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Synopsis Supply and demand relationships govern survival of animals in the wild and are also key determinants of

clinical outcomes in critically ill patients. Most animals’ survival strategies focus on the supply side of the equation by

pursuing territory and resources, but hibernators are able to anticipate declining availability of nutrients by reducing their

energetic needs through the seasonal use of torpor, a reversible state of suppressed metabolic demand and decreased body

temperature. Similarly, in clinical medicine the majority of therapeutic interventions to care for critically ill or trauma

patients remain focused on elevating physiologic supply above critical thresholds by increasing the main determinants of

delivery of oxygen to the tissues (cardiac output, perfusion pressure, hemoglobin concentrations, and oxygen saturation),

as well as increasing nutritional support, maintaining euthermia, and other general supportive measures. Techniques,

such as induced hypothermia and preconditioning, aimed at diminishing a patient’s physiologic requirements as a short-

term strategy to match reduced supply and to stabilize their condition, are few and underutilized in clinical settings.

Consequently, comparative approaches to understand the mechanistic adaptations that suppress metabolic demand and

alter metabolic use of fuel as well as the application of concepts gleaned from studies of hibernation, to the care of

critically ill and injured patients could create novel opportunities to improve outcomes in intensive care and perioperative

medicine.

Supply-demand balance is critical to
survival

Hibernation is an evolved strategy that conserves

energy seasonally and confers a significant survival

advantage to individuals among select but diverse

mammalian lineages when faced with environmental

austerity or uncertainty. Animals exposed to ex-

treme environmental conditions that challenge

the abilities of their metabolic systems to produce

energy are forced to choose one of two options:

either procure more resources or require fewer

of them. While many mammals have achieved bio-

logical success by consuming more food, defending

larger territories, hoarding, or migrating, others

have adapted to energy stress by using torpor

to decrease metabolic utilization of fuel, thereby

surviving for extended periods only on endogenous

or stored energy. Torpor can occur daily or,

in hibernation, extend over days to weeks

through a highly regulated and systemic reduction

in metabolic heat production and thus a lower

need for energy and nutrients. As a byproduct

of these responses, the animal temporarily converts

from a homeothermic to a heterothermic pattern of

body temperature.

Similar to this evolved adaptive strategy that

matches physiological demand to limited resources

and energy-stress (Staples and Buck 2009), a funda-

mental principle in the care of critically ill and peri-

operative patients is the maintenance of a careful

balance between metabolic supply and demand.

Heart failure, sepsis, severe trauma and hemorrhagic

shock, ischemia-reperfusion injury, and preservation

of organs for transplant are common clinical exam-

ples in which the supply of oxygen and meta-

bolic fuels to tissues is unable to meet energetic

demands. Critically ill patients are dependent on a

narrow supply-demand margin for survival, and cur-

rently available medical techniques aim, for the most

part, to expand this margin by increasing supply
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rather than by lowering demand. The current

medical armamentarium is replete with drugs

and techniques designed to increase blood pres-

sure, cardiac output, and delivery of oxygen and

substrate, in an effort to restore homeostasis at

basal, or often elevated, metabolic rates characteristic

of acute critical illness; yet very few are aimed at

inducing a hypometabolic state as a strategy for

reinstating temporary equilibrium. This emphasis

on restoration reflects in part the classical explana-

tion of metabolic regulatory mechanisms only

in terms of supply while placing little empha-

sis on demand (Hofmeyr and Cornish-Bowden

2000; Oliver 2002). There are some exceptions

described below.

Long-term, definitive therapeutic solutions clearly

require a careful tuning and restoration of supply to

match normal demand in order to facilitate healing

processes. However, in the setting of acute injury,

cardiovascular failure, and stroke, or as critical illness

progresses, manipulating the body’s ability to reduce

metabolic demand represents an attractive strategy

for expanding the window of protection and for pro-

viding the time required for recovery of organ

function.

Natural adaptations to reduce
metabolic rate

Depression of metabolic rate as a primary conserva-

tion strategy during torpor is known to combine

specific changes in baseline physiology (reduced

heart and respiratory rates, digestion, renal function,

and the movement of muscles) with global biochem-

ical adaptations (selective suppression of non-critical

cellular functions), but remains incompletely under-

stood at a cellular and molecular level (Storey and

Storey 2004). Proposed critical regulatory control

mechanisms that are involved in lowering the rate

of ATP turnover during torpor include: (1) inhibi-

tion of protein synthesis and changes in the assembly

of ribosomes (Frerichs et al. 1998; van Breukelen and

Martin 2001); (2) post-translational modifications of

proteins via phosphorylation (Brooks and Storey

1992), SUMOylation (Lee et al. 2007), and, more

recently, acetylation (Hindle et al. 2014); (3) reduced

activity of ion-motive ATPases and the flux of ions

across membranes (MacDonald and Storey 1999;

Malysheva et al. 2001); (4) mitochondrial proton-

leak (Staples and Brown 2008); (5) increased sensi-

tivity to adenosine receptor agonists (Jinka et al.

2011); and (6) deregulation of circadian clock

proteins (Revel et al. 2007; Malan 2010; Williams

et al. 2012).

Under conditions when metabolic supply is

acutely or chronically reduced to critical levels,

non-hibernating mammals can also invoke protec-

tive phenotypes that share some characteris-

tics with torpor. Although responses to reduced

supply of blood and oxygen have been studied

in many mammalian tissues, intrinsic cardioprotec-

tive phenomena have been most extensively charac-

terized. Following brief, acute sublethal ischemic

episodes, the heart protects itself through a

complex ischemic preconditioning (IPC) response,

which prevents cardiac cell-death during subse-

quent prolonged ischemia (Murry et al. 1986).

Chronic exposure to hypoxia or repetitive acute

exposures to sublethal ischemia can result in an

energy-conserving phenotype of reversible and re-

duced cardiac contractility known as myocardial

hibernation (Camici et al. 2008), perhaps an unfor-

tunate medical use of the term that forever foils

comparative physiologists doing literature searches

on ‘‘hibernation’’.

IPC is observed across numerous species, includ-

ing chickens (Liang and Gross 1999), rats (Li and

Kloner 1993), mice (Sumeray and Yellon 1998),

rabbits (Cohen et al. 1991), dogs (Murry et al.

