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Abstract

Non-convex sparsity-inducing penalties have recently received considerable attentions in sparse 

learning. Recent theoretical investigations have demonstrated their superiority over the convex 

counterparts in several sparse learning settings. However, solving the non-convex optimization 

problems associated with non-convex penalties remains a big challenge. A commonly used 

approach is the Multi-Stage (MS) convex relaxation (or DC programming), which relaxes the 

original non-convex problem to a sequence of convex problems. This approach is usually not very 

practical for large-scale problems because its computational cost is a multiple of solving a single 

convex problem. In this paper, we propose a General Iterative Shrinkage and Thresholding (GIST) 

algorithm to solve the nonconvex optimization problem for a large class of non-convex penalties. 

The GIST algorithm iteratively solves a proximal operator problem, which in turn has a closed-

form solution for many commonly used penalties. At each outer iteration of the algorithm, we use 

a line search initialized by the Barzilai-Borwein (BB) rule that allows finding an appropriate step 

size quickly. The paper also presents a detailed convergence analysis of the GIST algorithm. The 

efficiency of the proposed algorithm is demonstrated by extensive experiments on large-scale data 

sets.
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1. Introduction

Learning sparse representations has important applications in many areas of science and 

engineering. The use of an l0-norm regularizer leads to a sparse solution, however the l0-

norm regularized optimization problem is challenging to solve, due to the discontinuity and 

non-convexity of the l0-norm regularizer. The l1-norm regularizer, a continuous and convex 

surrogate, has been studied extensively in the literature (Tibshirani, 1996; Efron et al., 2004) 

and has been applied successfully to many applications including signal/image processing, 

biomedical informatics and computer vision (Shevade & Keerthi, 2003; Wright et al., 2008; 

Beck & Teboulle, 2009; Wright et al., 2009; Ye & Liu, 2012). Although the l1-norm based 

sparse learning formulations have achieved great success, they have been shown to be 

suboptimal in many cases (Candes et al., 2008; Zhang, 2010b; 2012), since the l1-norm is a 

loose approximation of the l0-norm and often leads to an over-penalized problem. To address 

this issue, many non-convex regularizers, interpolated between the l0-norm and the l1-norm, 

have been proposed to better approximate the l0-norm. They include lq-norm (0 < q < 1) 

(Foucart & Lai, 2009), Smoothly Clipped Absolute Deviation (SCAD) (Fan & Li, 2001), 

Log-Sum Penalty (LSP) (Candes et al., 2008), Minimax Concave Penalty (MCP) (Zhang, 

2010a), Geman Penalty (GP) (Geman & Yang, 1995; Trzasko & Manduca, 2009) and 

Capped-l1 penalty (Zhang, 2010b; 2012; Gong et al., 2012a).

Although the non-convex regularizers (penalties) are appealing in sparse learning, it is 

challenging to solve the corresponding non-convex optimization problems. In this paper, we 

propose a General Iterative Shrinkage and Thresholding (GIST) algorithm for a large class 

of non-convex penalties. The key step of the proposed algorithm is to compute a proximal 

operator, which has a closed-form solution for many commonly used non-convex penalties. 

In our algorithm, we adopt the Barzilai-Borwein (BB) rule (Barzilai & Borwein, 1988) to 

initialize the line search step size at each iteration, which greatly accelerates the convergence 

speed. We also use a non-monotone line search criterion to further speed up the convergence 

of the algorithm. In addition, we present a detailed convergence analysis for the proposed 

algorithm. Extensive experiments on large-scale real-world data sets demonstrate the 

efficiency of the proposed algorithm.

2. The Proposed Algorithm: GIST

2.1. General Problems

—We consider solving the following general problem:

min
w ∈ ℝd {f(w) = l(w) + r(w)} . (1)

We make the following assumptions on the above formulation throughout the paper:

A1 l(w) is continuously differentiable with Lipschitz continuous gradient, that is, 

there exists a positive constant β(l) such that

‖∇l(w) − ∇l(u)‖ ≤ β(l)‖w − u‖, ∀w, u ∈ ℝd .
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(A2) r(w) is a continuous function which is possibly non-smooth and non-convex, and 

can be rewritten as the difference of two convex functions, that is,

r(w) = r1(w) − r2(w),

where r1(w) and r2(w) are convex functions.

