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Abstract

One of the goals of systems biology is the identification of regulatory mechanisms that govern an

organism’s response to external stimuli. Transcription factors have been hypothesized as a major

contributor to an organism’s response to various outside stimuli, and a great deal of work has been

done to predict the set of transcription factors which regulate a given gene. Most of the current

methods seek to identify possible binding sites from genomic sequence. Initial attempts at

predicting transcription factors from genomic sequences suffered from the problem of false

positives. Making the problem more difficult, it has also been shown that while predicted binding

sites might be false positives, they can be shown to bind to their corresponding sequences in vitro.

One method for rectifying this is through the use of phylogenetic analysis in which only regions

which show high evolutionary conservation are analyzed. However such an approach may be too

stringent because of the level of degeneracy shown in transcription factor binding site position

weight matrices. Due to the degeneracy, there may be only a few bases that need to be conserved

across species. Therefore, while a sequence may not show a high level of evolutionary

conservation, these sequences may still show high affinity for the same transcription factor. In

predicting transcription factor binding we explore the notion that “Co-expression implies co-

regulation” [Allocco et al. BMC Bioinformatics 5:18, 2004]. With multiple genes requiring similar

transcription factors binding sites, there exists a basis for eliminating false positives. This method

allows for the selection of transcription factors binding sites that are active under a given

experimental paradigm, thereby allowing us to indirectly incorporate the effects of chromosome

and recognition site presentation upon transcription factor binding prediction. Rather than having

to rationalize that a few transcription factors binding sites are over-represented in a cluster of

genes, one can show that a few transcription factors are active in the cluster of genes that have
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been grouped together. Although the method focuses on predicting experiment-specific

transcription factor binding sites, it is possible that if such a methodology were used in an iterative

process where different experiments were analyzed, one could obtain a comprehensive set of

transcription factors binding sites which regulate the various dynamic responses shown by

biological systems under a variety of conditions hence building a more comprehensive model of

transcriptional regulation.
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INTRODUCTION

In the wake of the completion of various genome projects, it was remarked that given the

length of the genome, it was surprising that so much of it was not devoted to coding for

protein products.31 However, taking a more holistic approach in the analysis, one realizes

that given the ability of complex systems to respond to a wide range of external stimuli, the

ratio of nucleotides devoted to the non-coding region vs. the coding region should not be

surprising. Treating the DNA sequence as the master control program for an organism, it

would follow that the majority of the sequence should be devoted to the dynamic aspect of

the response or program logic, rather than mere storage for protein sequences. Researchers

have begun to view the non-coding “junk” DNA as equal in importance to the coding

regions due to their role in the regulation in mRNA levels and hence protein production.

Without precise control of protein production via the non-coding regions, an organism

would be nothing more than a static bag of different molecules and be unable to respond to

changes in the environment.27

Transcription factors work by binding to specific sequences upstream of the coding region

and either increase or decrease the affinity of RNA polymerase for the sequence, thereby

altering the rate of mRNA production.1 The binding of these transcription factors has been

determined to be sequence specific through various binding experiments.33 Previous work

by Wasserman et al., have shown that this fact can be used to predict the existence of

regulatory motifs within the DNA sequence. However, given the relatively short lengths of

these recognition sites raging from 6 to 14 bases26,39 as well as the degeneracy possible with

each given transcription factor binding site, the probability of a random hit is quite high.

More problematic in this evaluation is that the transcription factors can be shown to bind in

vitro even if they show no in vivo activity. This suggests that there exist other

conformational factors that regulate whether a given sequence in the DNA is available for

binding.

Most researchers have tackled the problem of false positives via the method of phylogenetic

footprinting. 2,5,7–11,16,21,30 The core assumption in phylogenetic footprinting is that

significant control mechanisms in an organism are evolutionarily conserved. Therefore, by

utilizing the genomes of multiple related organisms, one should be able to identify

conserved regulatory regions within the DNA. The primary benefit of this technique is that it
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limits the search space for which possible transcription factors binding sites can be found.

This technique is exemplified by tools such as CONSITE,36 and FOOTER,11 which look for

sequence homologies between two different species. CONSITE represents the basic

phylogenetic analysis technique presented by Wasserman et al.39 in which only sequences

which show high homology between two species such as Rat and Human would be analyzed

via Position Weight Matrices (PWM) in order to determine which transcription factors

binding sites are present. The primary difference between these and other tools concerns the

different ways in which homologous sequences are identified.

An important point of concern with phylogenetic analysis lies in the relative degeneracy of

transcription factor binding matrices.19 In many cases such as the transcription factor RE-1,

a regulator of neuronal development, it was found that the transcription factor binding site

had regions of high degeneracy, specifically that only 12 out of the 21 positions are highly

conserved.43 Due to this fact, it is conceivable that a transcription factor can bind across

multiple species with significantly different recognition sequences.28 Therefore, if sequence

conservation is the primary driving force for the phylogenetic analysis of the promoter

region, many important regions could be discarded. The consequence of this is that in many

cases, the transcription factor binding sites predicted from the homologous sequences will be

unable to satisfy the notion that co-expression implies co-regulation since it will be hard to

detect a consistent set of transcription factor binding sites.