1986), pigs (Schott et al. 1990), sheep (Burns

et al. 1995), and humans. This intrinsic tolerance

involves an early or ‘‘classic’’ preconditioning last-

ing 1–4 h (Sack et al. 1993), followed by a delayed

‘‘second window of protection’’ that offers less in-

tense protection for a prolonged period of 12–72 h

(Baxter et al. 1997). The efficacy of IPC has ele-

gantly invalidated a previous paradigm of energy

deficiency as the main mechanism leading to cell-

death during ischemia-reperfusion. Rather, precon-

ditioning modifies the consequences of reperfusion

by preserving the survival of cells and affording

protection against post-ischemic contractile dys-

function and ventricular arrhythmias. Like torpor,

IPC is clearly an integrated, whole-organism protec-

tive response, as evidenced by the fact that render-

ing single tissues ischemic results in remote

conditioning and in subsequent protection of

organs not directly affected by the initial ischemia

(Thielmann et al. 2013). Remote IPC occurs via an

as-yet-unknown neurohumoral mechanism, at least

partially mediated by circulating opioids (Patel

et al. 2002). Several endogenous and exogenous ag-

onists of G-protein-coupled receptors trigger IPC,

thereby sharing some signaling pathways also impli-

cated in torpor. Opioids (Liang and Gross 1999),

norepinephrine (Banerjee et al. 1993), and bradyki-

nin (Ebrahim et al. 2001) signal through the

�-opioid, the �1-adrenergic, and the �2-adrenergic
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receptors, respectively, all activating components of

the reperfusion injury salvage kinase (RISK) path-

way and eventually converging on mitochondrial

targets such as KATP channels and the permeability

transition pore (Cohen et al. 2000). Anoxia-tolerant

species like the fresh-water turtle also employ sig-

naling through �-opioid receptors (Pamenter and

Buck 2008) and through downstream activation of

pro-survival kinases such as the extracellular signal-

regulated kinase (Greenway and Storey 2000).

Adenosine signaling offers another intriguing link

between IPC and torpor. While multiple studies

have identified its crucial roles in myocardial adap-

tation to ischemia, recently involving the circadian

rhythm protein Per2 (Eckle et al. 2012), within the

CNS adenosine has also been linked to induction of

torpor in mice (Staples and Buck 2009; Iliff and

Swoap 2012) and of hibernation in ground squirrels

(Jinka et al. 2011). Similarly, 50-adenosine mono-

phosphate (50-AMP)-activated protein kinase, a

well-known sensor and regulator of cellular energy

status, is implicated in IPC leading to cardioprotec-

tion (Young 2008), while at the same time admin-

istration of 50-AMP induces a deep and reversible

hypometabolic state in non-hibernating mammals

(Zhang et al. 2006; Daniels et al. 2010). In contrast

to torpor however, the metabolic phenotype of 50-

AMP-induced hypometabolism is characterized by

minimal alterations in lipid metabolism, with regu-

lation of carbohydrate metabolites playing impor-

tant roles both during the hypometabolic state

and during the following recovery process (Zhao

et al. 2014).

IPC can protect tissue from further ischemia-

reperfusion injury, but it is when myocardial tissue

receives chronically reduced coronary blood flow that

it enters the well-recognized state of impaired resting

contractile function and reduced energy consump-

tion of the heart known as myocardial hibernation

(Camici et al. 2008). Myocardial hibernation can be

partially or completely restored to normal with ther-

apies aimed at improving blood flow such as coro-

nary angioplasty or coronary bypass grafting. Despite

sharing important similarities contributing to protec-

tion against necrosis, hibernating and preconditioned

myocardium differ fundamentally in the expression

of mitochondrial electron-transport-chain proteins,

which are robustly down-regulated in hibernating

hearts (Cabrera et al. 2013). Conversely, increased

expression of uncoupling protein 2 (UCP-2), com-

plex IV (cytochrome c oxidase), and complex V

(ATPase) proteins is seen in heart mitochondria

during late IPC, thereby imparting favorable antiox-

idant effects and a preserved energetic state during

flow-limiting ischemia (Cabrera et al. 2012). This is

part of the mechanistic adaptation for maintaining

myocardial energetics in the setting of reduced avail-

ability of oxygen, potentially as a regulated process

that coordinates matching of supply and demand.

Morphologically, chronic hibernating myocardial

segments show depletion of contractile elements

and disorganization of cytoskeletal proteins

(Vanoverschelde et al. 1997; Frangogiannis et al.

2002a). This depletion and consequent decrease in

metabolic demand allows hibernating myocardium

to further reduce rates of consumption of oxygen

and substrate (Rahimtoola 1996). While initially re-

versible by increasing coronary perfusion, chronically

underperfused hibernating myocardium eventually

loses its ability to reverse the down-regulation of

electron-transport-chain proteins, despite successful

revascularization (Kelly et al. 2011); the hibernating

myocardium also experiences progressive cellular

damage, tissue inflammation associated with fibrosis,

and remodeling, leading to ischemic cardiomyopa-

thy, heart failure, and death (Frangogiannis et al.

2002a, 2002b).

It remains unclear whether the protective states of

myocardial hibernation or IPC resemble mammalian

torpor from a molecular standpoint. It has long been

appreciated that metabolic suppression during torpor

is associated with depressed mitochondrial respiration

rates (state 3) in isolated mitochondria from the liver

of ground squirrels (Martin et al. 1999), and more

recently also confirmed in skeletal and cardiac-muscle

mitochondria (Brown and Staples 2014). While this

could point to a reduction in the expression and

functioning of electron-transport-chain proteins sim-

ilar to that seen in myocardial hibernation, other

studies showed preserved state-3 and state-4 mito-

chondrial respiration both in brain cortex and in

left ventricular myocardium between torpid and

interbout-euthermic phases (Gallagher and Staples

2013). Studies of cDNA libraries from the hearts of

mammalian hibernators revealed a stress-induced

upregulation of mitochodrially encoded subunits of

the respiratory-chain proteins, including subunit 2 of

NADH-ubiquinone oxidoreductase (ND2, complex I)

(Fahlman et al. 2000), cytochrome c oxidase subunit

1 (Cox1, complex IV), and ATP synthase 6/8 (com-

plex V), whereas transcript levels of the nuclear-

encoded subunits Cox4 and ATP synthase alpha did

not change during hibernation (Hittel and Storey

2002). Collectively, these changes in expression

more closely resemble the pattern observed in IPC.

At the metabolic level however, myocardial hiberna-

tion and IPC share characteristics of increased up-

take and utilization of glucose and storage of
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glycogen (Cabrera et al. 2013), whereas hearts from

torpid hibernators display a shift in fuel-use from

carbohydrates and proteins toward fatty acids and

ketones, as will be further discussed in subsequent

sections (Brown and Staples 2014).

Sepsis, dysfunction of multi-organ
systems, depression of metabolic
rate: parallels to torpor

Another intriguing comparative biological insight

can be drawn between the bioenergetic deregulation

and hypometabolic state seen in sepsis-induced dys-

function of organs and natural hibernation. Sepsis is

defined as exaggerated systemic inflammatory re-

sponse syndrome (SIRS) to infection that can prog-

ress to multi-organ dysfunction syndrome (MODS),

including heart failure, acute respiratory distress syn-

drome, liver failure, kidney failure, hypothermia, and

coagulopathy. Although originally thought to repre-

sent the body’s response to microbial products such

as pathogen-associated molecular patterns, it subse-

quently became evident that SIRS and MODS can

occur without an obvious source of infection. The

hosts’ innate immune surveillance systems can also

be activated by endogenous danger signals collec-

tively called damage-associated molecular patterns,

which are released during injury to tissues and can

trigger a robust SIRS response, MODS, and death.

