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ABSTRACT

Motivation: Imputation using external reference panels (e.g. 1000

Genomes) is a widely used approach for increasing power in

genome-wide association studies and meta-analysis. Existing hidden

Markov models (HMM)-based imputation approaches require individ-

ual-level genotypes. Here, we develop a new method for Gaussian

imputation from summary association statistics, a type of data that

is becoming widely available.

Results: In simulations using 1000 Genomes (1000G) data, this

method recovers 84% (54%) of the effective sample size for

common (45%) and low-frequency (1–5%) variants [increasing to

87% (60%) when summary linkage disequilibrium information is avail-

able from target samples] versus the gold standard of 89% (67%) for

HMM-based imputation, which cannot be applied to summary statis-

tics. Our approach accounts for the limited sample size of the refer-

ence panel, a crucial step to eliminate false-positive associations, and

it is computationally very fast. As an empirical demonstration, we

apply our method to seven case–control phenotypes from the

Wellcome Trust Case Control Consortium (WTCCC) data and a

study of height in the British 1958 birth cohort (1958BC). Gaussian

imputation from summary statistics recovers 95% (105%) of the ef-

fective sample size (as quantified by the ratio of �2 association stat-

istics) compared with HMM-based imputation from individual-level

genotypes at the 227 (176) published single nucleotide polymorphisms

(SNPs) in the WTCCC (1958BC height) data. In addition, for publicly

available summary statistics from large meta-analyses of four lipid

traits, we publicly release imputed summary statistics at 1000G

SNPs, which could not have been obtained using previously published

methods, and demonstrate their accuracy by masking subsets of the

data. We show that 1000G imputation using our approach increases

the magnitude and statistical evidence of enrichment at genic versus

non-genic loci for these traits, as compared with an analysis without

1000G imputation. Thus, imputation of summary statistics will be a

valuable tool in future functional enrichment analyses.

Availability and implementation: Publicly available software package

available at http://bogdan.bioinformatics.ucla.edu/software/.
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1 INTRODUCTION

Genome-wide association studies (GWAS) are the prevailing ap-

proach for finding disease risk loci, having successfully identified

thousands of variants associated to complex phenotypes

(Hindorff et al., 2009). An important component of the

GWAS analysis toolkit is genotype imputation, an approach

that leverages publicly available data [e.g. 1000 Genomes

(1000G; The 1000 Genomes Project Consortium, 2012)] to esti-

mate genotypes at markers untyped in the study to increase

power for finding new risk loci (Browning and Browning,

2007; Howie et al., 2012; Li et al., 2010; Marchini and Howie,

2010a). In addition to GWAS, genotype imputation is a key

component in meta-analysis of studies that use different genotyp-

ing platforms, where single nucleotide polymorphisms (SNPs)

that were genotyped in one study can be imputed in the other

studies, thus increasing the association power (Estrada et al.,

2012; Lango Allen et al., 2010; Liu et al., 2010; Morris et al.,

2012).
Many approaches for genotype imputation have been pro-

posed, with methods based on hidden Markov models (HMM)

showing the highest accuracy in simulations and empirical data

(Browning and Browning, 2007; Howie et al., 2012; Li et al.,

2010; Marchini and Howie, 2010a). However, privacy and logis-

tic constraints often prohibit access to individual-level genotype

data, thus precluding HMM-based imputation, whereas sum-

mary association statistics are becoming widely available. For

example, summary statistics are required to be publicly released

for any GWAS published in Nature Genetics and have been*To whom correspondence should be addressed.
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publicly released for many traits (Nature Genetics, 2012; Schork
et al., 2013).
In this work, we propose methods for testing association at

SNPs untyped in the study when only summary association
statistics are available at the typed SNPs. Unlike HMM-based
imputation from individual-level genotypes, our proposed

approach requires only the association statistics at typed variants
as input. To accomplish this, we approximate the distribution
of association statistics at a given locus using a multivariate

Gaussian. Previous studies have shown that a Gaussian
approximation of linkage disequilibrium (LD) leads to accurate
inference across a wide range of problems (Conneely and

Boehnke, 2007; Han et al., 2009; McPeek, 2012; Wen
and Stephens, 2010; Zaitlen et al., 2010). In particular, (Wen
and Stephens, 2010) highlighted the potential utility of

Gaussian imputation methods for individual-level and pooled
data, but that study did not provide methods or software for
imputation from summary association statistics (see Section 4).

Through extensive simulations based on 1000G data, we show
that our approach is almost as powerful as the gold standard
of HMM-based imputation from individual-level genotypes, and

is able to avoid an increase in false-positive associations by
accounting for the limited size of the reference panel. Our
approach recovers 84% (54%) of the effective sample size

for common (45%) and low-frequency (1–5%) variants versus
89% (67%) for HMM-based imputation, with a reduction in
running time of several orders of magnitude. When summary

information on the pairwise LD structure among typed variants
in GWAS samples is made available [as is also recommended in
other contexts (Lee et al., 2013b)], our method recovers 87%

(60%) of the effective sample size, again with no increase in
false-positive associations.
We validate our approach using real GWAS data from

Wellcome Trust Case Control Consortium (WTCCC) across
seven phenotypes as well as a height GWAS from the 1958
Birth Cohort (1958BC), where we show that Gaussian imput-

ation from summary statistics recovers the same signal as
HMM-based imputation from individual-level genotypes, with
no increase in false-positive rate. For example, we attain an

average �2 association statistic of 18.28 as compared with
19.17 for HMM-based imputation at the 227 published SNPs
in the WTCCC data and 4.76 (versus 4.55 for HMM-based

imputation) at the 176 published SNPs in the 1958BC height
data.
For publicly available summary statistics from large meta-

analyses of four lipid traits [triglycerides (TG), total cholesterol
(TC), high density lipoprotein (HDL) and low density lipopro-
tein (LDL)], we publicly release imputed summary statistics

at 1000G SNPs, which could not have been obtained using
previously published methods. We validate the accuracy of the
imputed statistics across the four studies using a masking

approach and show that we attain a correlation of 0.98 (0.95)
to masked summary statistics for common (low-frequency)
variants, consistent with simulations. Finally, we explore the util-

ity of imputed association statistics to functional enrichment
analysis (Schork et al., 2013). For the four lipid traits, we find
that imputed data increase the magnitude and statistical evidence

of enrichment at genic versus non-genic loci, as compared
with an analysis without 1000G imputation (Schork et al., 2013).

