
Vol. 30 no. 20 2014, pages 2941–2948
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu430

Data and text mining Advance Access publication July 7, 2014

Improving peak detection in high-resolution LC/MS metabolomics

data using preexisting knowledge and machine learning approach
Tianwei Yu1,* and Dean P. Jones2

1Department of Biostatistics and Bioinformatics, Rollins School of Public Health and 2Department of Medicine, School of
Medicine, Emory University, Atlanta, GA 30322, USA

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: Peak detection is a key step in the preprocessing of

untargeted metabolomics data generated from high-resolution liquid

chromatography-mass spectrometry (LC/MS). The common practice

is to use filters with predetermined parameters to select peaks in the

LC/MS profile. This rigid approach can cause suboptimal performance

when the choice of peak model and parameters do not suit the data

characteristics.

Results: Here we present a method that learns directly from various

data features of the extracted ion chromatograms (EICs) to differenti-

ate between true peak regions from noise regions in the LC/MS profile.

It utilizes the knowledge of known metabolites, as well as robust ma-

chine learning approaches. Unlike currently available methods, this

new approach does not assume a parametric peak shape model

and allows maximum flexibility. We demonstrate the superiority of

the new approach using real data. Because matching to known me-

tabolites entails uncertainties and cannot be considered a gold stand-

ard, we also developed a probabilistic receiver-operating

characteristic (pROC) approach that can incorporate uncertainties.

Availability and implementation: The new peak detection approach

is implemented as part of the apLCMS package available at http://

web1.sph.emory.edu/apLCMS/

Contact: tyu8@emory.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Metabolomics is becoming a major area of interest in high-

throughput biology (Issaq et al., 2009). Measuring thousands

of metabolites at a time, untargeted metabolomics using liquid
chromatography coupled with mass spectrometry (LC/MS) helps

to unravel systematic response to drugs, detect pollutants in

humans, find gene functions and discover disease markers and

mechanisms (Nicholson et al., 2008; Yu and Bai, 2013; Zhou

et al., 2012). High-resolution LC/MS platforms generate highly
accurate mass-to-charge ratio (m/z) measurements, facilitating

metabolite identification (Patti et al., 2012). At the same time,

the raw data are large and noisy. Complex preprocessing rou-

tines are necessary to ensure high-quality peak detection, quan-

tification and alignment across profiles (Katajamaa and Oresic,

2007; Want and Masson, 2011; Zhou et al., 2012). Critical to the

success of data analysis is the detection of peaks from the raw

data. A number of methods have been developed, each assuming
certain characteristics can differentiate peaks from noise (Aberg

et al., 2008; Katajamaa et al., 2006; Smith et al., 2006; Stolt et al.,
2006; Takahashi et al., 2011; Tautenhahn et al., 2008; Wei et al.,

2012; Yu et al., 2009). As examples, the XCMS package uses a

matched filter based on the second derivative of the Gaussian
function (Smith et al., 2006), and the apLCMS package uses a

run filter based on point distribution patterns (Yu et al., 2009).
Currently, peak detection in high-resolution LC/MS data is still

less than satisfactory, especially for peaks of lower intensity.
A wealth of knowledge exists about common metabolites.

Some of them are documented in openly available databases

such as the Human Metabolome Database (HMDB) (Wishart
et al., 2009), Madison Metabolomics Consortium Database

(MMCD) (Cui et al., 2008) and Metlin (Smith et al., 2005).
We have previously developed a hybrid approach utilizing exist-

ing knowledge to improve peak detection (Yu et al., 2013). While

greatly improving the detection rate of known metabolites, as
well as peaks consistently detected in historical data, it does

not help peaks derived from metabolites that are not yet docu-
mented in the database. In this study, we ask the question: can

we learn patterns from the part of data that match to known

metabolites, such that the knowledge can improve the detection
of unknown metabolites? Moreover, each dataset may have dif-

ferent characteristics because of changes in experimental condi-
tions, such as peak width and signal-to-noise ratio. Can the

method find the best criterion driven by the data characteristics?
To this end, we consider machine learning techniques that are

effective in high-dimensional data, as well as resistant to high

collinearity in the data. We first separate the data into extracted
ion chromatograms (EICs) using adaptive binning (Yu et al.,