Interestingly, traumatic tissue-injury with release of

mitochondrial products (mitochondrial DNA and

formyl peptides) leads to innate immune activation

and a sepsis-like state. Several unique features char-

acterize sepsis-induced MODS: (1) a disproportion-

ately low degree of cell death (either necrotic or

apoptotic) despite severe clinical and biochemical

dysfunction of organs (Hotchkiss et al. 1999;

Takasu et al. 2013); (2) maintained, or even elevated,

levels of oxygen in tissue within the failed organs

(Boekstegers et al. 1991; Rosser et al. 1995; Dyson

et al. 2011); (3) an overall reduction in oxygen con-

sumption correlating with the degree of severity of

the sepsis (Kreymann et al. 1993); and (4) rapid re-

covery of organ function following resolution of

SIRS. Furthermore, human cells incubated in vitro

in serum from septic patients display a marked de-

pression in mitochondrial respiration (Boulos et al.

2003; Garrabou et al. 2012). This constellation of

manifestations has prompted physician-scientists

like Singer and others who are involved in critical

care to postulate the novel and intriguing paradigm

that MODS could potentially represent an evolution-

arily conserved, adaptive strategy of metabolic shut-

down, akin to hibernation, to reduce requirements

for energy in the face of inflammation-induced mi-

tochondrial dysfunction in sepsis (Singer et al. 2004;

Singer 2013). If this hypothesis is borne out, then

MODS resembles torpor as a strategy to survive lim-

ited resources through adoption of a hypometabolic

state. However, the process can progress to become

maladaptive when sepsis-induced metabolic downre-

gulation and organismal dysfunction become irre-

versible. Investigating the regulation of biological

pathways invoked by natural hibernators during the

adaptive, programmed state of torpor could help

identify the key mechanisms involved in the switch

from reversible to irreversible mitochondrial inhibi-

tion and the dysfunction of organs.

Similarities exist between MODS and torpor with

regard to reduced mitochondrial oxidation. In sepsis-

induced MODS, defective mitochondrial respiration

results in organ failure secondary to bioenergetic im-

pairments, the degree of which correlates with the

severity of MODS (Brealey et al. 2002). The effects

of SIRS on mitochondria are complex and multifac-

torial—including inhibition, damage, and reduced

turnover of mitochondrial protein—and while the

precise mechanisms underlying mitochondrial dys-

function remain unclear, inhibition does correlate

with concentration of nitrite/nitrate. Nitric oxide in-

hibits mitochondrial Complex I activity in vitro, and

the inverse correlation of nitrite/nitrate with mito-

chondrial function suggests that reactive nitrogen

species reduce mitochondrial function, resulting in

decreased utilization of oxygen and substrate in

MODS (Brealey et al. 2002). Furthermore, decreased

expression and function of cytochrome c oxidase

(complex IV) have been observed during sepsis in

multiple organs including the heart (Levy et al.

2004), a result that is corroborated by consumption

of reduced state-3 oxygen during endotoxemia

(Fukumoto et al. 2003; Callahan and Supinski

2005a, 2005b). This inhibition is likely reversible ini-

tially, given that recovery from MODS without overt

damage to organs is well described in sepsis survivors

of sepsis. As mentioned before, several studies have

been performed on isolated mitochondria from hi-

bernators during torpor and activity, and it is gen-

erally accepted that depression of mitochondrial state

3 is observed during mammalian torpor (Martin

et al. 1999; Barger et al. 2003). Reports differ on

whether torpor diminishes state-4 mitochondrial ac-

tivity by directly affecting permeability of membranes

to protons or via inhibition of upstream generation

of substrate; however, it is clear that mitochondrial

function is diminished in torpor, and that the pre-

vailing paradigm is that such reversible inhibition

allows hibernating animals to link their metabolic
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rate to environmental availability of resources.

Nevertheless, in stark contrast to observations in

sepsis, cytochrome oxidase-1’s steady-state levels of

expression (both mRNA and protein) were found to

be upregulated during torpor in arctic squirrels in

multiple tissues including kidney, heart, and brown

fat. Moreover, downregulation of cytochrome oxi-

dase-I transcripts was seen in squirrels that failed

to hibernate (Hittel and Storey 2002).

Unfortunately, this study did not report on cyto-

chrome oxidase activity, which was reduced by

almost 60% in liver mitochondria from hibernating

ground squirrels in an earlier study (Lerner et al.

1972).

In the context of bioenergetic failure, several in-

teresting parallels can be drawn between myocardial

depression during sepsis and that during mammalian

hibernation. While similar reductions in cardiac sys-

tolic performance are observed under the two con-

ditions, in contrast to sepsis there is increased

diastolic relaxation and improved ventricular compli-

ance during hibernation (Nelson et al. 2003). These

functional similarities raise the hypothesis that

sepsis-associated myocardial depression may repre-

sent a prosurvival adaptive change in ventricular

function. Furthermore, striking similarities exist be-

tween the myocardial response to ischemia (myocar-

dial hibernation) and sepsis-associated myocardial

depression (Solomon et al. 1994), including a

number of metabolic alterations, such as upregula-

tion of myocardial-specific glucose transporters

(GLUT1, GLUT4), enhanced glucose uptake and uti-

lization, and increased deposition of glycogen; such

typical features of hibernating myocardium have

been identified in the dysfunctional septic heart

(Levy et al. 2005). A fundamental difference between

myocardial depression during sepsis versus during

ischemia, however, is impairment in the utilization

of oxygen, but not in its supply, as evidenced by

preserved oxygen tension in the dysfunctional

septic heart (Hotchkiss et al. 1991). The evidence is

inconclusive regarding the ATP content in the septic

myocardium, with some studies reporting preserved

ATP levels while others indicating decreased high-

energy phosphates during endotoxemia. Clearly,

preservation of cellular ATP during sepsis does not

equate intact mitochondrial function, as cells adapt

to hypoxia by downregulating energy requirements,

again supporting the notion of a prosurvival re-

sponse similar to that occurring during hibernation

(Budinger et al. 1998). Nevertheless, when injury to

an organ is imminent in the clinical setting, attempts

are made to reduce global metabolic rate using the

limited means available described next.

Clinical strategies to reduce metabolic
rate

Current therapeutic strategies to reduce metabolic

demand in humans fall into three main categories:

(1) therapeutic whole-body cooling after cardiac

arrest, (2) hypothermia during cardiac surgery and

circulatory arrest, and (3) cooling of explanted grafts

intended for transplant.