2 METHODS

2.1 Overview of Gaussian imputation of summary

statistics

We assume that summary association statistics consist of z-scores known

to be normally distributed with mean 0 and variance 1 under the null

model of no association. LD between SNPs i and j induces a covariance

between their observed z-scores, according to the correlation rij between

the two SNPs. Thus, under null data, the vector Z of z-scores at all SNPs

in a locus is approximately distributed as a Gaussian distribution,

Z�Nð0;SÞ, with S being the correlation matrix among all pairs of

SNPs induced by LD (Sij=rij) (see Supplementary Note). In a given

study, we only observe z-scores at the typed SNPs (Zt), with no informa-

tion about untyped SNPs. We estimate S using reference panels of haplo-

types (e.g. 1000G) and analytically derive the posterior mean of z-scores

at unobserved SNPs (Zi) given Zt and S (ImpG-Summary). We use the

conditional variance to estimate the imputation accuracy (r2pred), in a

manner similar to the r2hat estimator in HMM-based imputation (Li

et al., 2010).

The finite sample size of the reference panel adds statistical noise to the

estimate of S. We account for noisy estimates at distant SNPs by using a

windowing strategy that models distant SNPs as uncorrelated. This strat-

egy also leads to efficient computational runtime (a smaller matrix needs

to be inverted for each window in the genome). In particular, we partition

the genome into non-overlapping windows (e.g. 1Mb), and for each

window independently, we estimate the LD matrix S using the reference

panel of haplotypes. To account for SNPs at the boundaries of these

windows, we include SNPs within a buffer around the window in the

computation (e.g. 250kb on either side). We also account for statistical

noise in estimates at proximal SNPs by adding �I to the LD matrix

estimated from the data S. This procedure is similar to ridge regression

(Hoerl and Kennard, 1970) and can also be interpreted in a Bayesian

context as adding a prior ofNð0; �IÞ to the typed SNP coefficients (Hastie

et al., 2001). Accounting for this statistical noise is necessary to eliminate

false-positive associations (see below).

The imputed z-scores (from the conditional Gaussian distribution) can be

viewed as a linear combination of typed z-scores with weights precomputed

fromthereferencepanel.Therefore, thevarianceof the imputedz-scorecanbe

estimated on the basis of the weights and the LD among typed SNPs. We

estimate the LD structure among typed SNPs using the reference panel as

above (accounting for statistical noise in the reference panel) and normalize

the imputedz-scores suchthat their theoreticalvarianceunder thenull is1 [ina

real scan, theobservedvariancemaybe41becauseofpolygenic effects (Yang

et al., 2011)]. The computational timeof our approach scales linearlywith the

number of windows across the genome and can be further reduced by pre-

computing the inverseS for each genotyping array platformat eachwindow,

although special requirement is required for typed SNPs that are removed by

quality control (QC). In particular, matrix inversion should be repeated at

windows where typed SNPs used in the imputation are removed by QC.

If summary LD statistics (pairwise LD among typed SNPs within a

window in GWAS samples) are also available, they can be directly used

to estimate the variance of each imputed z-score (which can be viewed as

a linear combination of typed z-scores). This produces an accurate esti-

mate of the expected variance under the null for the imputed z-scores,

with no need of adjustment for the statistical noise in the reference panel

(ImpG-SummaryLD). This leads to well-calibrated association statistics

under the null with increased power relative to ImpG-Summary.

Association statistics in GWAS. A standard test for association in

GWAS is the normalized difference in frequencies between cases and

controls (z-score z) defined as z=
ffiffiffiffi

N
p

f+�f�
ffiffiffiffiffiffiffiffiffiffiffi

2fð1�fÞ
p where f+ (f�) denotes the

frequency in cases (controls), f is the overall frequency and N the number

of samples. This statistic extends to continuous phenotypes by consider-

ing
ffiffiffiffi

N
p

times the correlation between the vector of genotypes (0,1,2) and
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phenotype. In the case of imputed data, this statistic extends by using

genotype dosages in the computation of the correlation of dosages to

phenotype. LD between pairs of SNPs s and s0 induces a correlation

among the observed z-scores at these SNPs, which can be expressed

through the correlation coefficient rðs; s0Þ (see Supplementary Note).

Multivariate Gaussian approximation. Similar to other works

(Conneely and Boehnke, 2007; Han et al., 2009; Wen and Stephens,

2010; Zaitlen et al., 2010), we approximate the full distribution of asso-

ciation statistics Z at n SNPs in LD using a multivariate Gaussian dis-

tribution with probability density function depending on the mean � and

variance covariance S. Let the vector Z be partitioned into two compo-

nents Zt and Zi corresponding with the typed and imputed SNPs, where

Zt is a vector of size m (assuming m SNPs have been typed) and Zi has

n –m elements. Similarly, we will partition the mean vector and variance–

covariance matrix into ð�t; �iÞ
T corresponding to the means at typed

and imputed SNPs, covariances among imputed (Si;i), covariances

among typed and imputed (Si;t) and covariance among typed data

(St;t). Then the conditional random variable ZijZt follows a Gaussian

distribution with mean �Zi jZt
=�i+Si;tS

�1
t;t ðZt � �tÞ and variance

Sijt=Si;i � Si;tS
�1
t;t S

T
i;t.