(A3) f(w) is bounded from below.

Remark 1: We say that w★ is a critical point of problem (1), if the following holds (Toland, 

1979; Wright et al., 2009):

0 ∈ ∇l(w★) + ∂r1(w★) − ∂r2(w★),

where ∂r1(w★) is the sub-differential of the function r1(w) at w = w★, that is,

∂r1(w★) = {s:r1(w) ≥ r1(w★) + 〈s, w − w★〉, ∀w ∈ ℝd} .

We should mention that the sub-differential is nonempty on any convex function; this is why 

we make the assumption that r(w) can be rewritten as the difference of two convex functions.

2.2. Some Examples

Many formulations in machine learning satisfy the assumptions above. The following least 

square and logistic loss functions are two commonly used ones which satisfy assumption 

A1:

l(w) = 1
2n‖Xw − y‖2or1

n ∑
i = 1

n
log (1 + exp ( − yixiTw)),

where X = [x1
T ; ⋯; xnT ] ∈ ℝn × d is a data matrix and y = [y1, · · ·, yn]T ∈ ℝn is a target vector. 

The regularizers (penalties) which satisfy the assumption A2 are presented in Table 1. They 

are non-convex (except the l1-norm) and extensively used in sparse learning. The functions 

l(w) and r(w) mentioned above are nonnegative. Hence, f is bounded from below and 

satisfies assumption A3.

2.3. Algorithm

Our proposed General Iterative Shrinkage and Thresholding (GIST) algorithm solves 

problem (1) by generating a sequence {w(k)} via:

w(k + 1) = arg min
w

l(w(k)) + 〈∇l(w(k)), w − w(k)〉 + t(k)

2 ‖w − w(k)‖2 + r(w), (2)
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In fact, problem (2) is equivalent to the following proximal operator problem:

w(k + 1) = arg min
w

1
2‖w − u(k)‖2 + 1

t(k)r(w),

where u(k) = w(k) − ∇l(w(k))/t(k). Thus, in GIST we first perform a gradient descent along the 

direction −∇l(w(k)) with step size 1/t(k) and then solve a proximal operator problem. For all 

the regularizers listed in Table 1, problem (2) has a closed-form solution (details are 

provided in the Appendix), although it may be a non-convex problem. For example, for the 

l1 and Capped l1 regularizers, we have closed-form solutions as follows:

ℓ1:wi
(k + 1) = sign(ui

(k)) max 0, ∣ ui
(k) ∣ − λ/t(k) ,

Capped ℓ1:wi
(k + 1) =

x1, if ℎi(x1) ≤ ℎi(x2),
x2, otherwise,

where x1 = sign(ui
(k)) max ( ∣ ui

(k) ∣ , θ), x2 = sign(ui
(k)) min (θ, [ ∣ ui

(k) ∣ − λ/t(k)]+) and 

ℎi(x) = 0.5(x − ui
(k))2 + λ/t(k) min ( ∣ x ∣ , θ). The detailed procedure of the GIST algorithm is 

presented in Algorithm 1. There are two issues that remain to be addressed: how to initialize 

t(k) (in Line 4) and how to select a line search criterion (in Line 8) at each outer iteration.

2.3.1. The Step Size Initialization: 1/t(k)—Intuitively, a good step size initialization 

strategy at each outer iteration can greatly reduce the line search cost (Lines 5–8) and hence 

is critical for the fast convergence of the algorithm. In this paper, we propose to initialize the 

step size by adopting the Barzilai-Borwein (BB) rule (Barzilai & Borwein, 1988), which 

uses a diagonal matrix t(k)I to approximate the Hessian matrix ∇2l(w) at w = w(k). Denote

x(k) = w(k) − w(k − 1), y(k) = ∇l(w(k)) − ∇l(w(k − 1)) .

Then t(k) is initialized at the outer iteration k as

t(k) = arg min
t

‖tx(k) − y(k)‖2 = 〈x(k), y(k)〉
〈x(k), x(k)〉

.