2009; Yu and Peng, 2010). We use ‘EIC’ to refer to the data
slices after binning. Each EIC contains some raw data points,

which may or may not be a real peak. We then take a large

number of data feature measurements from every EIC. In this
article, we shall use ‘data feature’ to refer to the characteristics of

the EIC data, instead of metabolic features detected in the data.
Given the data, our ultimate goal is to find a scoring system

that best separates EICs that contain real peaks from those that
do not contain real peaks. Certainly, such a scoring system

cannot be obtained because we do not have the knowledge as

to which EICs contain real peaks. However, some of the EICs
have m/z values closely matched to known metabolites. Those

matched are likely to contain real peaks, whereas those*To whom correspondence should be addressed.
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unmatched have much lower chances to contain real peaks. We

hypothesize that by finding a scoring system that best separates

the matched/unmatched EICs, we have a good proxy to the ul-

timate goal of differentiating peak regions from noise. We use

machine learning techniques to find the optimal rule to discrim-

inate matched EICs from unmatched EICs, using classification

models such as logistic regression, boosting, support vector ma-

chine (SVM) and random forest (RF) (Hastie et al., 2009). After

the best model is selected by cross-validation, all the unmatched

EICs are given scores based on this model. Higher scores will

signify the EIC is more likely to contain a real peak.

2 METHODS

The general workflow Figure 1 shows the general workflow of the

new machine learning-based approach. The key idea is to first slice the

data into EICs and take a large number of data features from each EIC.

Then use machine learning approach to give the EIC scores to predict

which EICs are more likely to be real signals.

To generate the EICs, the adaptive binning method that slices the data

based on local point density patterns has proven to work effectively (Yu

et al., 2009, 2013). After obtaining the EICs using this method, we take a

number of data characteristic measurements from each EIC, includingm/z

span, m/z standard deviation, retention time (RT) span, RT peak location

and summary statistics on the raw intensity values of the EIC. We also

centroid the data in each EIC such that they become two-dimensional data

(intensity versus RT). We then apply different smoothers (shape/window

size) in combination of different weighting schemes (unweighted, weighted

with intensity, weightedwith log intensity) to eachEIC.At each smoothing

setting, we record summary statistics of smoothed data. In total, we gen-

erate over 100 different data features for each EIC.

The next step is to generate a quality score for each EIC. Not willing to

assume artificial models that could introduce bias, we resort to database

matching for this purpose. The logic is straightforward—EICs with m/z

values matched to common ion forms of known metabolites are more

likely to be real signal than those unmatched. At the same time, those

Fig. 1. The workflow of the machine learning-based peak detection approach
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unmatched still contain a lot of true peaks. We treat the problem as a

classification problem, i.e. seeking a scoring system that best separates the

matched and unmatched classes, knowing that the matched/unmatched

status of the data does not equate to peak/noise status. Although the

training data are imperfect, given the matched/unmatched EICs have

different likelihoods of being true peaks, the resulting score is still

highly correlated to the ideal score that we seek—a score that separates

the peaks from noise. After the scores are obtained, peaks are selected

based on their scores (Fig. 2). The purpose of this study is to find whether

the scoring system is meaningful enough to allow the method to outper-

form existing filters.

Building and selecting classifiers After calculating the data features

from every EIC, we have a matrix X with several thousand rows (EICs)

and a few hundred columns (data feature measurements).

Step 1. Database matching. By matching m/z values of the EICs to

dominant ion forms of common metabolites, we have a y vector that

takes zero/one values: yi= 1 if the EIC has a median m/z value that

matches to a dominant ion derivative of a common metabolite, and

yi= 0 if unmatched. Throughout this study, we used 5ppm as the match-

ing threshold.

Step 2. Training and testing data. As the number of unmatched EICs is

much larger than matched, we randomly sample a subset of the rows for

which yi= 0 to make the data balanced. The purpose of this step is to

avoid adverse impact of data imbalance on the performance of the pre-

dictive models. Down-sampling is an effective method to address the issue

of imbalance when sufficient data are available (Kubat and Matwin,

1997; Liu et al., 2006). We use random down-sampling, as there is no

data stratification in this case. Because the number of rows is in the order

of tens of thousands, and the number of matched rows is in the order of

several hundreds, the subsample is a representative subset of the full data.

We further discuss this point in the Supplementary Materials (Section S1;

Supplementary Fig. S1). We then split the rows of the data in half ran-

domly. One half of the data serves as the training data of the methods,

and the other half serves as the testing data.

Step 3. (Optional) Ranking and reducing the data features. We use the

probabilistic receiver-operating characteristic (pROC; described in the

next section) to calculate the predictive power of every data feature.