2.2 Gaussian imputation of association statistics

(ImpG-Summary)

When estimating the variance–covariance matrix S, we adopt a window-

ing strategy aimed at decreasing runtime (a smaller matrix needs to be

inverted for each window in the genome) and at reducing statistical noise

that can show distant SNPs to be spuriously correlated. In particular, we

partition the genome into non-overlapping windows of 1Mb (with a

buffer of 250kb on either side to account for LD at boundaries). For

each window independently, we estimate S from the reference panel of

haplotypes, with an adjustment for sampling noise (see below). Let Zt be

the set of observed z-scores restricted to current window. We impute Zi as

Zijt=Si;tS
�1
t;t Zt. To speed up computation, we precompute S

�1
t;t for all

genotyping array platforms. For windows where QC has removed part of

the typed SNPs used in imputation S
�1
t;t needs to be reestimated. Because

the window length is fixed across the genome, the overall computational

runtime can be thought of linear in the number of SNPs (when S
�1
t;t has

been precomputed already).

The imputed z-scores at SNP i Zijt can be viewed as a linear combin-

ation of typed z-scores Zt with weights W=Si;tS
�1
t;t precomputed from

the reference panel. Let A denote the variance–covariance matrix among

typed SNPs in the population. Because we assume Zt�Nð0;AÞ, it follows

that Zijt has varianceWAWT. Therefore, we use
Zijt
ffiffiffiffiffiffiffiffiffiffiffi

WAWT
p as the imputation

z-score at imputed SNP i. To account for the statistical noise, while also

making sure that S is invertible we adopt a procedure similar to ridge

regression (Hoerl and Kennard, 1970) and use S=S
unadj

+�I in both Si;t

and St;t in the estimation of W (we use �=0:1 as default; see

Supplementary Tables S1–S3 for results across other values of �). We

approximate A with St;t using LD information from reference panel

(ImpG-Summary).

An alternative is to use the true A, i.e. the summary LD statistics from

the GWAS sample, if they are available; in this case, a more substantial

adjustment for statistical noise in S is not needed because A is derived

from the GWAS sample, and we set �=0:001 to make sure that S is

invertible in the estimation of W (ImpG-SummaryLD). We do not use

the summary LD statistics across typed SNPs in the sample for estimation

ofW in ImpG-SummaryLD, to maintain consistency among pairwise LD

statistics between typed and imputed SNPs. Software implementing the

ImpG-Summary and ImpG-SummaryLD methods has been made pub-

licly available.

We propose a metric for imputation accuracy based on the variance of

the conditional random variable ZijZt: we define r2pred=1� Sijt.

Supplementary Figure S1 shows that r2pred behaves similarly to the

standard imputation accuracy metric r2hat(Li et al., 2010; correlation

of 0.90 to the true r2 accuracy as compared with 0.92 for r2hat).

2.3 Simulation framework

We simulated data starting from the 381 diploid European individuals

from the phase 2 release of the 1000 Genomes Project (June 2011; The

1000 Genomes Project Consortium, 2012). The 381 individuals include 87

CEPH individuals of North European ancestry, 93 Finnish individuals

from Finland, 89 British individuals from England and Scotland (GBR),

98 Tuscan individuals and 14 individuals from the Iberian peninsula.

Genotype calls and haplotypic phase had been previously inferred from

low-coverage sequencing (4�) using an imputation strategy that bor-

rowed information across samples and loci (The 1000 Genomes Project

Consortium, 2012). The set haplotypes were split at random between a set

of 178 (number chosen to match the 89 samples of British ancestry)

haplotypes used to build simulated data, and the other set was used as

an imputation reference panel. Starting from the simulation panel of

haplotypes, we used HAPGEN (Su et al., 2011) to simulate 10 000 diploid

individuals. All simulation results were generated over 50 distinct 1Mb

regions (total of 50Mb) randomly chosen across Chromosome 1 totaling

321 226 SNPs. For each of the SNPs with MAF41% in the reference

panel (133025 in total), we simulated case–control datasets by randomly

choosing a subset of 1000 controls, and then choosing 1000 cases from

the remaining samples so that samples with 0:1:2 reference alleles have

relative probabilities 1: OR: OR2 of being chosen (for a given odds ratio

(OR)). For null simulations, we randomly selected 1000 samples as cases

and 1000 samples as controls.

2.4 Real data

WTCCC dataset. We examined data from the WTCCC phase 1 compris-

ing GWAS studies of seven diseases: Bipolar disorder (BD), Coronary

heart disease (CAD), Crohn’s disease (CD), Hypertension (HT),

Rheumatoid arthritis (RA), Type 1 diabetes (T1D) and Type 2 diabetes

(T2D) (see Supplementary Table S4 for detailed sample sizes; Wellcome

Trust Case Control Consortium, 2007). We removed all SNPs that had

overall deviation from Hardy–Weinberg equilibrium at a P-value below

0.01. Then, we removed any SNP that had differential missigness

(P50.01) in any of the case–control cohort, overall missingness40.001

or minor allele frequency 50.01. This yielded 325 553 SNPs. We per-

formed HMM-based imputation using the prephasing approach of

(Howie et al., 2012); we used HAPI-UR (Williams et al., 2012) to infer

haplotypes from genotypes and then ran IMPUTE2 (Howie et al., 2012)

using default parameters on the inferred haplotypes. Unless otherwise

noted, we filtered out imputed SNPs using an imputation accuracy

cutoff of 0.6, as well as SNPs that had45% of the individual imputed

calls missing at a posterior probability level of 0.9. This procedure yielded

�4.7 M SNPs for the considered phenotypes (Supplementary Table S4).