2.3.2. Line Search Criterion—One natural and commonly used line search criterion is to 

require that the objective function value is monotonically decreasing. More specifically, we 

propose to accept the step size 1/t(k) at the outer iteration k if the following monotone line 

search criterion is satisfied:

f(w(k + 1)) ≤ f(w(k)) − σ
2 t(k)‖w(k + 1) − w(k)‖2, (3)

where σ is a constant in the interval (0, 1).

Gong et al. Page 4

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2014 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A variant of the monotone criterion in Eq. (3) is a non-monotone line search criterion 

(Grippo et al., 1986; Grippo & Sciandrone, 2002; Wright et al., 2009). It possibly accepts 

the step size 1/t(k) even if w(k+1) yields a larger objective function value than w(k). 

Specifically, we propose to accept the step size 1/t(k), if w(k+1) makes the objective function 

value smaller than the maximum over previous m (m > 1) iterations, that is,

f(w(k + 1)) ≤ max
i = max (0, k − m + 1), ⋯, k

f(w(i)) − σ
2 t(k)‖w(k + 1) − w(k)‖2, (4)

where σ ∈ (0, 1).

2.3.3. Convergence Analysis—Inspired by Wright et al. (2009); Lu (2012a), we present 

detailed convergence analysis under both monotone and non-monotone line search criteria. 

We first present a lemma which guarantees that the monotone line search criterion in Eq. (3) 

is satisfied. This is a basic support for the convergence of Algorithm 1.

Lemma 1: Let the assumptions A1–A3 hold and the constant σ ∈ (0, 1) be given. Then for 

any integer k ≥ 0, the monotone line search criterion in Eq. (3) is satisfied whenever t(k) ≥ 

β(l)/(1 − σ).

Proof: Since w(k+1) is a minimizer of problem (2), we have

〈∇l(w(k)), w(k + 1) − w(k)〉 + t(k)

2 ‖w(k + 1) − w(k)‖2 + r(w(k + 1)) ≤ r(w(k)) . (5)

It follows from assumption A1 that

l(w(k + 1)) ≤ l(w(k)) + 〈∇l(w(k)), w(k + 1) − w(k)〉 + β(l)
2 ‖w(k + 1) − w(k)‖2 . (6)

Combining Eq. (5) and Eq. (6), we have

l(w(k + 1)) + r(w(k + 1)) ≤ l(w(k)) + r(w(k)) − t(k) − β(l)
2 ‖w(k + 1) − w(k)‖2 .

It follows that

f(w(k + 1)) ≤ f(w(k)) − t(k) − β(l)
2 ‖w(k + 1) − w(k)‖2 .

Therefore, the line search criterion in Eq. (3) is satisfied whenever (t(k) − β(l))/2 ≥ σt(k)/2, 

i.e., t(k) ≥ β(l)/(1 − σ). This completes the proof the lemma.

Next, we summarize the boundedness of t(k) in the following lemma.
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Lemma 2: For any k ≥ 0, t(k) is bounded under the monotone line search criterion in Eq. (3).

Proof: It is trivial to show that t(k) is bounded from below, since t(k) ≥ tmin (tmin is defined in 

Algorithm 1). Next we prove that t(k) is bounded from above by contradiction. Assume that 

there exists a k ≥ 0, such that t(k) is unbounded from above. Without loss of generality, we 

assume that t(k) increases monotonically to +∞ and t(k) ≥ ηβ(l)/(1 − σ). Thus, the value t = 

t(k)/η ≥ β(l)/(1 − σ) must have been tried at iteration k and does not satisfy the line search 

criterion in Eq. (3). But Lemma 1 states that t = t(k)/η ≥ β(l)/(1 − σ) is guaranteed to satisfy 

the line search criterion in Eq. (3). This leads to a contradiction. Thus, t(k) is bounded from 

above.

Remark 2: We note that if Eq. (3) holds, Eq. (4) is guaranteed to be satisfied. Thus, the 

same conclusions in Lemma 1 and Lemma 2 also hold under the the non-monotone line 

search criterion in Eq. (4).

Based on Lemma 1 and Lemma 2, we present our convergence result in the following 

theorem.

Theorem 1: Let the assumptions A1–A3 hold and the monotone line search criterion in Eq. 

(3) be satisfied. Then all limit points of the sequence {w(k)} generated by Algorithm 1 are 

critical points of problem (1).