Second, as an optional step, we trim the data features by conducting a

within-group comparison. Because five data features were collected at

each smoothing setting—the 0th, 25th, 50th, 75th and 100th percentiles

of the smoothed data, which can be redundant—we choose one data

feature from the five by selecting the one with the highest pAUC value.

Step 4. Predictor (data feature) ordering. Using the training data, we

rank the data features (columns of X) by their importance in predicting

y. Two ranking methods are used: the Adaboost and the RF. Each yields

an order of the data features from the most important to the least impor-

tant. The two methods tend to rank data features differently. The

Adaboost ranking is not impacted by collinearity. If two features are

highly correlated with each other, they can still both receive high ranking

if they both predict the outcome very well. On the other hand, the RF

method takes into account collinearity. Having a highly correlated feature

tends to reduce the importance of a feature.

Step 5. Fitting a series of models. Using each of the two orders, iterate

the following: take the first m most important columns of X, fit a pre-

dictive model of y using the training data with each of the four methods—

logistic regression (R library stats), Adaboost (R library gbm), SVM (R

library e1071) and RF (R library randomForest). Default parameters of

the methods are used because the input data matrix is of normal dimen-

sions for these methods.

With each model, find the prediction accuracy on the testing data.

Increase m from 1 to a maximum allowable number (10 in this study).

There are several reasons for selecting a subset of features to fit the

model. The first is to avoid overfitting for logistic regression. The

second is that it has been empirically observed that when the majority

of the variables are irrelevant to the outcome, a model using a subset

often outperforms the model using all the features. Third, it reflects our

belief that only a limited number of data features are relevant in predict-

ing the quality of an EIC.

Step 6. The final model. From all the combinations (ranking meth-

od� fitting method�m), select the one that produces the best testing

data prediction accuracy. Combine the training and testing data and

re-fit the model using the combined data. This is the final model for

EIC scoring.

Step 7. EIC selection. Calculate the scores for all rows of X using the

final model. Because the likelihoods between matched/unmatched is not

truly the likelihoods between peak/noise, a heuristic cutoff needs to be

used as the decision boundary. In this study, we use cutoffs on the per-

centage of unmatched EICs selected.

ROC analysis with class label uncertainty We use the ROC curve

approach to gauge the performance of individual variables and predictive

models to differentiate the true peaks from noise (Fawcett, 2006; Yu,

2012). Peaks with m/z matched to known metabolites are considered

likely to be true metabolites, whereas unmatched peaks are considered

likely to be noise. However, the databases are incomplete, and there is

high noise in the data. Peaks unmatched to the database could still be real

signal, whereas peaks matched to the database still have a small chance to

be noise. Thus, we developed the probabilistic ROC (pROC) to incorpo-

rate the uncertainty.

We consider the situation where there are two classes, true peaks and

true noise. Each data point is a pair (zi, si), where zi is the score of the i-th

EIC, and si is the confidence level that the EIC contains a true peak. It

takes value between zero and one. Ideally, si should be Prob (the i-th EIC

contains a true peak). In application, as probabilistic measures are often

difficult to obtain, si could be a score assigned heuristically. In this study,

as there is no rigorous basis to assign likelihood values to the sis, we used

values based on expert opinion: 0.95 for matched EICs, and 0.1 for

unmatched EICs.

In the construction of traditional ROC curves, no uncertainty of class

membership is considered. The building of an ROC curve/surface

involves calculating a few quantities at all cutoff points—the true-positive

rate (TPR; the number of true positives selected at the cutoff point

Fig. 2. Illustration of the general idea of using matched/unmatched status

as a proxy of true peaks/noise status to construct predictive models. (a)

Proportion of true peaks is drastically different for matched/unmatched

EICs. (b) The goal of the scoring system is to allow real peaks to be called

from unmatched EICs
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divided by the total number of points actually belonging to the positive

class), false-positive rate (FPR; the number of negatives falsely selected at

the cutoff point divided by the total number of points actually belonging

to the negative class) and the true discovery rate (TDR; the number of

true positives selected at the cutoff point divided by the total number of

points selected at the cutoff point) (Yu, 2012).

The pROC approach differs from traditional ROC by replacing counts

with expected values given the uncertainty in the class membership.