1958 Birth Cohort data. The British 1958 birth cohort is an ongoing

follow-up of all persons born in England, Scotland and Wales during 1

week in 1958. At the age of 44–45 years, the cohort was followed up with

a biomedical examination and blood sampling (Strachan et al., 2007),

from which a DNA collection was established as a nationally represen-

tative reference panel (http://www.b58cgene.sgul.ac.uk/). Non-overlap-

ping subsets of the DNA collection were genotyped by the Wellcome

Trust Case–Control Consortium (WTCCC; Wellcome Trust Case

Control Consortium, 2007), the Type 1 Diabetes Genetics Consortium

(T1DGC; Barrett et al., 2009) and the GABRIEL consortium (Moffatt

et al., 2010). Genotyping by the WTCCC used both the Affymetrix 500K

array and the Illumina 550K (version 1) array. Because the T1DGC used

the Illumina 550K (version 3) array and GABRIEL used the Illumina

610K array, a combined dataset was created of SNPs in common across

these three panels. SNPs were excluded from subsequent imputation if

they had MAF51%, call rate595%, HWE P50.0001 or differences in
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allele frequency across the three deposits (P50.0001 on pairwise

comparisons). Preimputation phasing was performed using Mach (Li

et al., 2010). Imputations against the March 2012 release of 1000-

genomes all-ethnicities reference haplotypes were performed using

Minimac (Howie et al., 2012). Associations of imputed allele dosages

with standing height, as measured at the 44–45-year follow-up, were

analyzed using ProbAbel (Aulchenko et al., 2010).

Publicly available summary statistics for four lipid traits. Publicly avail-

able GWAS summary data across four blood lipids phenotypes (TG, TC,

HDLandLDL) were downloaded from public accessWeb sites (Teslovich

et al., 2010). These data have been recently used in a study of overlap of

GWAS findings and functional data (Schork et al., 2013); all QC steps are

described elsewhere (Teslovich et al., 2010). The data comprised roughly

2.7 M summary statistics based on �100 000 samples for each of the four

phenotypes. To remove strand ambiguity, we removed all A/T and C/G

SNPs (�15.4% of all SNPs); we also removed all SNPs withmeta-analysis

sample sizes under 80 000, leaving �2.0 M SNPs for each of the pheno-

types. We imputed to 1000G using ImpG-Summary under three scenarios.

In the first scenario, we removed 10% of the SNPs at random. In the

second scenario, we removed all SNPs not present on the Illumina 610

genotyping platform (�600k in total). In both of these scenarios, we

imputed from the remaining SNPs and assessed accuracy using the previ-

ously masked SNPs. As a metric of accuracy, we computed the correlation

between imputed and previously masked association statistics. In the third

scenario, we imputed from all 2.0MSNPs to obtain the summary statistics

at 7.3 M SNPs that we publicly release.

Enrichment analysis for four lipid traits. We used an analysis similar to

Schork et al. (2013) to quantify enrichment per classes of SNPs. We

categorized each SNP according to its distance to genes using the all

SNPs track (snp137) (http://genome.ucsc.edu/cgi-bin/hgTables). All

SNPs within an exon, up to 5kb upstream and up to 5kb downstream,

located in the 30 UTR or in the 50 UTR were labeled as genic. SNPs with

no annotation in the data were considered as being Intergenic. For each

dataset, we normalized the association statistics using genomic control

attained only over the Intergenic SNPs (Schork et al., 2013), followed by

computation of average variance across SNPs within each functional

class. We estimate the variance as the average of the squared association

z-scores minus 1 (Schork et al., 2013). We compared the magnitude of

enrichment in association statistics across different functional classes

within the same dataset (either the public data or the imputed one)

using the median of the Kolmogorov–Smirnov (KS) test statistic at 100

random draws each of 10 000 random SNPs across the genome. This

conservative computation avoids correlations due to LD and does not

account for the larger number of SNPs in the 1000G imputed data, which

would further increase statistical significance.

2.5 Gaussian imputation of individual genotypes

Although we focus primarily on imputation of summary statistics, for

completeness, we also discuss Gaussian imputation when individual-level

data are available. We compare two different approaches. The first

approach is to apply ImpG-SummaryLD as described above, relying

only on summary association statistics and summary LD statistics. The

second approach (which attains slightly worse results) is similar to the

approach proposed by Wen and Stephens (2010). As described in that

study, we can impute allele frequencies and treat each genotype as a

sample of size 2. Following Wen and Stephens (2010), we set � to be

the observed allele frequency in the reference panel and S½i; j� to be the

covariance between SNP i and j. Next, we apply the same windowing

approach above to each sample independently to impute individual-level

genotypes. Although rare, in practice Gaussian imputation can output

values50 or42; we adjust these values to 0 and 2, respectively. As as-

sociation statistic, we use the �2 1 df statistic N�2ðG0; �Þ, where N is the

number of samples and �2ðG0; �Þ is the squared correlation between the

vectors of imputed genotypes and the phenotype.

3 RESULTS

3.1 Simulations

To explore the effectiveness of Gaussian imputation using sum-

mary statistics (ImpG-Summary and ImpG-SummaryLD), we
simulated case–control datasets at various effect sizes across a

wide range of SNPs (see Section 2). To assess the performance of

imputation at recovering the true association signal when pre-
sent, we used the relative effective sample size, defined as the

ratio of average imputed �2 statistics at untyped SNPs versus

�2 statistics computed from true genotypes. Here �2 statistics
refer to the squared z-score, which has a �2 with 1 df distribution

under the null hypothesis. We envision that real scans will restrict

their analyses to variants with high-estimated imputation accur-
acy [r2pred40:6, analogous to the r2hat estimator in HMM-

based imputation (Li et al., 2010), Supplementary Fig. S1], but

we computed the relative effective sample size with all values of
r2pred included to provide an appropriate assessment of power.