Proof: Based on Lemma 1, the monotone line search criterion in Eq. (3) is satisfied and 

hence

f(w(k + 1)) ≤ f(w(k)), ∀k ≥ 0,

which implies that the sequence f(w(k))k=0,1,··· is monotonically decreasing. Let w★ be a 

limit point of the sequence {w(k) }, that is, there exists a subsequence  such that

limk ∈ K ∞ w(k) = w★ .

Since f is bounded from below, together with the fact that {f(w(k))} is monotonically 

decreasing, limk→∞f(w(k)) exists. Observing that f is continuous, we have

limk ∞ f(w(k)) = limk ∈ K ∞ f(w(k)) = f(w★) .

Taking limits on both sides of Eq. (3) with k ∈ , we have

limk ∈ K ∞ ‖w(k + 1) − w(k)‖ = 0. (7)
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Considering that the minimizer w(k+1) is also a critical point of problem (2) and r(w) = r1(w) 

− r2(w), we have

0 ∈ ∇l(w(k)) + t(k)(w(k + 1) − w(k)) + ∂r1(w(k + 1)) − ∂r2(w(k + 1)) .

Taking limits on both sides of the above equation with k ∈ , by considering the semi-

continuity of ∂r1(·) and ∂r2(·), the boundedness of t(k) (based on Lemma 2) and Eq. (7), we 

obtain

0 ∈ ∇l(w★) + ∂r1(w★) − ∂r2(w★),

Therefore, w★ is a critical point of problem (1). This completes the proof of Theorem 1.

Based on Eq. (7), we know that limk∈ →∞ ||w(k+1) − w(k)||2 = 0 is a necessary optimality 

condition of Algorithm 1. Thus, ||w(k+1) − w(k)||2 is a quantity to measure the convergence of 

the sequence {w(k)} to a critical point. We present the convergence rate in terms of ||w(k+1) − 

w(k)||2 in the following theorem.

Theorem 2: Let {w(k)} be the sequence generated by Algorithm 1 with the monotone line 

search criterion in Eq. (3) satisfied. Then for every n ≥ 1, we have

min0 ≤ k ≤ n ‖w(k + 1) − w(k)‖2 ≤ 2(f(w(0)) − f(w★))
nσtmin

,

where w★ is a limit point of the sequence {w(k)}.

Proof: Based on Eq. (3) with t(k) ≥ tmin, we have

σtmin
2 ‖w(k + 1) − w(k)‖2 ≤ f(w(k)) − f(w(k + 1)) .

Summing the above inequality over k = 0, · · ·, n, we obtain

σtmin
2 ∑

k = 0

n
‖w(k + 1) − w(k)‖2 ≤ f(w(0)) − f(w(n + 1)),

which implies that
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min0 ≤ k ≤ n ‖w(k + 1) − w(k)‖2 ≤ 2(f(w(0)) − f(w(n + 1)))
nσtmin

≤ 2(f(w(0)) − f(w★))
nσtmin

.

This completes the proof of the theorem.

Under the non-monotone line search criterion in Eq. (4), we have a similar convergence 

result in the following theorem (the proof uses an extension of argument for Theorem 1 and 

is omitted).

Theorem 3: Let the assumptions A1–A3 hold and the non-monotone line search criterion in 

Eq. (4) be satisfied. Then all limit points of the sequence {w(k) } generated by Algorithm 1 

are critical points of problem (1).

Note that Theorem 1/Theorem 3 makes sense only if {w(k)} has limit points. By considering 

one more mild assumption:

A4 f(w) + ∞ when ‖w‖ + ∞,

we summarize the existence of limit points in the following theorem (the proof 

is omitted):

Theorem 4: Let the assumptions A1–A4 hold and the monotone/non-monotone line search 

criterion in Eq. (3)/Eq. (4) be satisfied. Then the sequence {w(k)} generated by Algorithm 1 

has at least one limit point.

2.3.4. Discussions—Observe that l(w(k)) + 〈∇l(w(k)), w − w(k)〉 + t(k)
2 ‖w − w(k)‖2 can be 

viewed as an approximation of l(w) at w = w(k). The GIST algorithm minimizes an 

approximate surrogate instead of the objective function in problem (1) at each outer 

iteration. We further observe that if t(k) ≥ β(l)/(1 − σ) > β(l) [the sufficient condition of Eq. 