In this paper, we will show that provided that there is a high level of correlation within a set

of clustered genes, there is sufficient information to extract a small set of transcription factor

binding sites that can be hypothesized to co-regulate the genes in question. This is similar to

the use of transcription factor enrichment to rationalize clustering results,29 or the prediction

of regulatory models from a series of experiments.37 However, while studies have shown the

predilection of transcription factors within groups of co-expressed genes, we will show that

if the co-expressed genes have a correlation coefficient above a certain threshold, then a

great majority of genes (>90%) will contain a small subset of transcription factor binding

sites in common. This will eliminate many of the false positives and yield a set

experimentally consistent transcription factors. Additionally, we will show that promoter

regions that have been preprocessed via phylogenetic footprinting does not show an

increased probability of containing transcription factor binding sites over that of the baseline

sequence, suggesting that either phylogenetic footprinting is unable to preferentially select

for regulatory regions, or that there are non-evolutionarily conserved regulatory sites in the

sequence.

METHODS

Data Collection and Gene Expression Measurement

The microarray data was obtained from an experiment that was conducted to examine the

behavior of a bolus injection of corticosteroids upon temporal gene expression profile of

living cells. This dataset was specifically chosen due to the a priori knowledge that

corticosteroids have powerful transcriptionally mediated effects upon the rat experimental

model. The data collection and preliminary analysis were previously presented in.4 The data

is available in the GEO database under the accession number GDS253.
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Identification and Classification of Relevant Gene Expression Profiles

After the data has been obtained, it is important for the expression profiles of relevant genes

to be extracted. This step essentially seeks to extract genes whose expression profiles are

actively being mediated by transcription factors as part of a transcriptional regulation

pathway. By doing this, it ensures that the genes that were selected and grouped are part of

the same transcriptional response mechanism and therefore should show clear trends when

conducting transcription factor analysis.

Preliminary examination of the data lead to the observation that different clustering

algorithms yielded inconsistent results which were different in the number of optimal

clusters, or the genes which were grouped together.34 Further analysis suggested that the

data itself was antagonistic to data clustering due primarily to the fact that no clear

boundaries existed. Common data selection techniques such as various filters build around

data quality checks like Affymetrix’s Absent, Present or Marginal flags or selecting genes

that showed expression levels which changed by greater than 2x up or down yielded a subset

of data which still was not clearly partitionable. SLINGSHOTS was an attempt at combining

both clustering and selection in order to obtain a subset of genes in which boundaries could

be seen.

We recently proposed a novel algorithm for the identification and classification of relevant

gene expression profiles called SLINGSHOTS (SeLection of INformative Genes via

Symbolic Hashing Of Time Series).42 The key motivating argument for this method is the

realization that in the presence of noise and uncertainties associated with measuring mRNA

abundance, looking for exact correlations or distance metrics between gene pairs may not

necessarily yield the most informative interpretation. On the contrary, robust, coherent and

dominating qualitative features and similarities could be a more informative proxy for the

information content of the expression experiment. With our approach, the raw data is

transformed into sequences of events, or symbols, and these are further analyzed for

consistencies. Our algorithm is based on the assumption that genes that are relevant to the

underlying dynamics of the system have two essential characteristics. The first is that they

are part of a concerted mechanism and should possess expression profiles which are

temporally consistent with the expression profiles of other genes involved in related

molecular mechanisms. The second assumption is that the dynamics of the set of

informative genes out to show significant deviations in their aggregate activity from their

initial baseline activity distribution. Therefore, our algorithm performs a fine-grained

clustering which results in hundreds of clusters. We then evaluate the ability of a subset of

these individual clusters to satisfy these two constraints, thereby linking the selection

process with the clustering result. The advantage of this technique is that we are able to

perform data selection with clustering quality in mind and parse the contribution of each

cluster to the overall dynamics of the system.

SLINGSHOTS uses the notion that genes which are part of large highly correlated set of

genes are more likely to be significant based on the assumption that an organism responds to

outside challenges to homeostasis through the utilization of a set of genes which are highly

controlled in both their expression levels and temporal evolution. It has already been shown

that genes which show a high degree of correlation in their expression profiles tend to be
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involved in related functions.3 There is an additional qualifier, that given significant

perturbations to the experimental system, that a large number of genes with coordinated

responses need to be brought online to deal with the challenge to homeostasis.

SLINGSHOTS deterministically clusters expression profiles into a large set of putative

clusters via a hashing process. Hashing is utilized to decompose an expression profile into a

single integer. Expression profiles with the same integer have very similar expression

profiles. The hashing methodology used is the one proposed by Lin et al.24 What hashing

accomplishes for our purposes is the grouping of expression profile into a large number of

punitive clusters all with a similar range of correlation coefficients. The procedure for going

from an expression profile to a hash value is given in Appendix 1.