However, we restricted most of our analyses of false positives to

accurately imputed variants (r2pred40:6), as these are the vari-
ants that would be analyzed in a real scan.
We first explored the robustness of imputation from summary

statistics. ImpG-Summary attains genomic control �GC of 0.94

(Supplementary Fig. S2), with no increase in false-positive rate at
the tail of the distribution (Supplementary Tables S1–S3).

Although ImpG-Summary attains a slight deflation (because of

the adjustment procedure that has the effect of shrinking the
predictor weights), this is necessary to avoid false positives. As

expected from the conditional distribution, Gaussian imputation

with no variance normalization is deflated (�GC=0:86), while the
naive normalization that does not account for the statistical noise

in the LD matrix is also susceptible to false positives [we observe

a near 4-fold increase in P-values510�4 as compared with a well-
calibrated statistic in null data simulations (Supplementary

Tables S1 and S2 and Supplementary Fig. S2)]. Similar results

are obtained at different QC thresholds based on r2pred
(Supplementary Table S1). However, when pairwise correlations

among typed SNPs are available from the GWAS data, the

expected variance under null of the imputed statistics can be
accurately estimated and used for normalization (ImpG-

SummaryLD). This removes the need for adjusting the LD

matrix estimated from the reference panel leading to distributed
association statistics with no susceptibility to false positives

(�GC=1:00, Supplementary Fig. S2).
Recent work in parallel to ours has also investigated the use of

Gaussian models for summary association imputation but do not

propose an adjustment for the statistical noise in the reference
panel (DIST; Lee et al., 2013a). DIST shares many similarities to

the version of our approach that does not perform an adjustment

for the statistical noise in estimating S. Because we caution that
adjusting for the statistical noise in the reference panel is required

to avoid false positives when using our method (Supplementary

Fig. S2), we investigated whether such an adjustment would also
be needed for DIST. We simulated a null GWAS by randomly

partitioning the 1000G European data, computed z-scores as

above and performed Gaussian imputation of summary statistics
from SNPs present on a standard genotyping array using both

DIST(v0.1.4) and ImpG-Summary (Table 1). We observe that

DIST, which does not adjust for statistical noise in the reference
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panel, is susceptible to false positives at these reference panel
sizes (Table 1 and Supplementary Fig. S3); this is consistent to
simulations for the variant of our approach that does not adjust

S (Supplementary Fig. S2). Thus, an adjustment is needed to
control the false-positive rate at small reference panel sizes; it is
possible that the adjustment factor could be reduced at larger

reference panel sizes.
We next assessed the ability of ImpG-Summary to identify true-

positive associations bymeasuring the decrease in effective sample

size. Table 2 shows the relative effective sample size in 1000G
simulations with target and reference haplotypes randomly
sampled from 762 European haplotypes (i.e roughly matched

for ancestry). As a gold standard for imputation accuracy, we
used Beagle, an HMM-based method that requires individual-
level data (Browning and Browning, 2007, 2009). Beagle has pre-

viously been shown to achieve similar accuracy as other HMM-
based methods, with far superior accuracy compared with tag-
ging-based imputation (Browning and Browning, 2009;

Marchini and Howie, 2010b). At an odds ratio of 1.5, ImpG-
Summary recovers 84% (54%) of the effective sample size for
common (45%) and low-frequency (1–5%) variants versus 89%

(67%) for Beagle imputation. Interestingly, whenLD information
among the typed variants from the GWAS is available, ImpG-
SummaryLD recovers 87% (60%) of the effective sample size,

nearly as high as Beagle. Table 2 also shows the decrease in effect-
ive sample size across a wide array of odds ratios showing that the
results are robust to different effect sizes. Thus, imputation from

summary statistics can recover most of the association power
available from GWAS with individual-level data.
We also tested the effect of a mismatch in ancestry between the

reference haplotype panel and the target population. We simu-
lated case–control GWAS using the GBR haplotypes for target
samples and the remaining 1000G European haplotypes as ref-

erence haplotypes. Table 3 shows only marginal decrease in per-
formance for each of HMM, ImpG-Summary and ImpG-
SummaryLD as compared with previous results, with no excess

of false positives (Supplementary Table S2).
We note that both ImpG-Summary and ImpG-SummaryLD

are computationally very fast, with running times several orders

of magnitude lower than HMM-based methods for imputation
from individual-level genotypes. Table 4 shows a reduction in
running time of several orders of magnitude for ImpG-

Summary as compared with HMM-based approaches. The mag-
nitude of the difference in running time will only increase with
larger studies (such as the N=100000 studies analyzed below),

as the running time of ImpG-Summary is independent of the
number of target samples, while the running time of HMM-
based imputation is linear in this quantity. However, we note

that all of the methods listed in Table 4 can be parallelized
across regions of the genome for faster wall-clock running time.
Although our work focuses on imputation from summary stat-

istics, for completeness we also investigate Gaussian imputation
when individual-level data are available. This has been proposed
in (Wen and Stephens, 2010) and shown to achieve similar ac-

curacy as HMM-based imputation in the context of HapMap 3
data. In simulations from 1000G, we find that our implementa-
tion of the (Wen and Stephens, 2010) approach (see Section 2)

achieves slightly but significantly lower accuracy than ImpG-
SummaryLD (Supplementary Tables S7 and S8) across a wide

range of effect sizes. The slight improvement of

ImpG-SummaryLD over Gaussian imputation using individ-

ual-level genotypes suggests that there is an advantage to pheno-

type-aware imputation. When individual-level genotypes are

available, HMM-based imputation remains the approach of

choice because of its slightly higher accuracy, but we recommend

the use of ImpG-SummaryLD in preference to previous methods

for performing Gaussian imputation when rapidly prioritizing

regions for HMM-based analysis.

