
Vol. 30 no. 20 2014, pages 2959–2961
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu406

Genome analysis Advance Access publication July 1, 2014

GATB: Genome Assembly & Analysis Tool Box
Erwan Drezen1, Guillaume Rizk1, Rayan Chikhi2, Charles Deltel1, Claire Lemaitre1,
Pierre Peterlongo1 and Dominique Lavenier1,*
1INRIA/IRISA/GenScale, Campus de Beaulieu, 35042 Rennes Cedex, France and 2Department of Computer Science
and Engineering, Pennsylvania State University, PA 16802, USA

Associate Editor: John Hancock

ABSTRACT

Motivation: Efficient and fast next-generation sequencing (NGS) algo-

rithms are essential to analyze the terabytes of data generated by the

NGS machines. A serious bottleneck can be the design of such algo-

rithms, as they require sophisticated data structures and advanced

hardware implementation.

Results: We propose an open-source library dedicated to genome

assembly and analysis to fasten the process of developing efficient

software. The library is based on a recent optimized de-Bruijn graph

implementation allowing complex genomes to be processed on desk-

top computers using fast algorithms with low memory footprints.

Availability and implementation: The GATB library is written in C++

and is available at the following Web site http://gatb.inria.fr under the

A-GPL license.

Contact: lavenier@irisa.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on March 25, 2014; revised and accepted on June 20, 2014

1 INTRODUCTION

The analysis of next-generation sequencing (NGS) data remains

a time- and space-consuming task. Many efforts have been made

to provide efficient data structures for indexing the terabytes of

data generated by the fast sequencing machines (Suffix Array,

Burrows–Wheeler transform, Bloom filter, etc.). Genome assem-

blers such as Velvet (Zerbino and Birney, 2008), ABySS

(Simpson et al., 2009), SOAPdenovo2 (Luo et al., 2012),

SPAdes (Bankevich et al., 2012) or mappers such as BWA (Li

and Durbin, 2009) or variant detection such as CRAC (Philippe

et al., 2013) for instance make an intensive use of these data

structures to keep their memory footprint as low as possible.

At the same time, parallelism has been largely investigated to

reduce execution time. Many strategies such as GPU implemen-

tation (Liu et al., 2012), cloud deployment (Zhao et al., 2013),

algorithm vectorization (Rizk and Lavenier, 2010), multithread-

ing, etc., have demonstrated high potentiality on NGS

processing.
The overall efficiency of NGS software depends on a smart

combination of data representation and use of the available pro-

cessing units. Developing such software is thus a real challenge,

as it requires a large spectrum of competence from high-level

data structure and algorithm concepts to tiny details of
implementation.

The GATB library aims to ease the design of NGS algorithms.
It offers a panel of high-level optimized building blocks to
speedup the development of NGS tools related to genome as-

sembly and/or genome analysis. The underlying data structure is
a memory efficient de-Bruijn graph (Compeau et al., 2011), and

the general parallelism model is multithreading. The GATB
library targets standard computing resources such as current

multicore processor (laptop computer, small server) with a few
gigabytes of memory.
Hence, from the high-level C++ functions available in the

GATB library, NGS programing designers can rapidly elaborate
their own software based on state-of-the-art algorithms and data

structures of the domain.
Based on the same idea, other bioinformatics libraries exist,

from which domain-specific tools can be elaborated. The

NGS++ library (Markovits et al., 2013) is specifically tailored
for developing applications that work with genomic regions and

features, such as epigenomics marks, gene features and data that
are associated with BED type files. The SeqAn library (Doring

et al., 2008) is a general-purpose library targeting standard se-
quence processing. Advanced data structures such as de-Bruijn

graphs are not included in SeqAn. Khmer (Crusoe et al., 2014) is
a library and toolkit for doing k-mer-based NGS dataset ana-
lysis. As with GATB, most of khmer relies on an underlying

probabilistic data structure (Bloom filter). The khmer library
can be used in various k-mer processing such as abundance

filtering, error trimming, graph size filtering or partitioning.

2 METHODS

One of the main concerns of the GATB-core library is to provide com-

puting modules able to run on standard machines, i.e. computers not

requiring large amount of main memory.

The central data structure is a de-Bruijn graph from which numerous

actions can be performed as shown Figure 1: data error correction, as-

sembly, biological motif detection [e.g. single nucleotide polymorphism

(SNP)], etc. The graph is constructed by extracting and by counting all

the different k-mers from one or several sequencing datasets. This time-

and space-consuming task is conducted by a disk streaming algorithm,

DSK (Rizk et al., 2013), which adapts its memory requirement according

to the available computer memory. Trade-off between execution time and

memory occupancy can be set up: the larger the computer memory,

shorter the computation time (reduced disk access).

