00515), Carboplatin (DB00958), Temozolomide

(DB00853), Methotrexate (DB00563), Dacarbazine (DB00851),

Triamterene (DB00384), Anastrozole (DB01217), Daunorubicin

(DB00694), Epirubicin (DB00445), Letrozole (DB01006)

AD (OMIM

ID: 103780)

Citalopram (DB00215), Chlordiazepoxide (DB00475),

Acamprosate (DB00659), Naltrexone (DB00704),

Disulfiram (DB00822), Ondansetron (DB00904)

Lorazepam (DB00186), Alprazolam (DB00404), Clonazepam

(DB01068), Diazepam (DB00829), Escitalopram (DB01175),

Ziprasidone (DB00246), Risperidone (DB00734), Pergolide (DB01186),

Olanzapine (DB00334), Bromocriptine (DB01200)

SCLC

(OMIM ID:

182280)

Cisplatin (DB00515) Triamterene (DB00384), Carboplatin (DB00958), Temozolomide

(DB00853), Galantamine (DB00674), Pemetrexed (DB00642),

Bromocriptine (DB01200), Daunorubicin (DB00694), Morphine

(DB00295), Codeine (DB00318), Olanzapine (DB00334)

Methotrexate (DB00563)

Teniposide (DB00444)

Etoposide (DB00773)

Topotecan (DB01030)

PSAB,

(OMIM ID:

606581)

None Chlordiazepoxide (DB00475), Disulfiram (DB00822), Acamprosate

(DB00659), Citalopram (DB00215), Escitalopram (DB01175), Niacin

(DB00627), Ondansetron (DB00904), Ethosuximide (DB00593),

Clofibrate (DB00636), Pyridoxal (DB00147)

Fig. 3. (A)ROC curves for diseases with no known drugs. (B) Case study results on disease–drug association predictions
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surprising because most of these cancer drugs are non-target-

specific and the results were mostly based on disease similarities

for both TL_HGBI and HGBI. In contrast, for AD, Lorazepam

is ranked number 1 by TL_HGBI, but only ranked 1051 by

HGBI. Investigation shows that Lorazepam has 20 targets, ma-

jority of which are gamma-aminobutyric acid (GABA) A recep-

tor subunits. GABA A receptors occur in central nervous system

and play a role in many brain functions. TL_HGBI was able to

identify Lorazepam as the top candidate by using target infor-

mation. For HD, we have also observed improvements in rank-

ing when including target information.

3.6 Drug–target association predictions

As we mentioned earlier, as a by-product, TL_HGBI also reports

novel drug–target associations. Comparing with HGBI,

TL_HGBI uses disease information in predicting novel drug tar-

gets. We therefore compared the performance of TL_HGBI with

HGBI for drug target predictions for drugs with and without

known targets (Supplementary Appendix Figs A6 and A7 in

Appendix). Results show that TL_HGBI performs a little

better than HGBI, but the difference is really subtle [AUC:

0.936 (TL_HGBI) versus 0.932 (HGBI) for diseases with

known drugs; 0.953 (TL_HGBI) vs. 0.931 (HGBI) for diseases

without known drugs]. This result indicates disease similarities

contribute little to drug–target association predictions.

4 DISCUSSION

In this article, we have proposed a three-layer heterogeneous

graph model that captures inter- and intrarelationships among

diseases, drugs and targets, with the purpose of novel drug usage

prediction. Based on this framework, we have developed an it-

erative algorithm to obtain final proximity scores between dis-

eases and drugs, which can be used to rank candidate drugs for

each disease. Experimental results on diseases with and without

known drugs have shown that TL_HGBI outperforms other

three popular methods, as well as the two-layer model proposed

earlier by our group. In particular, TL_HGBI is more useful in

practice than other approaches tested here because of its top-

ranked drugs consisting of many true drug–disease relationships.

A case study on five diseases using all existing data indicates that

results obtained by TL_HGBI can be of high importance, sup-

ported by existing literature.
One should notice that there exist many other types of data

(e.g. side effect information of drugs, gene expression data) that

can also be used to predict drug–disease/drug–target associations

(e.g. Yang and Agarwal, 2011). Some existing methods (e.g.

PREDICT by Gottlieb et al., 2011) have used different datasets

in predicting disease–drug associations, which makes it imprac-

tical to directly compare their performance with the performance

of the proposed approach. In addition to datasets, there are dif-

ferent ways in defining relationships among nodes of the same

type. For example, connections between targets can be defined

based on protein–protein interaction data or based on protein

structural information (e.g. focusing on binding domains).

Disease relationships can be defined based on ontology. The

relative merits using different metrics are worth further investi-

gations. Nevertheless, valuable information has been lost for

approaches not considering relationships among nodes of the
same type (Li and Lu, 2013).
We plan to address both issues in our future work by extend-

ing the proposed framework in several possible directions. To
include more diverse datasets of different types (other than the

three discussed here), one direct extension is to add more layers
(and more links) to the system. The key is then how to generalize

the iterative updating algorithm to the new multi-layer model. In
the case where additional datasets can actually be treated as

properties of one of the three entities, another possible extension
is to represent drugs/diseases/proteins using feature vectors, the
elements of which will be defined based on those additional

datasets. For example, to incorporate drug side effect informa-
tion, each drug will be presented by a feature vector, which may

include drug compound structure, drug side effect information
and some other properties. For each drug pair, one score is

calculated for each feature. Scores of all features will be con-
verted into percentile-based scores in a similar way as we did

in an earlier study for gene prioritization based on multiple
data sources (Chen et al., 2011b). Drug–drug relationships can

then be defined based on the most significant score. Similarly,
gene expression information and protein interaction information

can be incorporated into the protein/target layer. Essentially, the
relationships between the same types of nodes are redefined
based on more data sources. Another possible direction is to

incorporate semantics (Chen et al., 2012).
Finally, both diseases and targets can be separated into differ-

ent subclasses based on their mechanisms. It will be interesting to
see how the performance will change when we only include sub-

sets of data with the same mechanism. Eventually, wet lab ex-
perimental testing is a necessary step to validate the proposed

approach, which cannot be done without collaborations with
investigators with expertise in biochemistry and drug
development.
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