After the genes have been put into their respective clusters, the next task is to identify which

of these gene clusters are actively participating in the experimental response. Given that

these experiments attempt to perturb the homeostatic balance forcing the organism into a

different transcriptional state, the algorithm selected clusters that when combined yield a

significant deviation in the distribution of expression level values from that of baseline.

Therefore, one should be looking for genes which alter the distribution of up-regulated and

down-regulated expression levels during the course of the experiment, thereby pointing to

their active role in changing the transcriptional state of the organism. Given that there are

hundreds of clusters generated via the hashing step, a greedy selection algorithm was

implemented in which the peaks are added in the order of their population. The overall

algorithm is given in Appendix 2. The results of SLINGSHOTS is given in Fig. 1 indicating

the 12 clusters that were identified as informative and will be further discussed in the

Results section.

Identification of Possible Transcription Factor Binding Sites

The identification of possible transcription factor binding sites is broken down into two

steps: (i) the identification of the promoter region, (ii) the identification of putative

transcription factor binding sites. CORG14 was used for the identification of promoter

regions as well the identification of relevant transcription factor binding sites. CORG was

selected primarily for its ability to extract the 5′ upstream region up to the next gene rather

than to a set number of upstream base pairs. This was important to us due to the nebulous

concept of how far upstream a promoter region lies. It has been shown that the GRE

(Glucocorticoid Response Element) could be found thousands of base pairs upstream of the

start codon.5 Other such as TRED44 on the other hand require as a parameter the number of

upstream base pairs to consider. Additionally by using CORG, one is able to utilize its built

it facilities to both extract homologous sequences as well as transcription factor binding

sites.

One complication which needed to be addressed was the fact that CORG returned

homologous sequences between two species and is unable to return just the entire promoter

region for a single species. In order to compensate for this drawback, the evaluation was

conducted in the following manner. To evaluate the difference between phylogenetic

footprinting and our proposed approach of looking at the promoter regions of a set of

clustered genes in aggregate, a CORG search was conducted upon human/rat and mouse/rat.
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The human/rat case is the baseline example of phylogenetic footprinting in which ideally

there will be a small set of regulators which give rise to the similar responses to

corticosteroids in humans and rats. The mouse/rat case was used to give a proxy for the

context specific case in which the analysis is performed only on the rat promoter region and

to determine the transcription factors which are present in all of the genes in the cluster. The

rationale for running this case is that the rat/mouse promoter regions have about an 85%

conservation rate among homologous sequences,41 and are therefore genetically very

similar. Given this high level of conservation between the two different species as well as

the fact that CORG keeps sequences that show a homology of greater than 70% over 100

base pairs,13 it provides a reasonable facsimile for the rat promoter region.

Verification of the results was initially going to be conducted by comparing our selected

transcription factors with known transcriptional regulators via RnPD.41 However, an initial

evaluation of the selected and clustered genes revealed that there was insufficient data on

known binding sites in order to make any sort of meaningful assessment.

Data Analysis

The primary metric which to be analyzed is the number of times a transcription factor

binding site is found in the 5′ region of genes that comprise up of a highly correlated cluster.

This is necessary in order to determine whether or not there are any transcription factor

binding sites which were present in a sufficient percentage of genes where it would be a

reasonable candidate for the co-regulation of the genes within the cluster. Secondly, once the

metric is quantified, it will be possible to ascertain the overall distribution of transcription

factors throughout the cluster of genes, allowing one to determine whether or not the highly

conserved transcription factor was present due to a statistically significant event, or whether

it was highly conserved due to chance.

The process of finding a hit for a specific sequence in the promoter region can be modeled

by an exponential distribution whose PDF is given in Eq. (1). In Fig. 2, a random set of

genes was selected and a distribution that relates the number of transcription factors to the

number of genes that a given transcription factor is predicted to bind to is given. From this

distribution, it appears that the initial assumption that one can model transcription factor

occurrence rate on a cluster of gene as an exponential distribution. This also functions as a

negative control. If the genes were randomly selected, then the distribution of transcription

factors/cluster ought to match the exponential distribution. If there are deviations from this

exponential graph near the tail end representing conservation of a significant number of

transcription factors at levels higher than would be expected, then it would suggest the

presence of a significant co-regulation mechanism.

(1)

To obtain the parameters for the PDF, the mean number of times a transcription factor-

binding site is present amongst the genes in a cluster as well as the standard deviation this

distribution is calculated. Given the slight discrepancy between the two values, the average
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of the mean and the standard deviation is used as the parameter with which to model the

distributions. The fits of the distributions for the 12 clusters are shown in red on Figs. 3 and

4. The exponential distribution will then allow us to obtain the probability that a single

transcription factor will be conserved over x% of the time. This probability will be used

below to calculate the expected number of highly conserved transcription factors.