Therapeutic cooling after cardiac arrest improves

outcomes in patients that have return of spontaneous

circulation without return of consciousness (Bernard

et al. 2002). Patients are cooled to core levels of

32–348C, modest compared with small mammalian

hibernators but comparable to levels in hibernating

bears (Toien et al. 2011). Hypothermia causes a re-

duction in cerebral demand for energy via tempera-

ture-dependent reduction in rates of biochemical

reactions (Q10), as well as by lowering levels of the

excitotoxic neurotransmitter glutamate. Cooling pa-

tients is risky, as humans and other large mammals

are highly susceptible to fatal cardiac arrhythmia at

body temperatures below 248C (Fedorov et al. 2005),

with some patients experiencing adverse effects at

much higher temperatures (Mallet 2002).

Hypothermia is also associated with defects in coag-

ulation and immunity, leading to undesirable out-

comes in victims of sepsis or traumatic injury

(Clemmer et al. 1992; Gentilello et al. 1997).

Evidence about cooling after other forms of acute

ischemic injury such as stroke has remained incon-

clusive to date, but further studies are forthcoming

(Krieger et al. 2001; De Georgia et al. 2004).

Therapeutic cooling is safely and routinely prac-

ticed in cardiac surgery using extracorporeal circu-

lation (cardiopulmonary bypass), with core

temperatures between 288C and 338C (Griepp et al.

1997). Repair of congenital cardiac anomalies and

complex aortic surgery that require periods of circu-

latory arrest, are conducted under deep hypothermia

(14–208C) as the primary means for cerebral protec-

tion (Ziganshin and Elefteriades 2013). However, on-

going concerns of morbidity associated with deep

hypothermic circulatory arrest have prompted the

development of alternative neuroprotective strategies

such as moderate hypothermic (20–288C) circulatory

arrest with adjunctive selective antegrade cerebral

perfusion (Tian et al. 2013). More recently, a new

strategy for resuscitation of victims of lethal hemor-

rhagic shock employing ultraprofound hypothermia

(5108C) and using cardiopulmonary bypass has

been developed, termed emergency preservation and

resuscitation (Alam 2012). Fully understanding how

small hibernators’ hearts can continue to function at
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low temperatures could improve safety and protec-

tion of organs in these physiologically challenging

scenarios (Dobson 2004). Several potential nega-

tive side effects of hypothermia in humans such

as increased risk of coagulopathy and bleeding

(Rajagopalan et al. 2008), fatal thrombosis

(Fanashawe et al. 2001), elevated inflammatory re-

sponse, increased risk of infection, and end-organ

dysfunction (Kourliouros et al. 2010), all seemingly

well-tolerated by hibernators, will need to be over-

come for use of induced hypothermia to become

routine in clinical and emergency settings (Alam

2012).

Preserving organs by rapid cooling (to �48C) for

delayed transplantation is an additional clinical ap-

plication of hypothermia. Procurement of organs

begins by intravascular flushing with ice-cold preser-

vative solution, followed by their transport in an ice

cooler to the recipient. Preservative solutions vary in

composition but share the common goals of buffer-

ing the inevitable acidosis that develops during ische-

mia, slowing the intrusion of sodium and water into

the cell to prevent swelling, chelation of free calcium,

and provision of metabolic substrate for the ischemic

graft (Guibert et al. 2011; Voigt and DeLario 2013)

This has resulted in solutions high in potassium,

buffers, chelators, and osmolality to prevent cellular

swelling. While this technique represents many de-

cades of research and development, flushing and

packing in ice remains a rudimentary approach to

solve an unmet clinical demand. Prolonged cold

static storage of organs for transplantation leads to

tissue damage and dysfunction of the primary graft

(Lima et al. 2006), as well as inferior survival of

long-term grafts (Salahudeen 2004). A technological

improvement of this technique, involving continuous

perfusion of the graft with preservative solution

using a perfusion pump, has been shown to improve

cold-storage time and initial function of the graft

after kidney transplant (Moers et al. 2009), but ap-

plications to other solid organs including ex-vivo

perfusion of the lung have entered clinical practice,

especially driven by the expansion of extended-crite-

ria donors and by donation of organs after cardiac

death (Roman et al. 2013).

All forms of therapeutic cooling operate on the

same unifying principle—hypothermia leads to a re-

duction in metabolic rate—a highly desirable re-

sponse during periods of diminished supply.

However, this cause–effect relationship during clini-

cal ‘‘hypometabothermia’’ is opposite to that natu-

rally employed by hibernating animals that first

actively lower their rates of metabolic heat produc-

tion, which then leads to passive cooling (Heldmaier

et al. 2004; Karpovich et al. 2009; Toien et al. 2011).

Lessons learned from understanding the mechanisms

of temperature-independent suppression of metabo-

lism in hibernators may thus provide a different path

by which critically ill patients could benefit from

enhanced organ protection. This could also facilitate

further development of perfusion of isolated organs

at near normothermia, as well as augment the pro-

tection of organs afforded by evolutionarily con-

served stress-responses such as IPC, which seem to

have limited efficacy in circumstances associated with

organ transplantation, such as brain death and

hypothermia.

Hibernation regulatory molecules

A putative signaling molecule, the hibernation induc-

tion trigger (HIT) has remained a matter of interest

for over three decades (Dawe and Spurrier 1969), as

an opioid-like substance found in the serum of hi-

bernating mammals and hypothesized to initiate hi-

bernation. Initial studies demonstrated that, when

administered to mammals that were not hibernating,

this serum induced a torpor-like hypometabolic state

including a lowering of heart rate, body temperature,

and oxygen consumption even if given to non-hiber-

nator species (Dawe et al. 1970; Myers et al. 1981;

Oeltgen et al. 1982, 1985). Despite efforts by numer-

ous investigators, the precise identity and functions

of HIT remain elusive, and serum-transfusion exper-

iments have proven difficult to replicate (Wang et al.

1988). Although the evidence for opioid induction of

torpor remains inconclusive, opioids do seem impli-

cated in governing physiological adaptations that

lead to increased resistance to hypothermia, ische-

mia, and reperfusion in hibernation. This is sup-

ported by increased expression of delta-opioid

receptors in the brain during torpor (Otis et al.

2010), as well as by a number of mechanisms inde-

pendent of opioid receptors: a synthetic delta-opioid

peptide (DADLE), when administered to cells devoid

of opioid receptors, localizes both to the cytoplasm

and to the nucleus, induces the formation of nuclear

bodies also observed in torpid hibernators and, most

importantly, results in significantly reduced tran-

scription rates (Baldelli et al. 2006). Furthermore,

nanoparticle-mediated delivery of DADLE induces a

reversible hypometabolic phenotype in vitro

(Colonna et al. 2011). Substantial in vivo preclinical

evidence implicates delta-opioid agonists in im-

proved time of survival and preservation of organs

for transplantation (Oeltgen et al. 1996; Bolling et al.

1997; Inuo et al. 2007), in mitigating the effects of

ischemic stroke (Borlongan et al. 2009) and in
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reducing myocardial ischemia-reperfusion injury fol-

lowing cardiac surgery (Wu et al. 2011).

