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Abstract

Purpose—Activated signal transducer and activator of transcription 3 (STAT3) regulates tumor

growth, invasion, cell proliferation, angiogenesis, immune response and survival. Data regarding
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expression of phosphorylated (activated) STAT3 in diffuse large B-cell lymphoma (DLBCL) and

the impact of phosphorylated STAT3 (pSTAT3) on prognosis are limited.

Experimental Design—We evaluated expression of pSTAT3 in de novo DLBCL using

immunohistochemistry, gene expression profiling and gene set enrichment analysis. Results are

analyzed in correlation with cell-of-origin, critical lymphoma biomarkers and genetic

translocations.

Results—pSTAT3 expression was observed in 16% of DLBCL and was associated with

advanced stage, multiple extranodal sites of involvement, activated B-cell-like (ABC) subtype,

MYC expression and MYC/BCL2 expression. Expression of pSTAT3 predicted inferior overall

survival (OS) and progression-free survival (PFS) in de novo DLBCL patients. When DLBCL

cases were stratified according to cell-of-origin or MYC expression, pSTAT3 expression did not

predict inferior outcome, respectively. Multivariate analysis showed that the prognostic

predictability of pSTAT3 expression was due to its association with the ABC subtype, MYC

expression and adverse clinical features. Gene expression profiling demonstrated up-regulation of

genes, which can potentiate function of STAT3. Gene set enrichment analysis showed the JAK-

STAT pathway to be enriched in pSTAT3+ DLBCL.

Conclusions—The results of this study provide a rationale for the ongoing successful clinical

trials targeting the JAK-STAT pathway in DLBCL.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma and

encompasses a heterogeneous group of tumors with several variants, subgroups and

subtypes or entities (1). With the current standard treatment of rituximab,

cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP), 5-year overall

survival for all patients with DLBCL ranges from 30 to 50% (2). Gene expression profiling

(GEP) has identified distinct molecular subtypes, in particular the germinal center B-cell-

like (GCB) and activated B-cell-like (ABC) DLBCL (3). The introduction of rituximab in

the past decade has improved the survival of DLBCL patients (4), but patients with ABC-

like DLBCL still display a worse outcome (5).

STAT3 is a member of the signal transducer and activator of transcription (STAT) family of

transcription factors. In unstimulated cells, STAT3 is inactive and located in the cytoplasm.

STAT3 is usually activated by growth factors and cytokines, such as IL-6 or IL-10 (6, 7).

Activation of STAT3 is mediated by phosphorylation of a tyrosine residue (Tyr 705), which

induces STAT3 dimerization and translocation to the nucleus (8). STAT3 transcriptional

activity and DNA binding can be further modified by phosphorylation of Ser 727 (9) or

p300-mediated acetylation at Lys 685 (10). Activated STAT3 regulates tumor growth,

invasion, cell proliferation, angiogenesis, immune response and survival (11, 12).

Constitutive activation of STAT3 has been shown in several solid tumors, including

melanoma (13) and carcinomas of the lung (14), breast (15), ovary (16), colon (17), and
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prostate (18), while STAT3 mutation is not a frequent event in cancers with the exception of

T-cell large granular lymphocytic leukemia (19).

Both in vitro and in vivo studies have shown that STAT3 is found to be preferentially

activated in the ABC DLBCL (20, 21). In some earlier studies with a limited number of

DLBCL patients treated with R-CHOP (22) or epratuzumab/R-CHOP (23), pSTAT3

expression did not show significant survival differences. However, in a very recent cohort

study of DLBCL patients treated with R-CHOP, pSTAT3 expression predicted poorer

outcome (24). In the present study, we evaluated the prevalence of pSTAT3 expression, its

prognostic value and potential molecular insight in a large cohort (n=443) of patients with

DLBCL receiving R-CHOP.

MATERIALS AND METHODS

Patient selection

A cohort of 443 patients with de novo DLBCL treated with the standard R-CHOP regimen

was collected as part of The International DLBCL Rituximab-CHOP Consortium Program

Study (25). All cases were centrally reviewed by a group of hematopathologists and

classified according to the World Health Organization classification criteria (1). Cases that

were excluded from this study included: large cell transformation of low-grade B-cell

lymphoma, immunodeficiency-associated lymphoproliferative disorders (especially human

immunodeficiency virus infection), primary mediastinal large B-cell lymphoma, primary

cutaneous B-cell lymphoma, and primary central nervous system DLBCL. All patients had

sufficient clinical and follow-up data. The present study was conducted in accord with the

Declaration of Helsinki. Utilization of archived diagnostic tissue samples and therapy and

outcome data procurement was approved by the Institutional Review Boards (IRBs) of all

participating collaborative institutions. The overall study was approved by the IRB at The

University of Texas MD Anderson Cancer Center in Houston, Texas, USA.