Although the TDR values are not used in this study, we include its

estimation for completeness. At any cutoff value �, we have

pTPR� ¼
Eð#true positives called at threshold �Þ

Eð#true positivesÞ
¼

XN

i¼1
siIðzi4�Þ

XN

i¼1
si

;

pFPR� ¼
Eð#true negatives called atthreshold �Þ

Eð#true negativesÞ
¼

XN

i¼1
ð1� siÞIðzi4�Þ

XN

i¼1
ð1� siÞ

;

pTDR� ¼
Eð#true positives called at threshold �Þ

#features called at threshold �
¼

XN

i¼1
siIðzi4�Þ

XN

i¼1
Iðzi4�Þ

;

Where I() is an indicator function, which takes the value of 1 when the

statement in the parenthesis is true, and 0 otherwise. By varying the �

values, a series of pTPR�, pFPR�, pTDR� values are obtained. Using

them in the place of TPR�, FPR� and TDR�, the ROC curve or ROC

surface can be generated, and the corresponding area under the curve or

volume under the surface can be computed in the traditional manner

(Fawcett, 2006; Yu, 2012).

The databases used in this study For known metabolites, we used

the HMDB (Wishart et al., 2009). We randomly selected half of the

unique molecular compositions of known metabolites as the training

data. Because the data in this study were generated from anion exchange

chromatography and electrospray ionization, we used the [M+H]+ deri-

vatives of the training data. To benchmark the performance of different

methods, the detected peaks were then matched to the [M+H]+ deri-

vatives of the other half of the unique molecular compositions of HMDB

(a more stringent set), as well as the [M+H]+, [M+K]+, [M+Na]+

or [M+NH4]
+ ion forms in the MMCD (a more relaxed set) (Cui et al.,

2008).

The high-resolution LC/MS data used in this study Two datasets

were used in this proof-of-concept study. The first dataset was generated

from the Standard Reference Material (SRM) 1950—Metabolites in

Human Plasma, made available by the National Institute of Standards

and Technology (NIST). We analyzed the SRM 1950 sample using anion

exchange chromatography combined with the Thermo Orbitrap-Velos

(Thermo Fisher, San Diego, CA) mass spectrometer using an m/z

range of 85–850. The experiment was repeated eight times, each in tripli-

cate, at discrete time points spanning a month. In total, 24 LC/MS pro-

files were analyzed. The second dataset was generated using four healthy

human plasma samples, each analyzed eight times with anion exchanged

combined with a Thermo LTQ-FT mass spectrometer using an m/z range

of 85–850. Excluding two outliers, 30LC/MS profiles were analyzed. For

experimental details, please refer to Johnson et al. (2010).

3 RESULTS

In this proof-of-concept study, we compared the performance of
the new machine learning-based approach with existing methods

XCMS (Smith et al., 2006) and apLCMS (Yu et al., 2009).

Although apLCMS does have a hybrid approach that involves
targeted search of known metabolites (Yu et al., 2013), we did

not use this option because our purpose was to find whether the

new method brought improvement on the detection of previously

unknown peaks, on which the hybrid apLCMS does not help.
Among the three methods, only the new method requires a list

of known metabolites. We first found the unique m/z values of

HMDB metabolites and split them in half randomly. The

[M+H]+ ions of half of the HMDB data were used as the

known m/z values for the new method. To avoid the impact of

parameter choices, we tried our best to tune the methods and

allowed each method a number of parameter settings. The para-

meters were specific to the datasets. They are described in detail

below.
To assess the performance of peak detection, we based our

judgment on the matching of detected peaks to known metabo-

lites. First, from the results of all three methods, we removed

peaks matched to the [M+H]+ ions of the half HMDB meta-

bolites that were used as training data. We then matched the m/z

values found by each method at each parameter setting to (1) the

[M+H]+ ions of the other half of HMDB metabolites, and (2)

the [M+H]+, [M+K]+, [M+Na]+ or [M+NH4]
+ ion

forms in the MMCD (Cui et al., 2008). The former was a

more stringent set, and the latter was a more relaxed set. The

number of peaks detected, together with the percentage of

detected peaks matched to the known metabolites, gave us mea-

surements of the quality of the peak detection.