Other endogenous ligands also have been impli-

cated in entry and arousal from torpor. Recently,

adenosine signaling via adenosine A1 receptors has

been linked to torpor-arousal cycles in the arctic

ground squirrel (AGS). Seasonal variation in sensi-

tivity of A1 receptors, coupled with administration of

an adenosine-A1 receptor agonist into the lateral ven-

tricle of the brain was sufficient to induce torpor in

AGS, whereas antagonism at the A1 receptor reliably

blocked entry into torpor (Jinka et al. 2011). These

results are identifying a role for CNS adenosine re-

ceptor ligands as key regulators of torpor-arousal

states.

A hibernation-specific protein complex (HP) iden-

tified in the blood of hibernating chipmunks has also

been hypothesized to be important in regulating the

annual rhythms of hibernation (Kondo and Kondo

1992). Produced in the liver, HP levels in cerebro-

spinal fluid increase and decrease with the onset and

termination of hibernation, and treatment with an

antibody to HP is associated with a subsequent de-

crease in the percentage of animals entering torpor

(Kondo et al. 2006). The relationship of HP with

hibernation in other species of hibernators, however,

is not known.

Hydrogen sulfide (H2S), a gas typically associated

with decaying organic matter, has the capacity to

produce a hypometabolic state in mice. H2S is a

potent and reversible mitochondrial complex IV (cy-

tochrome c oxidase) inhibitor, and so it is not sur-

prising that it affects metabolism in animals. In

addition, H2S has been shown to inhibit apoptosis

and activate pro-survival kinases (RISK pathway), as

well as increase antioxidant mechanisms via Nrf2

(Calvert et al. 2010). When carefully administered

in a narrow dose range, mice experienced a reversible

decline in oxygen consumption and hypothermia,

and they entered a state that resembles torpor

(Blackstone et al. 2005), which enabled them to sur-

vive hypoxic conditions otherwise fatal to untreated

mice (Blackstone and Roth 2007). However, the ef-

fects of H2S on the induction of torpor in large an-

imals are conflicting. Administration of inhaled H2S

to pigs or sheep had no effect on body temperature

or metabolism (Haouzi et al. 2008), nor was intra-

venous administration shown to be protective in a

pig model of hemorrhagic shock (Takasu et al.

2013). It is unclear whether differences in body

mass, regulation of metabolism in larger mammals,

or method of delivery can prevent reduction in met-

abolic rate in response to H2S.

As hibernation is a complex phenotype comprising

a suite of adaptations, it is unlikely to be triggered by

a single substance and also unlikely that a single sub-

stance taken from a hibernating animal will comple-

tely recapitulate the torpor phenotype in a non-

hibernating mammal. It is intriguing, however, that

even some aspects of torpor are replicated in phylo-

genetically distant relatives when they are exposed to

certain components of the blood of hibernating

mammals. This supports the hypothesis that some

of the protective aspects of torpor could be pharma-

cologically triggered in non-hibernators. Also intrigu-

ing is the fact that endogenous delta opioid ligands

and adenosine have both been implicated in IPC

phenomena and in the induction of torpor.

Additional adaptations in hibernation

While energy conserved by the hypometabolic state

induced in torpor could be potentially life-saving for

critically ill patients, torpor is further associated with

a number of key responsive that are protective of

organs including: improved fat metabolism, reduced

inflammation, and electrophysiologic adaptations to

cold. These additional adaptations are triggered by

specific environmental pressures faced by individual

species and are therefore not shared among all hiber-

nating animals; for example, hibernating black bears

display changes in body temperature that would be

considered as only mild hypothermia in humans

(Toien et al. 2011). Differences in climate, body-to-

surface area ratio, and length of the season have

forced a plethora of adaptive phenotypes to develop

within the group of mammals that conserve energy

via torpor. Many of these adaptations individually

could be potentially beneficial for specific disease-

states associated with ischemia/reperfusion injury,

organ transplantation, dyslipidemia and lipotoxicity,

and hypothermia. Understanding how these adapta-

tions work to promote survival in hibernators will be

critical in allowing us to adapt mammalian physiol-

ogy to the prevention of injury to organs in clinical

medicine.

Adaptations to cold

Cold inhibits critical enzyme function and the pro-

duction of vital proteins and nucleic acids. Extremes

of cold can be physically disruptive to cellular struc-

ture by causing rigidity and stickiness of lipid

membranes and the formation of ice; conversion of

extra-cellular water to ice drastically changes the os-

motic environment of the cell leading to intra-cellu-

lar desiccation. An ability to impart resistance to

damage of human tissues at sub-zero temperatures
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would open a new chapter of cryogenics that would

have far reaching implications for organ transplanta-

tion. Freeze-resistant strategies employed by arctic

fish include the synthesis of anti-freeze proteins

that prevent the growth of ice crystals in fish in

subzero water (Komatsu et al. 1970). Recently, puri-

fied anti-freeze proteins have been used to preserve

animal organs for transplantation below 08C, result-

ing in prolonged time of viability of grafts (Amir

et al. 2004, 2005). Insects have developed wide-rang-

ing adaptations to extreme cold, centered around

generation and accumulation of cryoprotectant poly-

hydric alcohols that promote supercooling in intra-

cellular compartments. Some freeze-tolerant insects

couple this strategy with generation of ice nucleators

that initiate freezing of extra-cellular water at rela-

tively high, subzero temperatures, while protecting

delicate intracellular compartments (Clark and

Worland 2008). Insects use a combination of anti-

freeze molecules (including membrane-bound glyco-

lipids) (Melvin and Andrews 2009; Walters et al.

2011), freeze tolerance, thermal hysteresis, vitrifica-

tion, and supercooling to survive temperatures as ex-

treme as �1008C (Sformo et al. 2010). Adaptation of

these techniques to organ preservation could allow

deep cryopreservation for long-term storage.

Recently, a rabbit renal graft was cooled to �1388C
and preserved through vitrification that allowed it to

be rewarmed and transplanted into a recipient

animal, where it remained functional (Fahy et al.

2004, 2009). Long-term storage of viable organs for

transplant is currently not performed; if such tech-

niques could be developed they would vastly improve

safety and availability of organs for transplantation in

the face of ongoing shortages.

While the repertoire of mammalian adaptations to

extreme cold is not as varied as that of insects, clin-

ically important mechanisms include freeze-resis-

tance by means of supercooling and adaptations to

avoid cardiac arrhythmias. During torpor some of

these animals maintain body temperature above

308C, such as the American black bear (Toien et al.

2011), whereas the AGS drop their body temperature

to as low as �2.98C; they can remain in a super-

cooled state for as long as 3 weeks (Barnes 1989).

Hibernation shares many characteristics across dis-

tantly related mammals—reduced metabolism, low-

ered body temperature, and increased use of fat—but

adaptations to survive low temperatures are unique

to those animals routinely hibernating in cold envi-

ronments (Carey et al. 2003).