After the exponential distribution had been fitted, it then becomes possible to calculate the

expected number of transcription factors that ought to be highly conserved given the

exponential distribution. If one has been able to filter out false positives, then one should

find that the number of transcription factors that are actually conserved should be less than

the expected value. The statistical significance of the number of transcription factors which

are actually conserved will be calculated via the binomial distribution Eq. (2) under the

assumption that the presence of a given transcription factor above any given conservation

rate can be modeled as a random process.

(2)

RESULTS

The classification and selection step yielded 12 clusters with a total of 529 probe set, of

which the clustering results are given in Fig. 1. The 529 probe sets correspond to 454 genes

of which 339 genes had entries in the CORG database. The most important property of these

clusters is the high level of correlation between all of the genes in the cluster. Data has

presented that suggests that for genes to have a greater than baseline chance of having

transcription factors in common, the correlation coefficient should be greater than 0.75.3 Our

clusters show an average correlation coefficient of 0.85, comfortably over the limit. In the

transcription factor dataset which they based these conclusions off of,22 they found that only

37% of the genes actually showed significant experimental binding to transcription factors.

So while with a .85 correlation in the signal suggests only a 50% commonality between two

genes, we believe that biologically the percentage in mammalian systems is quite higher due

to the relatively sparse nature of the isolated yeast transcription factors. Additionally, we

believe that if a transcription factor can be shown to be over-represented the less than perfect

correlation, it has a greater chance of being significant compared to those which are not

over-represented within a cluster.

Figures 3 and 4 show the distribution of transcription factor binding sites that are conserved

over a certain number of genes in a cluster. The values on the x-axis are dependent on the

overall number of genes in a cluster, and the values on the y-axis denote the number of

transcription factor binding sites that were present in a given number of genes. The results of

this plot seem to suggest that the distribution of transcription factor binding sites amongst

the genes in a given cluster can be modeled via an exponential distribution. Given that the

exponential distribution given in Eq. 1, is primarily defined by the parameter λ, which is the

mean and the standard deviation of an exponential distribution, the means/standard
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deviations for the number of times a transcription factor binding site was present in a gene

of that cluster is shown in Table 1. It is notable that these values are reasonably close

reinforcing our assumption that the exponential distribution is a good fit for the data. To

obtain the exponential fits given in Figures. 3 and 4, the means and the standard deviations

were averaged for each cluster to obtain a single consistent value half way between the

means and the standard deviations. Looking at the parameters, there was a direct correlation

between the parameters themselves and the number of genes in a cluster. This linear

relationship is illustrated in Fig. 5, where the parameters are plotted against the number of

genes in a cluster. This fact will be revisited during the discussion.

A cutoff of 95% was set to determine which transcription factors ought to be examined. In

the case where the mouse/rat promoter region was analyzed, it was found that there were

one or more transcription factors that was present on average 99.7% of the time in each of

the clusters. In the case where the human/rat promoter region was analyzed, the most

conserved transcription factor was present in only 85.2% of the genes of a given cluster.

From this immediate result, it would seem that there is a sizable gap in terms of the ability of

the phylogenetic analysis conducted via CORG in the rat/human case to obtain transcription

factors that are likely candidates for the co-regulation of the genes in the cluster. The

transcription factors which were highly conserved in both cases are given in Table 2, 3 with

Table 2 utilizing a lower cutoff of 80% of the genes for rat/human and Table 3 utilizing a

cutoff of 95% for rat/mouse. Different cutoffs were set given the fact that in the rat/mouse

case, there was a transcription factor present in 99.7% of the genes/cluster whilst in the rat/

human case, the most conserved transcription factors were only present at only 85.2% of the

time. Further investigation of the parameters that were used for the exponential fits

suggested that the means and the standard deviations in the human/rat case were roughly

half that in the mouse/rat case. What makes this association more interesting is the fact that

after phylogenetic footprinting through CORG, the sequence being analyzed by position

weight matrices has decreased roughly by half. This suggests that the hit rate of the

transcription factors is sequence independent, and that the two results despite having very

different cutoffs have the same overall characteristic.

Random analysis was conducted to ascertain the significance of these transcription factors.

Thirty random genes were grouped from the microarray data and the same procedure was

conducted upon this synthetic cluster. What was found was that 3 of the transcription factors

that were highly conserved in both the rat/human case and the rat/mouse case were also

found in a random sampling of the data. These transcription factors are TEF, and STAT5,

and STAT6. Removing these transcription factors from consideration, it was observed that

the rat/human homologous promoter case has no transcription factor that is conserved in

more than 80% of the genes. In fact, there are no transcription factors that are conserved in

more than 75% of the genes in any given cluster. In contrast to this, when TEF1, STAT5 and

STAT6 where removed, 8 out of the 12 clusters still had transcription factors that were

conserved in more than 95% of the case, with the remaining four clusters containing

transcription factors that were conserved more than 90% of the time. The transcription

factors that are conserved more than 95% of the time which are not STAT6, STAT5, and

TEF1 are highlighted in red in Table 3. This suggests that aside from the global non-specific
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activation of transcription, in our specific experimental data, phylogenetic analysis in the

human/rat case has been unable to find a reasonable candidate for co-regulation.