The de-Bruijn graph memory footprint is kept low thanks to an opti-

mized Bloom filter representation (Chikhi and Rish, 2012; Salikhov et al.,

2014). Only vertices of the de-Bruijn graph are memorized. Edges are*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

http://gatb.inria.fr
mailto: lavenier@irisa.fr
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu406/-/DC1
-
F
7
-
G
B
(
)
,
8
very 
,


deduced by querying the Bloom filter. False positives (owing to the prob-

abilistic behavior of the Bloom filter) are suppressed by adding an extra

data structure enumerating critical vertices. This efficient de-Bruijn graph

representation fits, for example, a complete mammal genome in �4GB.

3 IMPLEMENTATION

The GATB library is composed of five main packages: system,

tools, bank, kmer and de-Bruijn packages.
The system package holds all the operations related to the

operating system (OS): file management, memory management

and thread management. Using such an abstraction allows client

code to be independent from the OS, thus suppressing compil-

ation directive inside the code or improving some OS accesses
by hiding specific OS optimization. The supported operating

systems are Linux, Mac and Windows.

The tools package offers generic operations used throughout

the user application but not specific to genomics area. For ex-
ample, this package includes design pattern tools (such as itera-

tors, observers, smart pointers, etc.) and object collections (such

as containers, bags, iterables, etc.). It also optimizes the way

GATB data structures are saved. The HDF5 file format is cur-

rently used (HDF5, 2012). This powerful technology is extremely

well suited for large and complex data collection such as those

handled in the GATB library.
The bank package provides operations related to standard

genomic sequence dataset management. All the main sequence

file formats are supported, and high-level interfaces allow

sequences to be easily iterated regardless of the input format.
In other words, algorithms are written independently of the

input formats.

The kmer package is dedicated to fine-grained manipulation of
k-mers. Optimized routines are provided to perform k-mer

counting from large sequence datasets, to find k-mer neighbor-

hood or to select k-mers based on different criteria.
Finally, the de-Bruijn package provides high-level functions to

manipulate a static de-Bruijn graph data structure: creation from

a set of k-mers, iteration through different nature of nodes

(simple k-mers, branching k-mers, etc.), extraction of neighbor

nodes, etc. Additional information (e.g. k-mer coverage, markers

of visited nodes) is stored in the graph branching nodes. From

this abstraction level, developing new tools based on de-Buijn

graphs is fast, and does not require programmers to delve into

low-level details.

The GATB library takes benefit of the parallel nature of

today’s multicore architecture of microprocessors. When pos-

sible, time-consuming parts of the code are multithreaded to

provide fast runtime execution.

The GATB library is developed in C++ under the A-GPL

license and is available from the following Web site: http://gatb.

inria.fr. An extensive documentation with tutorials is available to

guide designers in the process of developing new NGS tools from

the GATB building blocks: http://gatb-core.gforge.inria.fr (see

also Supplementary File 2 for technical implementation details).

4 RESULTS

To demonstrate the efficiency of the GATB library, a few soft-

ware implemented from GATB are briefly presented. The idea is

to give a quick overview of the application spectrum of the

GATB library and some performance numbers.

Minia (Chikhi and Rish, 2012) is a short-read de-Bruijn as-

sembler capable of assembling large and complex genomes into

contigs on a desktop computer. The assembler produces contigs

of similar length and accuracy to other de-Bruijn assemblers––

e.g. Velvet (Zerbino and Birney, 2008). As an example, a Boa

constrictor constrictor (1.6Gb) dataset (Illumina 2� 120bp

reads, 125� coverage) from Assemblathon 2 (Bradnam et al.,

2013) can be processed in �45h and 3GB of memory on a

standard computer (3.4GHz 8-core processor) using a single

core, yielding a contig N50 of 3.6 kb (prior to scaffolding and

gap-filling).

Bloocoo is a k-mer spectrum-based read error corrector, de-

signed to correct large datasets with low memory footprints.

It uses the disk streaming k-mer counting algorithm contained

in the GATB library and inserts solid k-mers in a Bloom filter.