Bears, like most mammals, suffer cardiac electrical

disturbances during hypothermia and typically

succumb to fatal arrhythmia or asystole at about

18–218C (Buresh et al. 2010). It thus appears that

only hibernators with small body-mass to surface-

area ratios and small heart sizes, and who inhabit

cold environments, display electrophysiological adap-

tations that allow for continued cardiac function at

extremely low body temperatures. Since the early ex-

periments using hypothermia during surgery, it has

become clear that non-hibernating mammals lack

adaptations for sustained cardiac function at low

organ temperatures (Bigelow et al. 1954; Bigelow

1984). While hypothermia offers a measure of

organ protection by secondarily lowering metabolic

rates, body temperatures below 288C are pro-

arrhythmic and unless there is extracorporeal circu-

latory support, life-threatening cardiac arrhythmias

often develop (Polderman and Herold 2009). Thus,

the clinical advantages of organ protection yielded by

extreme hypothermia are limited by the additional

morbidity of cardiopulmonary bypass. The reduction

in heart rate that is characteristic of entrance into

torpor, like the associated global reduction in meta-

bolic rate, appears to be independent of body tem-

perature and precedes any changes in it (Elvert and

Heldmaier 2005). Forced induction of hypothermia

in Syrian hamsters induced J-waves and atrioven-

tricular block while spontaneous hibernation had

no adverse effect (Miyazawa et al. 2008), further sup-

porting the concept that entrance into hibernation is

a highly regulated event of several physiological pro-

cesses, rather than merely a consequence of reduced

body temperature. Small hibernating animals have

intrinsic electrophysiological properties and adapta-

tions allowing the maintenance of regular cardiac

rhythm, despite body temperatures near 08C
(Burlington and Milsom 1993; Johansson 1996;

Milsom et al. 1999; Wang and Zhou 1999; Fedorov

et al. 2005). A primary adaptation is the ability to

maintain cellular membrane potential at low tissue

temperatures. Normal resting potentials of cardiac

membranes are �80 to �90 mV at 378C, but with

hypothermia they fall to approximately �45 mV in

non-hibernating mammals, thereby decreasing the

depolarization threshold and often resulting in ven-

tricular fibrillation and other fatal arrhythmias

(Wang et al. 2002). Conversely, hibernating mam-

mals are able to defend their membrane potential

close to normal at low temperatures, with cardiac

myocyte membrane potential in AGS remaining

near �60 mV despite subfreezing body temperatures

(Wang and Zhou 1999). This remarkable feat is

achieved through improved handling of electrolytes

at low temperature, predominantly Ca2þ and Naþ.

The cold-adapted phenotype consists of reduced ex-

pression and activity of L-type voltage-gated Ca2þ
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channels, voltage-gated Naþ channels, and decreased

activity of the Naþ/Ca2þ exchanger at low tempera-

tures, further reducing the risk of total depolariza-

tion of membranes. When coupled with an increased

quantity of sarcoplasmic reticulum to compensate

for the reduced calcium influx from the plasma

membrane, and an upregulation of connexins

(Fedorov et al. 2005), small hibernators are able to

preserve cardiomyocyte contractility and avoid ar-

rhythmias at low organ temperatures by slowing

the velocity of ventricular conduction and increasing

the excitation threshold (Alekseev et al. 1996; Kokoz

et al. 1997). During arousal, hibernators display a

waxing and waning cardiac rhythm, with an initial

increase in heart rate followed by periods of asystole

and profound bradycardia between 118C and 188C,

finally attaining a regular rhythm at about 188C
(Eagles et al. 1988), all thought to be determined

by alternating sympathetic versus parasympathetic

dominance until the animal reaches euthermia

(Milsom et al. 1999). Similarly, strong autonomic

control of heart rate can be seen in large hibernators.

Black bears display extreme variations in heart rate

(respiratory sinus arrhythmia), with periods of asys-

tole as long as 14 s during hibernation and in the

months preceding hibernation, which typically indi-

cate a predominance of vagal (parasympathetic) tone

of the heart. However, in pregnant bears heart rates

continue to increase as pregnancy continues, spike

during birth, then promptly return to hibernation

levels, suggesting cardiac sympathetic control is also

preserved during hibernation (Laske et al. 2010).

Understanding the mechanisms and physiological

role of respiratory sinus arrhythmia in large hiberna-

tors is important, especially given increasing evidence

that vagal afferent stimulation exerts cardioprotective

effects in ischemia-reperfusion (Shinlapawittayatorn

et al. 2013) as well as anti-inflammatory effects in

sepsis (Borovikova et al. 2000).

In contemporary cardiac surgery two primary

methods are utilized to protect the heart, both offer-

ing parallels with hibernation biology: (1) hypother-

mia with the aid of extracorporeal circulation and

(2) cardioplegia, a pharmacologic treatment that

stops cardiac activity during surgery to reduce con-

sumption of myocardial oxygen and substrate.

Traditional cardioplegia is based on a solution with

a high concentration of potassium that causes rapid

electrochemical arrest through complete depolariza-

tion of the plasma membrane, and thus lowers

myocardial oxygen consumption. Depolarizing cardi-

oplegia maintains intracellular and extracellular po-

tassium concentrations at near equilibrium;

therefore, the cell cannot regain its membrane

potential until the solution is washed away. Cold

depolarizing hyperkalemic cardioplegia has been as-

sociated with deleterious consequences including in-

creased endothelial inflammation, superoxide

production, platelet aggregation, coronary vasocon-

striction, and altered distribution of myocardial

blood flow, increased Naþ/Ca2þ exchanger activity,

and myocyte intracellular Ca2þ overload (Hearse

et al. 1993; Vinten-Johansen 2004). This may in

turn cause post-reperfusion arrhythmias, stunning,

inflammation, necrosis, and apoptosis, yet cold

depolarizing cardioplegia remains the most com-

monly used method for surgical myocardial protec-

tion worldwide. An alternative strategy involves

inducing cardiac arrest by polarizing the plasma

membrane, an example of which has been popular-

ized by Dobson and Vinten-Johansen (Corvera et al.