3.2 Application to WTCCC and height datasets

We explored whether similar results could be attained in real

empirical GWAS data. We validated our approach using a

Table 2. Relative effective sample size at imputed SNPs (ratio of the

average �2 association statistics attained at imputed versus typed SNPs)

in simulated case–control studies at different effect sizes (OR41)

Method Odds Ratio (OR)

1.0 1.2 1.5 1.7 2.0

All SNPs

Beagle 0.999 0.892 0.872 0.870 0.868

ImpG-Summary 0.937 0.835 0.823 0.827 0.836

ImpG-SummaryLD 0.999 0.872 0.851 0.852 0.855

Common SNPs (45%)

Beagle 0.999 0.900 0.885 0.883 0.881

ImpG-Summary 0.956 0.850 0.841 0.845 0.855

ImpG-SummaryLD 0.999 0.882 0.867 0.868 0.872

Low-frequency SNPs (1–5%)

Beagle 0.997 0.808 0.667 0.640 0.620

ImpG-Summary 0.881 0.685 0.539 0.512 0.491

ImpG-SummaryLD 0.997 0.768 0.597 0.565 0.542

Note: The column corresponding to OR=1 shows the average �2 association stat-

istic under the null model of no association.

Table 1. Number of variants attaining a given confidence level in a simu-

lated null GWAS

Method All SNPs Significance level

1E-3 1E-4 1E-5 5E-8

Simulated data 5 961 977 4747 451 56 0

DIST(v0.1.4, info40.6) 5 620 505 6954 946 186 22

DIST(v0.1.4, info40.9) 4 969 996 5133 584 78 1

ImpG-Summary 5469 489 1806 103 4 0

Note: The 381 European individuals from 1000G were randomly split in half; one

half was used as reference panel, while the other half was used to simulate a null

GWAS by randomly assigning 85(85) samples as cases(controls). We performed

Gaussian imputation using DIST (v0.1.4) and ImpG-Summary with default param-

eters starting from the variants present on the Illumina 610 genotyping platform and

that attained a MAF45% in both cases and controls (464 897 in total). We kept

only accurately imputed variants (MAF41%, r2pred40:6 for ImpG-Summary and

info 40:6; 0:9 for DIST).
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WTCCC study spanning seven diseases (Wellcome Trust Case

Control Consortium, 2007) [roughly 2000 cases for each disease

and 3000 shared controls genotyped on Affymetrix 500K array

(Supplementary Table S4)], and a study of height involving 6500

individuals from the British 1958 birth cohort (1958BC) geno-

typed on the Affymetrix 6.0 array (see Section 2). Starting from

the real genotype data, we used as reference all 758 European

haplotypes of the 1000G phase 2 data to accurately impute �4.3

million SNPs with minor allele frequency 41% either using an

HMM-based method [IMPUTE2 with prephasing (Howie et al.,

2012)] or ImpG-Summary (Supplementary Table S4).
We compared association statistics at accurately imputed

SNPs with either the HMM-based method or using

ImpG-Summary (with the latter assuming no access to individ-

ual-level data). We observed an average correlation of 0.94 be-

tween the two set of association statistics for both WTCCC and

1958BC phenotypes (Fig. 1), showing high similarity between the

two approaches (see Supplementary Fig. S4 for each WTCCC

phenotype). In general, we observe that the QQ and Manhattan

plots show similar behavior for HMM-based association as com-

pared with ImpG-Summary imputation, emphasizing no excess
of false positives when only summary data are used in imput-

ation (Supplementary Figs S5–S13). In some instances, we ob-

serve differences that we hypothesize represent false positives for
the HMM-based imputation, likely because of insufficient QC

filtering for the HMM-based approach (Supplementary Figs

S10–S12). Importantly, statistics at known associated SNPs
from the NHGRI GWAS catalog for each of the considered

phenotypes (Hindorff et al., 2009; Table 5) show similar associ-

ation power across the two compared methods (e.g. an average
�2 of 19.17 for HMM-based imputation versus 18.28 across the

WTCCC data and 4.55 versus 4.76 for the height phenotype;

Fig. 2 and Supplementary Table S5).

3.3 Application to publicly available summary statistics

for four lipid traits

We investigated the performance of ImpG-Summary on publicly

available summary association statistic datasets of four blood
lipid traits (Teslovich et al., 2010). These data have been imputed

using HMM-based imputation to an average of 2.0 M markers

(see Section 2). We imputed this data to 7.3 M 1000G markers.

Table 4. Estimated runtimes for 1000G imputation for various numbers

of individuals (N) in imputation

Method N=1000 N=10000 N=50000

IMPUTE1 893.8 8,937.5 44,687.5

IMPUTE2 (sampling) 100 1000 5000

IMPUTE2 (prephasing) 4.2 41.7 208.3

IMPUTE2 (prephasing)a 21.5 215.3 1,076.4

Beagle 250 2,500 12,500

ImpG-Summary 0.4 0.4 0.4

ImpG-SummaryLD 0.4 0.4 0.4

Note: Runtimes given in central processing unit (CPU) days needed to impute across

the whole genome (11.6 million SNPs polymorphic in Europeans). Runtimes for all

versions of IMPUTE extrapolated from Howie et al. (2012). aIncludes GWAS

phasing time of 25min per individual (Howie et al., 2012). Beagle runtime extra-

polated from an average of 3 CPU h runtime for N=300 samples across a 5Mb

window in the genome. ImpG-Summary takes510h for imputation starting from

600k typed variants and under 4 CPU days for imputation from 2 M typed variants

with no precomputation.