Given the following facts, the distribution of transcription factors amongst genes in a cluster,

the parameters that fit the distribution, and the fact that there are 457 possible transcription

factors, one can begin to calculate the probability of a the number of transcription being

highly conserved within a cluster in the rat/mouse case. This evaluation was not conducted

in the rat/human case due to the fact that did not exist a set of transcription factors which can

be hypothesized to co-regulate the set of genes. Excluding the transcription factors STAT5,

STAT6 and TEF1 and assuming a conservation rate of greater than 95% one has a 4%

chance of finding a transcription factor. This is consistent due to the linear relationship

between the cluster size and the mean values. Given 457 possible transcription factors, this

would lead to an expected value of 18. Therefore in a random case one would expect 18

transcription factor to be conserved over 95% of the time. However, what is found that there

are between 1 and 8 transcription factors being highly conserved. This result suggests that

solely by looking at the genes that are clustered with a very high correlation it is possible to

throw out a significant number of transcription factors which may be indicative of false

positives. The associated p-value assuming a binomial distribution in this case ranges from

1.58 × 10−7 to 5.27 × 10−3.

DISCUSSION

The main point of phylogenetic analysis has been the reduction of false positives in

transcription factor binding predictions. However, it is our hypothesis that one cannot

perform such reduction if the result of the operation cannot satisfy the notion that co-

expression implies co-regulation. We believe that by performing phylogenetic analysis

between human and rat as well as utilizing mouse and rat to extract a homologue for the rat

promoter region, it has been shown that phylogenetic footprinting does a poor job in keeping

the necessary transcription factors that would co-regulate clusters of co-expressed genes.

Therefore, it is our contention that due to this fact, phylogenetic footprinting utilizing

sequence information only may not be the best way to tackle the issue of false positives. One

may argue that the notion of requiring that all of the genes in the highly correlated clusters

must have a set of common active regulators is a naïve approach. In spite of the simplicity of

this approach, the proposed method was still able to find a small subset of transcription

factors that were highly conserved across all of the genes in a given cluster.

Our second contention is that performing phylogenetic footprinting does not yield results

that were characteristically different than in the case where phylogenetic footprinting was

not performed. In both cases, there was an observed exponential distribution with

parameters that vary by the total amount of base pairs analyzed. We had expected that while

there were numerous false positives generated via standard transcription factor binding site

prediction that transcription factor binding sites were more prevalent in “true” regulatory

regions that were conserved through evolution than over the baseline rate. However, we did

not find a greater affinity for transcription factor binding sites to be localized to regions of

evolutionary conservation than over that of non-evolutionary conserved segments of the 5′

region. So while there was a difference in the parameters for the rat/human case vs. rat/
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mouse case, it was not due specifically to the presence of certain conserved regions that

were present in the different species, but rather due only to the length of the sequence being

analyzed. Had there been a true species dependent conservation of phylogenetic

footprinting, then the correlation between the parameters which fit the curves in Figs. 3 and

4, ought not to be accurate correlated with the length of the promoter sequence to be

analyzed.

This leads to the hypothesis that the primary driving force in the number of times a given

transcription factor occurs within a gene cluster is driven by the length of the promoter

region analyzed. Furthermore, the general fit of the exponential distribution in both cases

suggests that the phylogenetic footprinting does not add information to the system. If

phylogenetic footprinting in its current formulation is correct, then it should be able to

extract a set of regulatory hotspots in which the presence of transcription factors were over-

represented. If this were the case, then there wouldn’t be a correlation between the

parameters for the exponential distribution and the length of the promoter regions being

analyzed. However, this was found not to be the case. There was no greater probability for

transcription factors in the regions conserved via phylogenetic footprinting.

While it has been shown that the probability of a transcription factor “hit” is dependent upon

the length of the sequence analyzed, the number of transcription factors that are actually

conserved over a high number of genes cannot be. If the probability for a transcription factor

to be highly conserved in >95% of the genes per cluster is around 4% one would expect

around 18 transcription factors to show similar conservation. However, we find that this is

not the case, The number of transcription factors that are highly conserved in the rat/mouse

case range from 1 to 8 after the highly non-specific transcription factors have been

eliminated. This is due primarily to the fact that while the exponential distribution is a

reasonable fit for the data, the tail end of the distribution, i.e. the highly conserved

transcription factors, deviate from the exponential distribution.

What is evident in Fig. 6 is that the graph is bimodal with a linear regime that describes the

random occurrences of transcription factors, and a nonlinear regime in which the

transcription factors show a non-random occurrence rate. This suggests that by lumping the

genes by their expression profile together, it allows one to isolate a set of transcription

factors that have a high probability of being active under the experimental regime. Taking

into account the random trial, one can further cut down on the number of isolated

transcription factors by removing the non-specific initiators of transcription, i.e. those that

are part of widespread signaling cascades.