2005; Sloots et al. 2007). Using a normokalemic so-

lution of adenosine—lidocaine—magnesium, these

investigators demonstrated effective cardiac arrest

with potentially superior cardioprotection (Letson

and Dobson 2011a; Shi et al. 2012). Of particular

relevance to this audience, the physiological basis

for developing polarizing cardioplegia has been in-

formed by lessons from natural hibernators, who

(1) reduce their myocardial metabolism without im-

posing a depolarizing insult on their cardiomyocytes,

and (2) preserve coronary blood flow despite the

low-energy state of the heart in torpor (Dobson

2004; Dobson et al. 2013). Adenosine opens the

KATP channels, thereby shortening the duration of

the action potential in the atria, Purkinje fibers,

and ventricles; lidocaine blocks the inward Naþ

fast-current channels and thus reduces the amplitude

of the voltage of the cardiac action potential to its

diastolic baseline—the combination resulting in elec-

trochemical cardiac arrest by ‘‘clamping’’ the mem-

brane potential at its resting diastolic value of �80 to

�85 mV (Dobson 2004), similar to the electrophysi-

ological adaptations found in the hearts of hiberna-

tors. Additional benefits of adenosine-lidocaine are a

rapid and reversible reduction of heart rate; a slow-

ing of atrioventricular conduction; and coronary

vasodilatory, anti-ischemic, anti-arrhythmic, and

possible coagulative correcting effects (Dobson

et al. 2013). The fundamental advantage of polarized

arrest and reanimation stems from fewer membrane

channels and pores being opened and exchangers

being activated, compared with the depolarized

state; depolarized cells are electrically more unstable,

whereas maintaining a polarized membrane potential

during global or regional ischemia is a key factor in

preventing the endothelium from triggering a host of

local immunologic and coagulopathic derangements
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(Dobson and Jones 2004; Ward et al. 2006).

Following a large number of successful preclinical

studies, including one demonstrating improved

post-ischemic recovery after 8 h of static cold storage

(Rudd and Dobson 2011), polarizing cardioplegia

with adenosine-lidocaine-magnesium was tested in

randomized controlled trials and proven to be supe-

rior to depolarizing hyperkalemic cardioplegia both

in adult (Onorati et al. 2013) and pediatric patients

(Jin et al. 2008). Furthermore, applications of aden-

osine-lidocaine-magnesium at lower concentrations

have been proposed as a biological response modifier

in the setting of resuscitation from trauma and

severe hemorrhagic shock (Letson and Dobson

2011b), in part due to its coagulation restorative

(Letson et al. 2012) and anti-inflammatory properties

(Shi et al. 2012).

Metabolic switch: a preference for fatty-acid

oxidation

A genomic and biochemical reprograming funda-

mental to hibernation is the metabolic switch to vir-

tually exclusive use of fatty acids as metabolic fuel

during steady-state torpor. Many aspects of this ad-

aptation are intuitive: fat is energy dense and an ef-

ficient form of energy storage, fat catabolism

generates metabolic water, and fat stores may also

provide thermal insulation during environmental

temperature extremes. However, if torpor is viewed

as the body’s adaptive response to stress from envi-

ronmental austerity, then the metabolic switch to

fatty-acid oxidation stands in contrast to how tissues

handle other forms of physiologic stress.

The healthy heart is considered a metabolic om-

nivore, maintaining the ability to derive energy from

fat, carbohydrate, amino acids, or ketones (Goodwin

et al. 1998), with fatty-acid oxidation representing

the predominant metabolic fuel under normal resting

conditions (Bing et al. 1954). However, during me-

chanical, ischemic/hypoxic, or inflammatory stress,

the heart will transition to the metabolism of in-

creasing amounts of carbohydrates (Taegtmeyer

2002). Generally, these changes are adaptive, allowing

the heart to utilize the most efficient and abundant

substrate for a given set of environmental conditions.

Short-term changes may simply take place at the

level of enzyme activity in the heart, but long-term

changes require altering the metabolic machinery and

appear to involve the peroxisome proliferator-acti-

vated receptor family of nuclear receptor proteins.

These master regulators of metabolism are responsi-

ble for changing the expression level of key metabolic

enzymes involved in metabolism and making lasting

changes in cellular bioenergetics (Kelly 2003).

In the non-hibernator heart under continued hyp-

oxic stress, transcriptional changes result in reduced

metabolic flexibility; enzymes involved in the oxida-

tion of fatty acids are downregulated, and the heart

transitions to carbohydrate metabolism (Razeghi

et al. 2001). Myocardial hibernation is associated

with such switch from fatty acids to glucose as the

preferred metabolic substrate, which provides the ra-

tionale for using radionuclide myocardial perfusion

imaging with fluorine-18 labeled glucose to identify

viable but hibernating myocardial segments in pa-

tients. Although this switch in fuel teleologically

may occur because carbohydrate metabolism requires

less oxygen than does oxidation of highly reduced

fatty acids, it is in stark contrast with the metabolic

changes observed in hibernators. These animals in-

crease expression of enzymes involved in fatty-acid

oxidation while reducing their capacity for glycolysis

in preparation for seasonal hibernation (Yan et al.

2008; Shao et al. 2010). Certainly in the AGS,

torpor-arousal cycles would likely result in periods

of relative ischemia, especially during rewarming

and interbout arousal, intervals that occur each 1–3

weeks during the hibernation season. If the hiberna-

tor’s heart were to be viewed as a natural model for

tolerance to stress, then the switch to carbohydrate

metabolism made by non-hibernators would be con-

strued as maladaptive. Non-hibernators may not be

capable of continuing oxidation of fatty acids in

times of physiologic stress. Without the hibernator’s

adaptations for improved metabolism of fatty acids,

non-hibernators experience significant toxicity asso-

ciated with fatty-acid oxidation in times of stress, by

developing metabolic bottlenecks (Turer et al. 2009,

2010). Incompletely oxidized fatty acids build up in

the form of ceramides and acyl-carnitines (Zhou

et al. 2000; Unger and Orci 2001), thereby triggering

further inflammation and cell-death. If more efficient

processing of fatty acids during times of stress were

possible in non-hibernators, their bioenergetics phe-

notype would more closely approximate that of an

unstressed heart. While it remains unclear if this

would in fact be metabolically advantageous in

humans, it clearly has been a successful strategy for

diverse species of hibernating mammals during times

of low perfusion and low availability of resources.

Immunological and hematological adaptations

relevant to organ protection

Torpor is also associated with suppression of both

the innate and adaptive immune system that appears

506 Q. J. Quinones et al.

 (PPAR)
-
; Turer etal.
,


to be obligatory for surviving torpor-arousal cycles.

This closely resembles the compensatory anti-inflam-

matory response syndrome that develops in severe

sepsis, a state of immunoparalysis often characterized

by secondary infections with opportunistic organisms

that are otherwise uncommon pathogens for immu-

nocompetent hosts. Early observations in hibernators

demonstrated that torpor is associated with a reliable

and dramatic reduction in circulating leukocytes.

Leukopenia with approximately 90% reduction in

circulating white blood cells (WBCs) appears to be

a common feature across several species of hibernat-

ing mammals during torpor (Szilagyi and Senturia

1972; Spurrier and Dawe 1973; Suomalainen and

Rosokivi 1973; Reznik et al. 1975; Frerichs et al.

1994; Toien et al. 2001; Bouma et al. 2010; Sahdo

et al. 2013). The reduction in WBC during torpor

primarily affects granulocytes, lymphocytes, and

monocytes. The remnants of circulating WBCs are

90% neutrophils and 9% lymphocytes. Interestingly,

cell numbers rapidly (within 1.5 h) recover during

arousal from torpor, neutrophils recovering to

summer values, and lymphocytes to �50% of

summer values within �24 h (Suomalainen and

Rosokivi 1973). These findings argue against the hy-

pothesis that leukocytes undergo massive apoptosis

in torpor and are newly synthesized during arousal,

suggesting that other mechanisms for retention are

involved and appear to be immune-cell-type specific.