(3)], we obtain

l(w) ≤ l(w(k)) + 〈∇l(w(k)), w − w(k)〉 + t(k)
2 ‖w − w(k)‖2, ∀w ∈ ℝd .

It follows that

f(w) = l(w) + r(w) ≤ M(w, w(k)), ∀w ∈ ℝd,

where M(w, w(k)) denotes the objective function of problem (2). We can easily show that

f(w(k)) = M(w(k), w(k)) .
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Thus, the GIST algorithm is equivalent to solving a sequence of minimization problems:

w(k + 1) = arg min
w

M(w, w(k)), k = 0, 1, 2, ⋯

and can be interpreted as the well-known Majorization and Minimization (MM) technique 

(Hunter & Lange, 2000).

Note that we focus on the vector case in this paper and the proposed GIST algorithm can be 

easily extended to the matrix case.

3. Related Work

In this section, we discuss some related algorithms. One commonly used approach to solve 

problem (1) is the Multi-Stage (MS) convex relaxation (or CCCP, or DC programming) 

(Zhang, 2010b; Yuille & Rangarajan, 2003; Gasso et al., 2009). It equivalently rewrites 

problem (1) as

min
w ∈ ℝd f1(w) − f2(w),

where f1(w) and f2(w) are both convex functions. The MS algorithm solves problem (1) by 

generating a sequence {w(k)} as

w(k + 1) = arg min
w ∈ ℝd

f1(w) − f2(w(k)) − 〈s2(w(k)), w − w(k)〉,
(8)

where s2(w(k)) denotes a sub-gradient of f2(w) at w = w(k). Obviously, the objective function 

in problem (8) is convex. The MS algorithm involves solving a sequence of convex 

optimization problems as in problem (8). In general, there is no closed-form solution to 

problem (8) and the computational cost of the MS algorithm is k times that of solving 

problem (8), where k is the number of outer iterations. This is computationally expensive 

especially for large scale problems.

A class of related algorithms called iterative shrinkage and thresholding (IST), which are 

also known as different names such as fixed point iteration and forward-backward splitting 

(Daubechies et al., 2004; Combettes & Wajs, 2005; Hale et al., 2007; Beck & Teboulle, 

2009; Wright et al., 2009; Liu et al., 2009), have been extensively applied to solve problem 

(1). The key step is by generating a sequence {w(k)} via solving problem (2). However, they 

require that the regularizer r(w) is convex and some of them even require that both l(w) and 

r(w) are convex. Our proposed GIST algorithm is a more general framework, which can deal 

with a wider range of problems including both convex and non-convex cases.

Another related algorithm called a Variant of Iterative Reweighted Lα (VIRL) is recently 

proposed to solve the following optimization problem (Lu, 2012a):
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min
w ∈ ℝd f(w) = l(w) + λ ∑

i = 1

d
( ∣ wi ∣ α + εi)

q/α ,

where α ≥ 1, 0 < q < 1, εi > 0. VIRL solves the above problem by generating a sequence 

{w(k)} as

w(k + 1) = arg min
w ∈ ℝd

l(w(k)) + (∇l(w(k)), w − w(k)) + t(k)
2 ‖w − w(k)‖2

+ λq
α ∑

i = 1

d
( ∣ wik ∣ α + εi)

q/α − 1
∣ wi ∣ α .

In VIRL, t(k−1) is chosen as the initialization of t(k). The line search step in VIRL finds the 

smallest integer l with t(k) = t(k−1)ηl (η > 1) such that

f(w(k + 1)) ≤ f(w(k)) − σ
2 ‖w(k + 1) − w(k)‖2(σ > 0) .