In Fig. 7, we illustrate what we term the “parameter gap”. In all of the cases shown in Fig. 6,

we were able to get a better fit in terms of the R2 value if we fitted the genes that were

conserved over a few genes. This “parameter gap” allows for the determination of both the

limits of the expected number of transcription factor binding sites in a given cluster and the

limits of the conservation rate. In this case, the bounds for the expected number of

transcription factors are 0–18, and the bounds for the conservation rate is 80–100%. This

allows us to discount human/rat phylogenetic case as isolating any transcription factor
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binding sites that co-regulate a cluster, and allows us to calculate the p-values for the

number of transcription factor binding sites in a cluster.

While the presence of STAT6 and STAT5 are highly non-specific, we feel that the results

are still rather interesting. Given the relative promiscuity of the transcription factor for

genes, we believe that presence of STAT5 and STAT6 show the relative widespread effects

of the various JAK-STAT pathways that are activated by cytokines and growth factors.15

Further examination of their binding matrices on TRANSFAC shows the fact that the

STAT5 and STAT6 are highly nonspecific with base specificity in 3/8 and 4/8 of the binding

matrix, leading to a high rate of positive hits in the promoter region. We hypothesize that the

relative promiscuity of the STAT5 and STAT6 transcription factor makes it a possible

candidate as one of the primary initiators of transcription, and that it is the other cluster

specific transcription factors binding sites that serve to control the relative shapes of the

expression profiles.

However, for many of the other transcription factors such as CDX (Caudal-type

homeodomain protein), AP2-Alpha (activating enhancer binding protein 2), USF (Upstream

Stimulating Factor), GATA6 (GATA Binding Protein 6), and PAX4 (Paired Box Gene 4)

their presence within the various clusters are more specific. Utilizing information from

iHOP,18 it is possible to establish links between them and the effects of corticosteroid

administration. For the transcription factors GE II, Sry and CIZ, there was not sufficient

information about their functions in the context of corticosteroid response to make a

meaningful evaluation.

For these five transcription factors, the RG-U34A microarray had expression data on four of

them (CDX, USF1, AP2-Alpha and PAX4). Of these, CDX and USF were down-regulated

after the administration of corticosteroids, while the rest of the transcription factors are up-

regulated. The down-regulation of CDX may be evidence of the suppression of proliferation

by corticosteroids. CDX has been characterized as a regulator of cancer cell proliferation

and is often up-regulated in malignant tumors.17 Therefore, it would follow that the down-

regulation of this transcription factor would lead to the suppression of cellular proliferation,

one of the hallmarks of malignant tumors. The down-regulation of USF is characteristic of

the decrease in lipid and glucose metabolism by the liver,23 leading to the increase in the

levels of circulating free fatty acids and glucose in the bloodstream leading to the associated

steroid induced diabetes.

The up-regulation of AP2-Alpha could again be evidence of the suppression of cellular

proliferation by corticosteroids. AP2-Alpha has been cited as a tumor suppressor,38 and

combined with the down regulation of CDX, it may point to the mechanism by which

corticosteroids suppress cellular proliferation. PAX-4 is normally associated with the

differentiation of beta islet cells in the pancreas. This is consistent with the observation that

the levels of circulating glucose are increased via administration of corticosteroids. However

while its presence in the liver has not been substantiated in the literature, it is conceivable

that given that it is active in one organ under administration of corticosteroids, that it could

play a less visible though still important role in the liver as well. An interesting question that

arises from this observation is whether or not the differentiation of beta islet cells in the
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pancreas is driven primarily by the levels of circulating glucose levels, or whether it is

driven by the levels of corticosteroid.

We acknowledge that there is significant disagreement between the results that we have

obtained and those obtained via phylogenetic analysis. However, we feel that our results are

correct, given its success at identifying possible co-regulators. The fact that the algorithm

has identified a very small subset of transcription factors that show significant biological

roles related to the pharmacological effect of corticosteroid leads us to believe that the

algorithm has been successful in predicting transcription factor/gene relations. Such data

will allow us to build regulatory networks that can be used to build PK/PD models which

will allow us to predict the behavior of the system under different dosing conditions.

If the disagreement between the results obtained from the presented method and

phylogenetic footprinting is a paradox rather than a contradiction, an interesting possibility

arises. Currently, there is a similar and perhaps related paradox in the field of transcriptional

network analysis. It has been widely noted that maps of transcriptional interactions appear to

have a scale-free topography in which the distribution of links between different genes

follows an exponential distribution. 20,25,35 However, is has also been observed that despite

the apparent scale free nature of the network, biological transcription networks illustrate a

higher degree of robustness than could be normally explained via a scale free network.6

Specifically that the removal of a large number of hubs are not lethal to an organism. It has

been shown that in yeast, the removal of 28 out of 33 highly connected hubs did not lead to

the death of the given yeast cells6 with little correlation between the connectivity of a node

and its importance to viability. Additionally, simulations which explore the evolution of

metabolic networks have resulted in networks that contain the existence of hubs but do not

exhibit a clear power law32 in their network connectivity suggesting there are non scale-free

elements in the overall network.