Table 5. Average association statistics (�2) over known associated SNPs

from NHGRI GWAS Catalog for the eight studied phenotypes

Phenotype SNPs HMM ImpG-Summary Ratio

BD 9 7.02 6.66 0.95

CAD 32 13.39 13.11 0.98

CD 70 20.78 19.74 0.95

HT 7 4.47 3.95 0.88

RA 22 20.36 19.00 0.93

T1D 36 36.39 34.98 0.96

T2D 51 12.08 11.45 0.95

All WTCCC 227 19.17 18.28 0.95

Height 1958 BC 176 4.55 4.76 1.05

Note: The average across all SNPs except HLA region (chr6:20–35Mb) in WTCCC

data consisting of 216 SNPs in a total of 16.02 for HMM versus 15.29 for ImpG-

Summary. All WTCCC denotes averages across all WTCCC data.

Table 3. Relative effective sample size at imputed SNPs (ratio of the

average �2 association statistics attained at imputed versus typed SNPs)

when imputation is performed in a random subsample of the 1000G

European data or over only Great Britain haplotypes (odds ratio is set

to 1.5)

Method Rand Great Britain

Common SNPs (45%)

Beagle 0.885 0.880

ImpG-Summary 0.841 0.835

ImpG-SummaryLD 0.867 0.860

Low-frequency SNPs (1–5%)

Beagle 0.667 0.671

ImpG-Summary 0.539 0.549

ImpG-SummaryLD 0.597 0.603

Fig. 1. HMM-imputed (x-axis) versus ImpG-Summary (y-axis) associ-

ation statistics (z-scores) for the BD phenotype in WTCCC Data (left)

and over height phenotype in 1958 Birth Cohort Data (right). Results for

all other WTCCC phenotypes can be found in Supplementary Figure S4
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We randomly masked 10% of the data, reimputed using

ImpG-Summary and assessed accuracy by comparing ImpG-

Summary with the masked data. As expected, we observe a

high correlation between the two sets of summary statistics

[correlation r=0.98 (0.95) at common (low-frequency) variants;

see Fig. 3 and Supplementary Fig. S14]. To quantify the expected

accuracy when imputation is performed from array-based asso-

ciation statistics, we also masked all association statistics not

present on a standard genotyping array and reimputed using

ImpG-Summary. We again observe a high correlation [r=0.97

(0.91) at common (low-frequency) variants; see Fig. 3 and

Supplementary Fig. S14], thus showing that our approach

recovers association statistics similar to those obtained by

HMM-based imputation requiring individual-level genotypes.

We have publicly released imputed summary association statis-

tics obtained using the full set of 2.0 M markers, without

masking (see Web Resources). As expected, we observed lower

�GC for ImpG-Summary data as compared with original data

(e.g. 0.92 versus 0.98 for HDL phenotype, see Supplementary

Table S9).

3.4 Enrichment analysis for four lipid traits

We categorized each SNP according to functional classes (see

Section 2). We performed genomic control correction using

�GC estimated from only the Intergenic SNPs, as in (Schork
et al., 2013). After normalization, we estimated the average
excess variance for each functional class as the average square

of the association z-score minus 1 (Schork et al., 2013). We ob-
serve that 1000G imputation using ImpG-Summary increases the
average variance for each functional class, with Genic SNPs (and

in some cases, Intronic SNPs) showing larger increases than
Intergenic SNPs (Fig. 4 and Supplementary Fig. S15). The in-
crease in �mean for each functional class, even after normalization

by �GC, indicates that 1000G imputation increases the ratio
�mean/�GC, i.e. causes true signals to be more concentrated at
the tail of the distribution.

1000G imputation using ImpG-Summary increases statistical
evidence of enrichment at Genic versus Intergenic SNPs, both
because the magnitude of the enrichment is larger and because of

the increased number of SNPs. We focus here on just the former
effect by computing KS test statistics at random subsets of 10000

SNPs, a conservative computation that avoids correlations be-
cause of LD (see Section 2). Across all four phenotypes, median
KS test statistics were more significant in the 1000G imputed

data versus the original dataset (e.g. 4.75E-08 versus 7.63E-05
for HDL; see Supplementary Table S10 for all phenotypes). This
highlights the increased utility of the 1000G imputed summary

statistics that we have publicly released for analyses of functional
enrichment.

4 DISCUSSION

We have introduced an approach for imputation of association

statistics at untyped variants directly from summary association
statistics using publicly available reference panels of haplotypes
such as 1000G (The 1000 Genomes Project Consortium, 2012),

in contrast to widely used HMM-based approaches that require
individual-level genotypes (Howie et al., 2012). Through exten-
sive simulations and real data analyses, we show that our ap-

proach is almost as powerful as imputation from individual-level
genotypes (for both common and low-frequency variants) with
no excess of false positives. We have described a method that

uses summary association statistics (ImpG-Summary), as well as
a method that uses summary association statistics and summary
LD statistics (ImpG-SummaryLD). Because summary LD stat-

istics are not currently widely shared, we expect that ImpG-
Summary will be of greatest practical value in the immediate

future. However, the slightly higher power attained by ImpG-
SummaryLD provides a motivation for sharing of summary LD
statistics to become a widely accepted practice. This is likely to

also prove valuable in other settings, such as conditional analysis
or rare variant testing (Lee et al., 2013b; Yang et al., 2012).
It is often the case that privacy and logistic constraints pro-

hibit the sharing of individual-level data. On the other hand,
summary association statistics from large-scale association stu-
dies are often readily available (Schork et al., 2013; Teslovich

et al., 2010), despite the fact that privacy concerns may extend
to summary data (Homer et al., 2008; Sankararaman et al.,
2009). For example, a recent study used publicly available sum-

mary association statistics over a wide range of phenotypes to
draw inferences about the enrichment of disease-associated
variants in several functional categories (Schork et al., 2013).