The most related algorithm to our propose GIST is the Sequential Convex Programming 

(SCP) proposed by Lu (2012b). SCP solves problem (1) by generating a sequence {w(k)} as

w(k + 1) = arg min
w ∈ ℝd

l(w(k)) + 〈∇l(wk), w − w(k)〉 + t(k)
2 ‖w − w(k)‖2 + r1(w) − r2(w(k)) − 〈s2, w − w(k)〉,

where s2 is a sub-gradient of r2(w) at w = w(k). Our algorithm differs from SCP in that the 

original regularizer r(w) = r1(w) − r2(w) is used in the proximal operator in problem (2), 

while r1(w) minus a locally linear approximation for r2(w) is adopted in SCP. We will show 

in the experiments that our proposed GIST algorithm is more efficient than SCP.

4. Experiments

4.1. Experimental Setup

We evaluate our GIST algorithm by considering the Capped l1 regularized logistic regression 

problem, that is l(w) = 1
n ∑i = 1

n log (1 + exp ( − yixiTw)) and r(w) = λ∑i = 1
d min ( ∣ wi ∣ , θ). We 

compare our GIST algorithm with the Multi-Stage (MS) algorithm and the SCP algorithm in 

different settings using twelve data sets summarized in Table 2. These data sets are high 

dimensional and sparse. Two of them (news20, real-sim)1 have been preprocessed as two-

class data sets (Lin et al., 2008). The other ten2 are multi-class data sets. We transform the 

1http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
2http://www.shi-zhong.com/software/docdata.zip

Gong et al. Page 10

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2014 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.shi-zhong.com/software/docdata.zip


multi-class data sets into two-class by labeling the first half of all classes as positive class, 

and the remaining classes as the negative class.

All algorithms are implemented in Matlab and executed on an Intel(R) Core(TM)2 Quad 

CPU (Q6600 @2.4GHz) with 8GB memory. We set σ = 10−5, m = 5, η = 2, 1/tmin = tmax = 

1030 and choose the starting points w(0) of all algorithms as zero vectors. We terminate all 

algorithms if the relative change of the two consecutive objective function values is less than 

10−5 or the number of iterations exceeds 1000. The Matlab codes of the GIST algorithm are 

available online (Gong et al., 2013).

4.2. Experimental Evaluation and Analysis

We report the objective function value vs. CPU time plots with different parameter settings 

in Figure 1. From these figures, we have the following observations: (1) Both GISTbb-

Monotone and GISTbb-Nonmonotone decrease the objective function value rapidly and they 

always have the fastest convergence speed, which shows that adopting the BB rule to 

initialize t(k) indeed greatly accelerates the convergence speed. Moreover, both GISTbb-

Monotone and GISTbb-Nonmonotone algorithms achieve the smallest objective function 

values. (2) GISTbb-Nonmonotone may give rise to an increasing objective function value 

but finally converges and has a faster overall convergence speed than GISTbb-Monotone in 

most cases, which indicates that the non-monotone line search criterion can further 

accelerate the convergence speed. (3) SCPbb-Nonmonotone is comparable to GISTbb-

Nonmonotone in several cases, however, it converges much slower and achieves much larger 

objective function values than those of GISTbb-Nonmonotone in the remaining cases. This 

demonstrates the superiority of using the original regularizer r(w) = r1(w) − r2(w) in the 

proximal operator in problem (2). (4) GIST-1 has a faster convergence speed than GIST-t(k
−1) in most cases, which demonstrates that it is a bad strategy to use t(k−1) to initialize t(k). 

This is because {t(k)} increases monotonically in this way, making the step size 1/t(k) 

monotonically decreasing when the algorithm proceeds.

5. Conclusions

We propose an efficient iterative shrinkage and thresholding algorithm to solve a general 

class of non-convex optimization problems encountered in sparse learning. A critical step of 

the proposed algorithm is the computation of a proximal operator, which has a closed-form 

solution for many commonly used formulations. We propose to initialize the step size at 

each iteration using the BB rule and employ both monotone and non-monotone criteria as 

line search conditions, which greatly accelerate the convergence speed. Moreover, we 

provide a detailed convergence analysis of the proposed algorithm, showing that the 

algorithm converges under both monotone and non-monotone line search criteria. 

Experiments results on large-scale data sets demonstrate the fast convergence of the 

proposed algorithm.