SRM 1950 data measured by Orbitrap-Velos mass

spectrometer Twenty-four LC/MS profiles generated from the
SRM 1950 standard sample were analyzed. For the new machine

learning method, we allowed 5, 10, 20, 30, 40, 50 and 60% of the

originally unmatched peaks to be reported. For XCMS, we

tuned six parameters: step (step size to use for profile generation;

values=0.005, 0.02, 0.05), fwhm (full width at half maximum of

matched filtration Gaussian model peak; values=15, 30), mzdiff

(minimum difference in m/z for peaks with overlapping RTs;

values=0.01, 0.05, 0.2), bw (bandwidth of Gaussian smoothing

kernel in peak density chromatogram; values=20,40), mzwid

(width of overlapping m/z slices for creating peak density chro-

matograms; values=0.005,0.05), snthresh (signal-to-noise ratio

threshold; values=5, 10). All combinations of possible values of

the six parameters were tested. For apLCMS, we tuned two

parameters: min.run (minimum length of a peak in RT;

values=15, 20, 30, 40), and min.pres (minimum proportion of

non-missing signal in the ion trace; values=0.5, 0.6, 0.7, 0.8).

All combinations of possible values of the two parameters were

tested.
At every parameter setting, each method conducted peak

detection and alignment. For the new method, post-peak detec-

tion processing was performed by subroutines of apLCMS.

Peaks found in at least 6 of the 24 profiles were retained. To

make a fair comparison, we removed peaks matching to the

[M+H]+ ions of the half HMDB unique m/z values used for

training the machine learning approach from all the results. We

then matched the remaining peaks to (1) the [M+H]+ ions of

the half HMDB unique m/z values not used for training, and (2)

the [M+H]+, [M+K]+, [M+Na]+ or [M+NH4]
+ ion

forms in MMCD. We plotted the percentage matched against

the number of peaks detected (Fig. 3). Every point in the plot

corresponds to a parameter setting.
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We first examined the matching of found peaks to the

[M+H]+ ions of the half HMDB unique m/z values not used

for training (Fig. 3a). With the increase in the number of peaks

detected, which corresponds to less stringent peak detection cri-

terion, all three methods showed a lower percentage of peaks

matched to the [M+H]+ ions of known metabolites. The new

machine learning approach clearly had an advantage over the

other two methods at all stringency levels (Fig. 3a). Overall, the

new method had �3% higher matching rate than apLCMS run

filter. Given that the run filter matching rate is 4–6%, in relative

terms, the improvement is �40%.
When matched to a more relaxed set, the [M+H]+,

[M+K]+, [M+Na]+ or [M+NH4]
+ ion forms in MMCD,

the exact same trend was observed, except the overall level of

matching percentages was much higher (Fig. 3b). Overall, the

new methods had �30% matching, whereas the apLCMS fell

behind by �5%. Given that the run filter matching rate is 22–

30%, this is a �20% improvement in relative terms. The XCMS

matching rates were generally520% (Fig. 3b).
We further selected one peak list from each of the three meth-

ods that contain similar numbers of peaks (arrows in Fig. 3b).

We took the unique m/z values from each list and matched the

values at 5 ppm tolerance level across the three lists. The counts

of overlaps were summarized in a Venn diagram (Fig. 4). The

peaks detected by the machine learning method overlapped with

those detected by apLCMS by over 60%. The overlap between

the machine learning method and XCMS was540%, and the

overlap between apLCMS and XCMS was �40% (Fig. 4). We

further matched the m/z values falling into each of the areas of

the Venn diagram to the [M+H]+, [M+K]+, [M+Na]+ or

[M+NH4]
+ ion forms in MMCD. We found that m/z values

uniquely detected by the new machine learning approach had the

highest rate of matching (48.0%), and m/z values uniquely

detected by XCMS had the lowest rate of matching (12.2%)

(Fig. 4; values in the parentheses).
Next we examined a small group of high-confidence metabo-

lites in the SRM 1950 sample. We received a list of 94 character-

ized metabolites with ion forms detectable in LC/MS from Dr.

Paul Rudnick’s group at NIST. Fifty-six of the 94 metabolites

were not matched to the training data generated from HMDB.

We examined how many of these 56 metabolites were recovered

using each of the three methods. Using the parameter settings

that are indicated by the arrows in Figure 3(b), the machine

learning method detected 10 of the 56 metabolites, whereas

apLCMS detected 5 and XCMS detected 2. Given differences

in the experimental conditions between our laboratory and

NIST, and the fact that a large proportion of the 56 metabolites

are unresolved by the anion exchange column (Yu et al., 2013),

the number of detected metabolites are reasonable. We plotted

the EICs of the five NIST-confirmed metabolites identified by

the new machine learning method alone (Supplementary Fig.