The correction procedure is similar to the Musket multistage

approach (Liu et al., 2013). Bloocoo yields similar results while

requiring far less memory: for example, it can correct whole

human genome re-sequencing reads at 70� coverage with

54GB of memory (see Supplementary file 1 for extra informa-

tion on Bloocoo).
DiscoSNP aims to discover Single Nucleotide Polymorphism

from non-assembled reads and without a reference genome.

From one or several datasets a global de-Bruijn graph is con-

structed, then scanned to locate specific SNP graph patterns

(Uricaru et al., 2014). A coverage analysis on these particular

locations can finally be performed to validate and assign scores

to detected biological elements. Applied on a mouse dataset

(2.88Gb, 100 bp Illumina reads), DiscoSnp takes 34 h and re-

quires 4.5GB RAM. In the same spirit, the TakeABreak soft-

ware discovers inversion variants from non-assembled reads. It

directly finds particular patterns in the de-Bruijn graph and pro-

vides execution performances similar to DiscoSNP (Lemaitre

et al., 2014).

Funding: ANR (French National Research Agency) (ANR-12-

EMMA- 0019-01).

Conflict of interest: none declared.

Fig. 1. Schematic view of the GATB organization

2960

E.Drezen et al.

due
very 
about 
9
10
,
b
w
http://gatb.inria.fr
http://gatb.inria.fr
http://gatb-core.gforge.inria.fr
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu406/-/DC1
,
p
x
x
a
pproximately 
ours
K
p
very 
,
b
-
 x
less than 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu406/-/DC1
(SNP) 
p
ours
G
,
This work is supported by the 
,


REFERENCES

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Bradnam,K.R. et al. (2013) Assemblathon 2: evaluating de novo methods of

genome assembly in three vertebrate species. Gigascience, 2, 10.

Chikhi,R. and Risk,G. (2012) Space-efficient and exact de-Bruijn graph represen-

tation based on a Bloom filter. Algorithms Bioinform., 8, 236–248.

Compeau,P. et al. (2011) How to apply de Bruijn graphs to genome assembly. Nat.

Biotechnol., 29, 987–991.

Doring,A. et al. (2008) SeqAn:an efficient generic C++ loibrary for sequence ana-

lysis. BMC Bioinformatics, 9, 11.

HDF5 group help desk. (2012) File format specification v2.0. http://www.hdfgroup.

org/HDF5/doc/H5.format.html.

Crusoe,M.R. et al. (2014) The khmer software package: enabling efficient sequence

analysis. [Epub ahead of print, doi: 10.6084/m9.figshare.979190].

Lemaitre,C. et al. (2014) Mapping-free and assembly-free discovery of inversion

breakpoints from raw NGS reads. In: First International Conference on

Algorithms for Computational Biology (AlCoB 2014). Tarragona, Spain.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-

Wheeler Transform. Bioinformatics, 25, 1754–1760.

Liu,Y. et al. (2013) Musket: a multistage k-mer spectrum-based error corrector for

Illumina sequence data. Bioinformatics, 29, 308–315.

Liu,Y. et al. (2012) CUSHAW: a CUDA compatible short read aligner to large

genomes based on the Burrows–Wheeler transform. Bioinformatics, 28,

1830–1837.

Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. Gigascience, 1, 18.

Markovits,A. et al. (2013) NGS++: a library for rapid prototyping of epigenomics

software tools. Bioinformatics, 29, 1893–1894.

Philippe,N. et al. (2013) CRAC: an integrated approach to the analysis of RNA-seq

reads. Genome Biol., 14, R30.

Rizk,G. and Lavenier,D. (2010) GASSST: global alignment short sequence search

tool. Bioinformatics, 26, 2534–2540.

Rizk,G. et al. (2013) DSK: k-mer counting with very low memory usage.

Bioinformatics, 29, 652–653.

Salikhov,K. et al. (2014) Using cascading bloom filters to improve the memory

usage for de-Bruijn graph. Algorithms Mol Biol, 9, 2.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.

Genome Res., 19, 1117–1123.

Uricaru,R. et al. (2014) Reference-ree detection of genotypable SNPs, in revision to

NAR[Epub ahead of print].

Zhao,S. et al. (2013) Rainbow: a tool for large-scale whole-genome sequencing data

analysis using cloud computing. BMC Genomics, 14, 425.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read as-

sembly using de-Bruijn graphs. Genome Res., 18, 821–829.

2961

GATB: Genome Assembly & Analysis Tool Box

http://www.hdfgroup.org/HDF5/doc/H5.format.html
http://www.hdfgroup.org/HDF5/doc/H5.format.html