In our future work, we will focus on analyzing the theoretical performance (e.g., prediction 

error bound, parameter estimation error bound etc.) of the solution obtained by the GIST 

algorithm. In addition, we plan to apply the proposed algorithm to solve the multitask 

feature learning problem (Gong et al., 2012a;b).
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Appendix: Solutions to Problem (2)

Observe that r(w) = ∑i = 1
d ri(wi) and problem (2) can be equivalently decomposed into d 

independent univariate optimization problems:

wi
(k + 1) = arg min

wi
ℎi(wi) = 1

2 wi − ui
(k) 2

+ 1
t(k)ri(wi),

where i = 1, · · ·, d and ui
(k) is the i-th entry of u(k) = w(k) − ∇l(w(k))/t(k). To simplify the 

notations, we unclutter the above equation by removing the subscripts and supscripts as 

follows:

w(k + 1) = arg min
w

ℎi(w) = 1
2(w − u)2 + 1

t ri(w) . (9)

• l1-norm: w(k+1) = sign(u) max (0, |u| − λ/t).

• LSP: We can obtain an optimal solution of problem (9) via: w(k+1) = sign(u)x, 

where x is an optimal solution of the following problem:

x = arg min
w

1
2(w − ∣ u ∣ )2 + λ

t log (1 + w/θ) s . t . w ≥ 0.

Noting that the objective function above is differentiable in the interval [0, +∞) 

and the minimum of the above problem is either a stationary point (the first 

derivative is zero) or an endpoint of the feasible region, we have

x = arg min
w ∈ C

1
2(w − ∣ u ∣ )2 + λ

t log (1 + w/θ),
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where  is a set composed of 3 elements or 1 element. If t2(|u| − θ)2 − 4t(λ − t|u|

θ) ≥ 0,

C = 0,

t( ∣ u ∣ − 0) + t2( ∣ u ∣ − θ)2 − 4t(λ − t ∣ u ∣ θ)
2t

+

t( ∣ u ∣ − θ) − t2( ∣ u ∣ − θ)2 − 4t(λ − t ∣ u ∣ θ)
2t

+

· Otherwise, C = 0}

.

Otherwise,  = {0}.

• SCAD: We can recast problem (9) into the following three problems:

x1 = arg min
w

1
2(w − u)2 + λ

t ∣ w ∣ s . t . ∣ w ∣ ≤ λ,

x2 = arg min
w

1
2(w − u)2 + −w2 + 2θ(λ/t) ∣ w ∣ − (λ/t)2

2(θ − 1) s . t . λ ≤ ∣ w ∣ ≤ θλ,

x3 = arg min
w

1
2(w − u)2 + (θ + 1)λ2

2t2
s . t . ∣ w ∣ ≥ θλ .

We can easily obtain that (x2 is obtained using the similar idea as LSP by 

considering that θ > 2):

x1 = sign(u) min (λ, max (0, ∣ u ∣ − λ/t)),

x2 = sign(u) min (θλ, max (λ, t ∣ u ∣ (θ − 1) − θλ
t(θ − 2) )),

x3 = sign(u) max (θλ, ∣ u ∣ ) .

Thus, we have

w(k + 1) = arg min
y

ℎi(y) s . t . y ∈ {x1, x2, x3} .

• MCP: Similar to SCAD, we can recast problem (9) into the following two 

problems:

x1 = arg min
w

1
2(w − u)2 + λ

t ∣ w ∣ − w2
2θ s . t . ∣ w ∣ ≤ θλ,

x2 = arg min
w

1
2(w − u)2 + θ(λ/t)2

2 s . t . ∣ w ∣ ≥ θλ .

We can easily obtain that

x1 = sign(u)z, x2 = sign(u) max (θλ, ∣ u ∣ ),
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where z = arg minw ∈ C
1
2(w − ∣ u ∣ )2 + λ

t w − w2
2θ ; C

= 0, θλ, min θλ, max 0, θ(t ∣ u ∣ − λ)
t(θ − 1)

, if θ−1 ≠ 0, and  = {0,θλ} 

otherwise. Thus, we have

w(k + 1) =
x1, if ℎi(x1) ≤ ℎi(x2)
x2, otherwise.

• Capped l1: We can recast problem (9) into the following two problems:

x1 = arg min
w

1
2(w − u)2 + λ

t θ s . t . ∣ w ∣ ≥ θ,

x2 = arg min
w

1
2(w − u)2 + λ

t ∣ w ∣ s . t . ∣ w ∣ ≤ θ .