S2). Visually examining the plots, we found clear patterns of

peaks. At other parameter settings, the same trend was

observed—the new machine learning method consistently

detected more of the confirmed metabolites than the other two

methods (Supplementary Fig. S3).

Human blood plasma samples measured by Thermo LTQ-Fourier
Transform (FT) mass spectrometer Generated on a different
LC/MS platform, the dataset is of different property than the

SRM1950 dataset. Again, we tuned all three methods to best fit

the data. For the new machine learning method, we allowed 5,

Fig. 3. Comparing the percentage of peaks matched to known metabolite derivatives between the new machine learning approach against the existing

run filter of apLCMS, and the matched filter of XCMS. All m/z values used in the training of the machine learning approach were removed. Orbitrap

data generated from the NIST SRM 1950 samples was used. All three methods were allowed a number of parameter combinations. Each point represents

a parameter combination. Matching was based on m/z value at the 5 ppm tolerance level. (a) Percent of newly detected features matched to the

[M+H]+ ion forms of the half metabolites from HMDB held back from the methods. (b) Percent of newly detected peaks matched to [M+H]+,

[M+K]+, [M+Na]+ or [M+NH4]
+ ion forms in the MMCD. Arrows: data used in further analysis shown in Figure 4
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10, 20, 30, 40, 50 and 60% of the originally unmatched peaks to

be reported. For XCMS, we tuned six parameters: step

(values=0.001, 0.01), fwhm (values=5, 10, 15), mzdiff

(values=0.001, 0.01), bw (values=15, 30, 60), mzwid

(values=0.05, 0.25, 0.5), snthresh (values=2, 4). All combina-

tions of possible values of the six parameters were tested. For

apLCMS, we tuned two parameters: min.run (values=10, 15,

20, 30) and min.pres (values=0.5, 0.6, 0.7, 0.8). All combina-

tions of possible values of the two parameters were tested.

Figure 5 shows the results of matching the found peaks to

common ion forms of known metabolites. For XCMS, we

omitted the results generated by XCMS using snthresh=4

because too few peaks were detected. Again, from all the results,

we removed peaks matching to the [M+H]+ ions of the half

HMDB unique m/z values used for training the machine learning

approach.
When we matched the detected m/z values to databases, the

same trend as seen for the SRM1950 data was observed (Fig. 5).

However, the difference in performance between the new method

and apLCMS was not as pronounced as on the SRM1950 data.

The new method showed a �1% advantage over apLCMS when

matching to the half [M+H]+ ions of known metabolites,

whereas apLCMS was consistently better than XCMS

(Fig. 5a). When matching to the four common ion derivatives

of the metabolites in the MMCD database, the gap between the

new method and apLCMS became smaller, especially when

larger number of peaks were detected using looser criteria

(Fig. 5b). At the same time, a few parameter settings of XCMS

generated results close to apLCMS. Still, the overall trend was

clear—the new method outperformed apLCMS, which in turn

outperformed XCMS.
Through the analyses of the two datasets, we clearly saw that

the new machine learning approach outperformed the apLCMS

and XCMS in terms of detecting peaks that are matched to

common ion forms of known metabolites, which indicates a

higher reliability in detecting true signals. At the same time,

the new method required the least amount of tuning, as indicated

by the number of points representing each method in Figures 3

and 5.

Fig. 4. Overlapping between unique m/z values found by the new

machine learning approach, apLCMS and XCMS. All m/z values used

in the training of the machine learning approach were removed. Numbers

in parentheses are the percentage of the peaks matched to [M+H]+,

[M+K]+, [M+Na]+ or [M+NH4]
+ ion forms in MMCD. Matching

between the methods and to the database was based on m/z value at the

5 ppm tolerance level

Fig. 5. Comparing the percentage of peaks matched to known metabolite derivatives between the new machine learning approach against the existing

run filter of apLCMS, and the matched filter of XCMS. All m/z values used in the training of the machine learning approach were removed. The data

was generated from human plasma samples using LC-Fourier Transform MS, as described in Johnson et al. (2010). All three methods were allowed a

number of parameter combinations. Each point represents a parameter combination. Matching was based on m/z value at the 5 ppm tolerance level. (a)

Percent of newly detected features matched to the [M+H]+ ion forms of the half metabolites from HMDB held back from the methods. (b) Percent of

newly detected peaks matched to [M+H]+, [M+K]+, [M+Na]+ or [M+NH4]
+ ion forms in the MMCD
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4 DISCUSSIONS