Neutropenia during torpor seems to be entirely

driven by hypothermia-induced reversible margin-

ation of cells, as it is not affected by splenectomy

and is abolished by pretreatment with dexametha-

sone. This temperature-induced transient neutrope-

nia is not restricted to deep hibernators, as it also

occurs in daily torpor as well as in non-hibernating

species during forced hypothermia (Bouma et al.

2013a). On the other hand, lymphopenia during

torpor is due to hypothermia-induced retention of

cells in peripheral lymphoid organs, which is regu-

lated via altered plasma levels of sphingosine-1-phos-

phate (Bouma et al. 2011). Again, this response

appears widely conserved in mammals (shared by

hibernating hamsters, hypothermic hamsters, and hy-

pothermic non-hibernating rats).

The adaptive value of leukopenia in the setting of

ischemia-reperfusion is suggested by several clinical

studies in cardiac surgical patients. These studies

identified preoperative high WBC count as a risk

factor for stroke, atrial fibrillation, myocardial infarc-

tion, and 1-year mortality, whereas leukocyte deple-

tion in the same setting results in improved organ

function (Gu et al. 1996; Albert et al. 2003; Newall

et al. 2006). Furthermore, since neutrophil

activation, margination, and transmigration are

essential in the pathophysiology of organ injury

following ischemia-reperfusion and hypothermic car-

diopulmonary bypass, additional comparative biolog-

ical studies could elucidate the mechanisms by which

hibernators avoid organ injury despite regularly cy-

cling through periods of extreme hypothermia fol-

lowed by rapid rewarming. While circulating WBCs

decrease during torpor, certain compartments in-

cluding the intestine, lungs, liver, and spleen, seques-

ter WBCs and experience a local increase in cell

number (Inkovaara and Suomalainen 1973; Yasuma

et al. 1997). Neutrophils are reported to increase at

the lung epithelial barrier (Inkovaara and

Suomalainen 1973), whereas the intestinal epithelial

barrier experiences predominantly an increase in

lymphocytes (Kurtz and Carey 2007)—likely repre-

senting protective responses at sites of exposure to

potential pathogens during the targeted immunosup-

pression of torpor. Hibernators also experience

thymic involution, reduced production of bone

marrow, and thymic maturation of lymphocytes

during torpor (Galletti and Cavallari 1972;

Novoselova et al. 2004). Given the long life of

naı̈ve lymphocytes, this only accounts for part of

the observed reduction in circulating lymphocytes

(Sprent and Tough 1994; Parretta et al. 2008), with

the remainder sequestered in lymphoid organs.

In addition to reducing the numbers of circulating

WBCs, torpor changes WBC’s activity in response to

insult. LPS binding to splenic macrophages appears

to be unaffected by arousal cycles (Maniero 2005).

However, production of tumor necrosis factor alpha

in response to LPS is significantly reduced in perito-

neal macrophages taken from hibernating animals,

even under normothermic conditions (Novoselova

et al. 2000a, 2000b). This hibernation-induced

immune unresponsiveness (i.e., anergy) in vitro

translates to phenotypic differences in vivo, as

torpid ground squirrels do not mount a febrile re-

sponse to peritoneal injection of LPS, although fever

can be observed during the next arousal (Prendergast

et al. 2002). The preserved ability to bind LPS, cou-

pled with a reduction in cytokine production, sug-

gests that CD14 expression on innate immunocytes is

intact during torpor but has a reduced capacity to

heterodimerize with TLR4, or that there is a reduc-

tion in the signaling capacity downstream of the

PRRs. In an intestinal model of warm I/R injury,

elevated levels of myeloperoxidase were seen follow-

ing I/R injury in ground squirrels in summer but not

when torpid (Kurtz et al. 2006). This suggests that

while equivalent ischemic organ-injury took place,

torpid squirrels failed to recruit neutrophils into
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the injured organ, thus sparing them injury from

reperfusion. The mechanisms underlying the reduced

humoral immune function during hibernation are

also beginning to be elucidated. Recent studies have

revealed that T-cell-independent humoral immune

responses were specifically impaired in torpor, pos-

sibly due to reduced levels of plasma complement.

Conversely, the response to T-cell-dependent anti-

gens was preserved, and was associated with distur-

bance of torpor-behavior and increased mortality

(Bouma et al. 2013b). Although generally thought

to be an adaptive response, the immunosuppressed

state that occurs during torpor can put hibernating

animals at risk for opportunistic infections such as

the deadly white-nose syndrome described in hiber-

nating populations of bats (Cryan et al. 2010). As the

complex immunomodulation occurring in torpor is

better understood, translational applications to severe

infection in humans may become apparent and may

allow development of effective therapeutics in the

face of limited metabolic resources.

Furthermore, studies of the blood-cell dynamics of

hibernating mammals have identified drastic 10-fold

reductions in circulating thrombocytes during

torpor, rising rapidly to near-normal levels upon

return to euthermia (Pivorun and Sinnamon 1981;

Bouma et al. 2010). Also, studies of platelet aggrega-

tion identified significant decreases in platelet func-

tion in brown bears compared with humans (Frobert

et al. 2010). Mammalian hibernators greatly decrease

circulating levels of clotting factors VIII and IX

during torpor (Pivorun and Sinnamon 1981), while

increasing their levels of alpha2-macroglobulin and

haptoglobin (Srere et al. 1995; Carey et al. 2003;

Mominoki et al. 2005). These mechanisms combine

to increase clotting time during hibernation; likely as

an adaptive response to prevent thromboembolic

events despite highly thrombogenic states associated

with reduced blood flow, stasis, hypothermia, and

prolonged immobility.

Strategies for organ protection

Torpor is a complex phenotype consisting of (1)

profound whole-animal hypometabolism, (2) obli-

gate oxidation of fatty acids during torpor, and (3)

an immunosuppressed state. This phenotype has de-

veloped over millions of years of evolution and is

quite similar in phylogenetically distant species of

mammals. This similarity could arise from conserva-

tion of genes involved in torpor from a common

ancestor or convergence of species onto a single

successful strategy. The wide variety of species that

utilize torpor to balance supply-and-demand

relationships suggests that some of these mechanisms

may be able to be adapted to the human condition.

Supply-and-demand relationships often are in deli-

cate balance in critical-care and perioperative medi-

cine. The majority of clinical treatments are focused

on the supply end of the equation, while a paucity of

therapies are able to decrease demand. Adaptation of

molecular mechanisms unearthed in the study of hi-

bernation may open a new chapter in how critically

ill patients are managed; by spending less we may be

able to accomplish more.
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