Both the analysis of the random clusters of genes as well as the transcriptional networks

obtained via phylogenetic analysis seem to confirm the existence of a scale-free network as

evidenced by the exponential distribution of links between transcription factors and a set of

genes. Such an observation can be justified by the fact that some transcription factors appear

to be highly selective while others such as STAT5 and STAT6 appear to be highly

promiscuous. However, as shown in Fig. 6, there also appears to be a significantly non-

exponential portion to the distribution. This suggests that the genes in a cluster and their

respective co-regulators may not follow a scale free network. Our hypothesis is that while

the overall topography of a network is scale free, if one were to look at important response

pathways, one may obtain a sub-graph with a different topography given the need to

maintain a high degree of robustness. This means that there are certain co-expressed genes

in which the pathway is common over multiple organisms which have a evolutionarily

conserved transcription factor binding sites. However, there are also genes that augment this

central pathway which contain regulatory regions that may be species specific.

We find this notion attractive given the fact that it has been shown that rats and humans

often have different responses to medication or treatment regimens12 despite the fact that the

same primary pathway is being targeted. Given the relative importance of the highly
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connected hubs in many different biological processes, these auxiliary genes would allow

the system to maintain consistency within the primary response pathway in the presence of

significant cross-talk between different signaling pathways as well as perturbations such as

disease or injury.

If this were the case, then it would allow us to reconcile our results with those obtained

through standard phylogenetic footprinting. The network corresponding to the links

extracted via phylogenetic analysis may correspond to the primary response pathways, i.e.

those that code for enzymatic products that the organism uses to deal with alterations to

homeostasis are evolutionarily conserved. The results obtained via our algorithm includes

this primary response pathway as well as the extra links that give the network a composite

characteristic rather than a simple scale free architecture.

Assuming that this hypothesis is correct, then the following questions arise: What are the

properties of this network; Can we find this sub-network efficiently given the properties; If

we identify this network, can we show that the genes that make up the nodes of the network

are co-expressed? If these questions can be answered in the affirmative, then it would give a

powerful tool to molecular biologists in the identification of key pathways. Currently, we

can only provide a vague notion as to what the property of this transcriptional sub-network

would be, namely that it should be robust to the removal of highly connected hubs, i.e. the

removal of a hub would not separate the network into two disjoint subsets thus rendering it

non-functional.

CONCLUSION/FUTURE WORK

The primary goal behind the prediction of transcription factor binding sites is the creation of

a global gene interaction network that can be used to predict an organism’s response to

different stimuli. Therefore, it is our contention that any sort of network must be coherent

with experimental results. Our initial analysis of the results of transcription factor binding

sites via phylogenetic footprinting suggests that oftentimes this is not the case, and that there

were many genes that were co-expressed that did not appear to be co-regulated under the

experimental regime. While it is plausible and highly likely that unrelated regulatory factors

can lead to co-expression, it is our belief that the bulk of co-regulated genes ought to have

similar regulatory mechanisms given prior work by Wolfe et al.40 Therefore we focused

whether it was possible to predict a set of transcription factors that would give rise to the

observed co-expression. Our method focused primarily upon the notion that instead of

eliminating false positives by comparing the predictions between different organisms, we

ought to be able to eliminate false positives by comparing predictions between different

genes which show the same response.

Ideally, there results between the two methods should agree to a large extent. However, the

results which we obtained were different from those obtained through phylogenetic analysis,

and lead to the following conclusions. Either there was a paradox and both methods gave

correct answers, one of the methods is correct, or neither of the methods is correct. Out of

these possibilities, we found the first consequence the most intriguing because if one

assumes the correctness of both, it provides a mechanism for the possible elucidation of
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primary response pathways in a highly connected network structure, an explanation for the

phenomenon of differing side effects in different organisms, and resolving the paradox of a

highly robust scale-free network.

Additionally, we believe that we have found only the transcription factors that are active

under a given condition, which is not the overall set of transcription factors. We believe that

with additional experiments of the response of an organism under different conditions it

would be possible for us to isolate a set of transcription factors that are active under those

conditions in order to obtain a clearer picture as to the overall regulatory structure of the

organism as a whole. Therefore an iterative processes in which every new experiment yields

a few transcription factors can eventually lead to a more complete picture as to the network

regulatory structure.
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APPENDIX 1

1. The normalization of the gene expression profile to N(0,1) via the z-score

transform.

2. If the sequences are longer than 10 time points, piecewise averaging is conducted,

i.e. averaging together sets of n time points to reduce the exponential expansion of

the search space. In the case of our data, the 17 time points are interpolated to 18

time points, and the time series are broken down into sets of 2 to be piecewise

averaged

3. These piecewise averaged points are then converted into symbols through the use

of Gaussian breakpoints. Gaussian breakpoints are divisions in the Gaussian

distribution such that the cumulative probability of each section are equivalent.