In this study, we presented a new machine learning approach for

peak detection from high-resolution LC/MS data. It substan-

tially outperforms existing methods in real data analysis in

terms of detecting more reliable peaks. In our workflow, the

peak detection step precedes peak quantification by statistical

model fitting (Yu and Peng, 2010). Other methods may achieve

the two goals simultaneously (Smith et al., 2006). Noise filtering

can be conducted in the peak quantification step. Later steps

include RT correction and peak alignment (Katajamaa and

Oresic, 2007). Because only selected EICs will be sent to peak

quantification and later steps, peak detection is most critical in

ensuring the quality of the data processing. Our method is applic-

able to high-resolution data only because reliable matching to

databases is necessary. Compared with the hybrid feature detec-

tion approach (Yu et al., 2013), this new method helps to better

detect peaks that are not yet documented in the databases.
Our method is based on classification between EICs that are

matched/unmatched to dominant ion forms of documented

metabolites. It can also be extended to using historically consis-

tently detected m/z values. To date, databases of metabolites are

far from complete. Large portions of peaks from LC/MS data

are not matched to databases. On the other hand, even with

high-resolution LC/MS, those EICs matched to database may

still be noise, albeit with a very low chance. However, given the

two groups of EICs have very different chances to be real peaks,

a discrimination rule separating them is still able to catch much

of the information of how the real peak EICs differ from noise.

The machine learning methods are resistant to nuisance vari-

ables and collinearity, which allows us to use a large number of

data features from each EIC. Although a lot of the data features

may not have predicting power, their presence does not hamper

the performance, especially given a variable selection component

is included. Currently, we allow different data features to be

selected for each profile. Given the high collinearity between

features, the method may select different features for each profile

because of minor differences between the profiles. We analyzed

the models and data features in detail in the Supplementary

Materials (Supplementary Section S3). Clearly the two datasets

showed distinct preferences in model and data feature utilization.

However, some important data features were consistently utilized

in both datasets, including the m/z value spread within each EIC,

the RT location of the highest intensity of the EIC, and log-

intensity-weighted smoothed point distribution with a narrow

bandwidth. These results shed light on dataset characteristics

and what data features are important in signifying real peaks.

Our method outputs the model and data features involved for

each LC/MS profile, allowing users to examine the data charac-

teristics and make interpretations.

It is possible that combining data features from all LC/MS

profiles in a study can yield a more robust overall model. In this

study, the reasons for allowing different models for different LC/

MS profiles are as follows. (i) Each LC/MS profile contains

sufficient training data to fit a reliable model. This is evidenced

by the results in the manuscript. Because we held back half the

HMDB data for testing, we expect that in real data applications,

the training data will double the size of those shown in the manu-

script. Given each LC/MS profile may be slightly different, and

LC/MS profiles from different experimental batches may show

substantially different properties, allowing flexible models may

be beneficial. (ii) There are RT shifts between LC/MS profiles.

To build a single model for all LC/MS profiles in a study, we

need to first conduct RT adjustment to utilize any data feature

that involves RT. Both apLCMS and XCMS conduct RT adjust-

ment after peak quantification. It is difficult to conduct reliable

RT adjustment before noise filtering and peak detection.

Nonetheless, it is possible that a joint model may be more reli-

able than a collection of individual models. This requires sub-

stantial changes to the workflow beyond peak detection itself. It

will be subjected to our future studies. We plan to develop par-

allel feature selection scheme in the future to ensure a single set of

features is used for a dataset to achieve better data interpretation.

The data features used in this study include various percentiles

of smoothed data. The smoothing was conducted using three

different weighting schemes, two different kernels and several

window size values. The data features contain most of the infor-

mation that the run filter of apLCMS captures. In apLCMS, the

run filter can only be used at a single parameter setting. By

allowing many smoothing settings, the new method effectively

captures the information that correspond to many run filter set-

tings simultaneously. In a sense, the best filter is selected based

on database matching, which makes the new method easier to

tune, and allows it to be more adaptive to data with different

characteristics without much user intervention.

In LC/MS data, each metabolite may generate multiple peaks

because of different isotopes and ion forms. If utilized, they will

allow the borrowing of information between EICs to help make

better decision (Kuhl et al., 2012). However, because the detec-

tion of different ion forms of a low abundance peak is difficult,

we did not use such information in this study. This is a subject of

future research.
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