We can easily obtain that

x1 = sign(u) max (θ, ∣ u ∣ ),
x2 = sign(u) min (θ, max (0, ∣ u ∣ − λ/t)) .

Thus, we have

w(k + 1) =
x1, if ℎi(x1) ≤ ℎi(x2),
x2, otherwise.
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Figure 1. 
Objective function value vs. CPU time plots. MS-Nesterov/MS-SpaRSA: The Multi-Stage 

algorithm using the Nesterov/SpaRSA method to solve problem (8); GIST-1/GIST-t(k−1)/

GISTbb-Monotone/GISTbb-Nonmonotone: The GIST algorithm using 1/t(k−1)/BB rule/BB 

rule to initialize t(k) and Eq. (3)/Eq. (3)/Eq. (3)/Eq. (4) as the line search criterion; SCPbb-

Nonmonotone: The SCP algorithm using the BB rule to initialize t(k) and Eq. (4) as the line 

search criterion. Note that on data sets ‘hitech’ and ‘real-sim’, MS algorithms stop early (the 

SCP algorithm has similar behaviors on data sets ‘hitech’ and ‘news20’), because they 

satisfy the termination condition that the relative change of the two consecutive objective 

function values is less than 10−5. However, their objective function values are much larger 

than those of GISTbb-Monotone and GISTbb-Nonmonotone.
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Table 1

Examples of regularizers (penalties) r(w) satisfying the assumption A2 and the corresponding convex 

functions r1(w) and r2(w). λ > 0 is the regularization parameter; r(w) = Σi ri(wi), r1(w) = Σi r1,i(wi), r2(w) = Σi 

r2,i(wi), [x]+ = max(0, x).

Name ri (wi) r1,i(wi) r2,i(wi)

l1-norm λ|wi| λ|wi| 0

LSP λ log(1 + |wi|/θ) (θ > 0) λ|wi| λ (|wi| − log(1 + |wi|/θ))

SCAD

λ∫0
∣ wi ∣ min 1,

[θλ − x]+
(θ − 1)λ dx (θ > 2)

=

λ ∣ wi ∣ , if ∣ wi ∣ ≤ λ,

−wi2 + 2θλ ∣ wi ∣ − λ2

2(θ − 1) , if λ < ∣ wi ∣ ≤ θλ,

(θ + 1)λ2/2, if ∣ wi ∣ > θλ .

λ|wi|

λ∫0
∣ wi ∣ [ min (θλ, x) − λ] +

(θ − 1)λ dx

=

0, if ∣ wi ∣ ≤ λ,

wi2 − 2λ ∣ wi + λ2 ∣
2(θ − 1) , if λ < ∣ wi ∣ θλ,

λ ∣ wi ∣ − (θ + 1)λ2
2 , if ∣ wi ∣ > θλ .

MCP

λ∫0
∣ wi ∣ [1 − x

θλ ]+dx (θ > 0)

=
λ ∣ wi ∣ − wi2/(2θ), if ∣ wi ∣ ≤ θλ,

θλ2/2, if ∣ wi ∣ > θλ .

λ|wi|

λ∫0
∣ wi ∣ min (1, x/(θλ))dx

=
wi2/(2θ), if ∣ wi ∣ ≤ θλ,

λ ∣ wi ∣ − θλ2/2, if ∣ wi ∣ > θλ .

Capped l1 λ min(|wi|, θ) (θ > 0) λ|wi| λ [|wi |− θ]+
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Algorithm 1

GIST: General Iterative Shrinkage and Thresholding Algorithm

1: Choose parameters η > 1 and tmin, tmax with 0 < tmin < tmax;

2: Initialize iteration counter k ← 0 and a bounded starting point w(0);

3: repeat

4:  t(k) ∈ [tmin, tmax];

5:  repeat

6:

   w(k + 1) arg minw l(w(k)) + 〈∇l(w(k)), w − w(k)〉 + t(k)
2 ‖w − w(k)‖2 + r(w);

7:   t(k) ← ηt(k);

8:  until some line search criterion is satisfied

9:  k ← k + 1

10: until some stopping criterion is satisfied
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