These can be obtained through the use of CDF tables found in statistics text books

or by solving the following equation for b:

The overall process of assigning a letter to each piecewise averaged point is

illustrated in below:
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4. After the symbolic transformation, the series of symbols is converted into a single

integer via the formula:

Where c is the letter assigned to each piecewise averaged point, a is the size of the

alphabet,27 and w is the total length of the expression profile divided by the number

of points per piecewise average.31 The parameters of the alphabet were selected to

so that the population distribution of motifs is non-exponential, to reflect the non-

random distribution of expression profiles present in the data. w was chosen to

preserve as much of the high frequency component of the signal as possible.

APPENDIX 2

i. k = 0, S(k) = ∅, D(k) = −∞, max = −∞

ii. k = k + 1

iii. h* = arg max N(h), N(h) = number of genes with corresponding hash value h

iv. G(k) = {gi:hash(gi) = h*}, the subset of genes that hash to h

v. Evaluate F(Ygi(t)); t = 0,…, T; gi ∈ Σ

vi.

Evaluate 

vii. If D(k) > max

viii. Max = D(k); F = k;

ix. Go to (ii) until all peaks have been added

x. For a = 1 to F

xi. Select Σ = S(a − 1) ∪ G(a)
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FIGURE 1.
A sample cluster obtained from SLINGSHOTS. All of the clusters show a reasonably

correlation to the average normalized profile.
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FIGURE 2.
The Occurrence rate of transcription factor binding sites when random genes are grouped

together. (Top) The exponential distribution. (Bottom) A Log linearized version of the plot.

(Note: the tail end agrees well with the overall exponential distribution).
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FIGURE 3.
Distribution for the rat/mouse case that shows the number of transcription factors that are

found in a given number of genes for the different clusters. Upon the initial observation, we

find that the distribution can be modeled as an exponential distribution. The red curve was

obtained via parameter estimation from the distribution mean and standard deviations.
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FIGURE 4.
Distribution for the rat/human case that shows the number of transcription factors that are

found in a given number of genes for the different clusters. Upon the initial observation, we

find that the distribution can be modeled as an exponential distribution. The red curve was

obtained via parameter estimation from the distribution mean and standard deviations.
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FIGURE 5.
The parameters used to fit the exponential distribution vs. the cluster population. This linear

trend further reinforces our contention in our belief that the CDF representing the number of

times a transcription factor is present amongst a set of genes is governed only by the length

of sequence analyzed. Note that in both the cases, the parameters show a good linear fit.

This suggests that phylogenetic footprinting in the Rat/human case has not selected for

sequences in the promoter region that show a greater number of correct promoter regions.
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FIGURE 6.
Log Normalized version of Fig. 3. The lines are fits obtained by fitting those transcription

factors that are not highly conserved within a cluster. What is evident is that there are a

number of transcription factors at the tail region that cannot be adequately modeled by the

exponential distribution suggesting a non-random preference for a given cluster of genes.

Yang et al. Page 23

Ann Biomed Eng. Author manuscript; available in PMC 2014 October 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



FIGURE 7.
This illustrates the gap caused by fitting all of the data, and fitting only the first ten data

points. The number of informative transcription factors should be less than the expected

value if the exponential distribution is estimated from all of the data, and greater than the

expected value of the exponential distribution accounts only for the first ten points. R2 value

in with the first 10 data points is 0.74 and 0.69 when all of the data was used.
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TABLE 1

THE STATISTICS WHICH DESCRIBE THE DISTRIBUTION OF TRANSCRIPTION FACTORS PER

CLUSTER.

Transcription factor occurrence statistic

Mouse/Rat Human/Rat

Cluster Mean number of occurrences Standard deviation Mean number of occurrences Standard deviation

1 7.26 6.44 3.44 3.80

2 10.95 10.80 5.59 5.74

3 6.78 6.02 3.90 3.15

4 9.65 9.57 5.68 5.89

5 5.51 4.60 3.21 2.97

6 11.01 11.68 5.66 6.69

7 5.81 4.48 3.51 2.99

8 7.54 6.69 3.41 3.44

9 8.41 6.58 4.33 4.07

10 5.96 5.00 3.11 3.15

11 7.56 6.64 3.42 3.45

12 10.40 10.10 4.63 5.78

The similarity between the means and standard deviations suggest that the distribution can be modeled via an exponential distribution. The results
of this chart suggest that the primary driving force in the number of times a transcription factor is found within a gene is the length of the promoter
region being analyzed.
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TABLE 2

TRANSCRIPTION FACTORS CONSERVED MORE THAN 80% OF THE TIME BETWEEN HUMAN

AND RAT.

Cluster Transcription factors

1 STAT 6

3 STAT 6

4 STAT 6

5 STAT 6

7 STAT 6 STAT5

9 STAT 6 TEF-1

10 TEF-1

12 STAT 6

Note that 4 of the clusters (2,6,8,11) do not contain highly conserved transcription factors and that all of the transcription factors are those that are
highly represented in the genome.
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