Using the methods introduced here, such analyses can be

Fig. 3. HMM-imputed (x-axis) versus ImpG-Summary (y-axis) associ-

ation statistics (z-scores) for the TG phenotype in the blood lipids data.

Left denotes imputation of 10% of the z-scores using the remaining 90%,

while right shows imputation results starting from all variants present on

the Illumina 610 array. Results for all blood lipids phenotypes can be

found in Supplementary Figure S13. ImpG-Summary took 4 CPU days

for the 10% data and under 10 CPU h for the array-based imputation

Fig. 2. HMM-imputed (x-axis) versus ImpG-Summary (y-axis) associ-

ation statistics (z-scores) at known associated SNPs from NHGRI

GWAS Catalog in WTCCC (left) and height in 1958 Birth Cohort

Data (right)
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expanded to the set of all 1000G variants. In particular, we have

publicly released imputed association statistics at 1000G variants

for four lipid traits. We show that for these four lipid traits,

1000G imputed summary statistics show a consistently larger

and more statistically significant signal of enrichment in genic

versus non-genic regions as compared with the original publicly

available data. Thus, 1000G imputed summary statistics can be

used to increase power in studies of functional enrichment.
The Gaussian approximation for LD among SNPs has previ-

ously been used in a wide range of problems (Conneely and

Boehnke, 2007; Han et al., 2009; McPeek, 2012; Wen and

Stephens, 2010; Zaitlen et al., 2010). We showed that an adjust-

ment similar to ridge regression removed the false-positive

associations in imputed summary statistics that occurred when

unadjusted estimates of LD were used. As reference panels

become larger, we expect a smaller adjustment factor to be

needed, thus increasing accuracy. Large reference panels of

typed SNPs could potentially also be used to reduce the adjust-

ment factor needed for avoiding false positives (Yang et al.,

2012). Other recent works have proposed to reduce the compu-

tational burden of imputation using a technique similar to matrix

completion; however, that approach does not extend to imput-

ation from summary statistics (Chi et al., 2013).
Our proposed procedure relies on accurate estimates of pair-

wise LD that match the population of the GWAS sample, in

contrast to HMM-based approaches that use cosmopolitan

reference panels that include all available haplotype data

(Howie et al., 2012). Our method is directly applicable to

admixed populations such as African Americans and Latino

Americans for which 1000G reference panels are currently avail-

able (The 1000 Genomes Project Consortium, 2012), but is not

applicable to samples of uncertain ethnicity or samples for which

reference panels are not available.
The method proposed here relies on a windowing approach to

reduce the number of pairwise LD parameters to be estimated

from the reference panels. Although this procedure reduces dra-

matically the number of pairwise LD parameters, our choice of

window size (1 cM) may still allow for overestimation of pairwise

LD because of finite reference panel sizes. Recent work has

shown that population genetic principles can be used to derive

shrinkage factors based on recombination maps and reference

panel sizes (Wen and Stephens, 2010). A potentially fruitful

direction for future work is to combine such derivations with

window-based approaches to increase accuracy.

The work of Wen and Stephens (2010) presented methods for

Gaussian imputation from allele frequencies in cases and con-

trols or from individual-level genotypes. There are many key

differences between that work and this study. First, we impute

association statistics (i.e. z-scores) rather than allele frequencies.

For case–control traits, it is unclear how to use imputed allele

frequencies in cases and controls (Wen and Stephens, 2010) to

obtain association statistics that are robust to false positives; for

quantitative traits, imputation of allele frequencies does not

apply. Thus, the methods and software of Wen and Stephens

(2010) cannot be used to impute association statistics, as we

have done here. Second, we evaluate our approach in simulations

based on 1000G data (The 1000 Genomes Project Consortium,

2012), assessing both power and false-positive associations.

Third, we validate our approach using real empirical data

across several GWAS involving both discrete and continuous

phenotypes, including the four lipid traits for which we have

publicly released imputed association statistics at 1000G

variants. We note that recent parallel work has also proposed

to use summary statistics with reference panels of haplotypes for

imputation [(Lee et al., 2013a); a related approach is proposed in

(Hu et al., 2013)], but that work does not provide a strategy to

address false-positive associations arising from the limited size of

the reference panel, as we do here.
We conclude with several limitations for the approaches we

presented here. First, when summary LD statistics from the

study are not available, our adjustment procedure leads to a

slight deflation of association statistics under null data. This

could hamper efforts to assess confounding because of popula-

tion stratification or cryptic relatedness via genomic control

(Devlin and Roeder, 1999). However, it is now widely recognized

that genomic control is not an effective approach for assessing

confounding in large studies, because of the expected inflation

from polygenic effects (Yang et al., 2011). Second, application of

our approach to summary statistics with inappropriate levels of

QC is a potential concern because of the possibility of introdu-

cing false positives. Therefore, we caution that appropriate QC

should be performed on typed variants before estimation of

Fig. 4. Average variance per SNP (average association z2 – 1) binned by different functional classes for all four blood phenotypes. Left displays the

absolute numbers attained across the original data and the ImpG-Summary imputation to 1000G (r2pred40.8). Right figure shows the absolute

difference between original data and 1000G imputed association statistics
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summary association statistics, as is standard procedure in any

GWAS. Third, recent work has shown that low-coverage sequen-

cing is a more powerful alternative to genotyping arrays per unit

of cost invested (Flannick et al., 2012; Li et al., 2011; Nielsen

et al., 2011; Pasaniuc et al., 2012). The extension of Gaussian

imputation to low-coverage sequencing data remains a direction

for future work. Finally, as with all imputation approaches, the

methods presented here are more accurate for common variants

than for low-frequency variants. Accuracy will be even lower at

rare variants, although GWAS involving single-variant associ-

ations are generally focused on common and low-frequency

variants.
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