Tissue microarray immunohistochemical studies

Representative areas with the highest percentage of tumor cells were selected for tissue

microarray (TMA) construction as described previously (5). Immunohistochemical (IHC)

studies for various markers were performed; B-cell lymphoma 2 (BCL2), B-cell lymphoma

6 (BCL6), cyclin D1, CD10, CD30, Forkhead box protein P1 (FOXP1), Germinal Center B

cell-expressed Transcript-1 (GCET1), Multiple Myeloma Oncogene 1 (MUM1), MYC,

Nuclear factor-κB (NF-κB) components (p50, p52, p65, and c-Rel), p53, phosphorylated

protein kinase B (pAKT), and phosphorylated signal transducer and activator of

transcription 3 (pSTAT3). Receiver-operating characteristic (ROC) curves and X-tile

analyses were utilized to assess a cutoff (5). When an optimal cutoff could not be

determined by ROC curve and X-tile analyses, a conventional cutoff value for individual

markers was decided based on previous reports in the literature. The cutoff scores for these

markers were as follows: 10% for cyclin D1; 20% for CD30 and p53; 30% for CD10, and

BCL6, 40% for MYC; 50% for pSTAT3; 60% for GCET1, MUM1 and FOXP1; and 70%

for AKT and BCL2. All markers except cyclin D1 were determined by ROC curve. Any

nuclear expression of each NF-κB component was considered positive.
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Fluorescence in situ hybridization and TP53 sequencing

Fluorescence in situ hybridization (FISH) analysis was performed on formalin-fixed,

paraffin-embedded tissue sections using BCL2 and BCL6 dual-color break-apart probes

(Vysis, Downers Grove, IL), locus-specific IGH/MYC/CEP8 tricolor dual-fusion probes

(Vysis, Downers Grove, IL) and a locus-specific MYC dual-color break-apart probe (Vysis,

Downers Grove, IL) as reported (26). TP53 exon sequencing was performed as described

previously (27). Sequencing data was compared with the TP53 reference sequence

(NC_000017.10) in the Genbank database for data analysis.

Gene expression profiling and gene set enrichment analysis

Total RNA was extracted from formalin-fixed, paraffin-embedded tissue samples using the

HighPure RNA Extraction Kit (Roche Applied Science, Indianapolis, IN) and subjected to

gene expression profiling (GEP) as described previously (5). The robust multi-array analysis

(RMA) algorithm was used for background correction (28), and then quantile normalization

was conducted (29). Cell of origin (COO) classification was determined primarily based on

GEP data and secondarily on immunohistochemical results using the Visco-Young

algorithm as described previously (5).

Gene set enrichment analysis was performed with GSEA application (Broad Institute at

MIT, Cambridge, MA) using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

gene sets (186 gene sets). GSEA results with false discovery rate (FDR) ≤ 0.3 were

considered to be significant.

Statistical analysis

Comparison among categorical variables and numerical variables were carried out by using

the Fisher’s exact test and Kruskal-Wallis test, respectively. OS and PFS were defined from

the date of diagnosis to the date of last follow-up or death and from the date of diagnosis to

the date of progression or death, respectively. Survival probability was determined using the

Kaplan-Meier method, with difference compared by the log-rank test. A Cox proportional-

hazards model was used for univariate and multivariate analysis. All variables with P<0.05

were considered to be statistically significant. SPSS Statistics V21 (IBM, Chicago, IL),

GraphPad Prism V5 (GraphPad software, La Jolla, CA) and X-Tile version 3.6.1 (Yale

University, New Haven, CT) were used for statistical analyses.

RESULTS

pSTAT3 expression is associated with poor outcome

The clinical features of the patient cohort are similar to that of our prior studies (30).

Nuclear expression with or without cytoplasmic expression of pSTAT3 in large atypical

lymphoid cells was regarded as positive in association with intensity (Figure S1). Expression

of pSTAT3 in small, mature lymphocytes was disregarded. Clinical characteristics of

patients with pSTAT3+ versus pSTAT3− DLBCL are summarized in Table 1. pSTAT3 was

positive in 72 (16%) patients of which 49 were men and 23 women. pSTAT3+ DLBCL did

not show distinct morphologic features compared to pSTAT3− DLBCL, having

predominantly centroblastic morphology. Advanced stage (66% vs. 52%, p=0.036),
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involvement of multiple extranodal sites (33% vs. 20%, p=0.026) and the ABC subtype

(67% vs. 45%, p=0.001) were more commonly observed in pSTAT3+ DLBCL compared

with pSTAT3− DLBCL. Significant differences with respect to pSTAT3 expression were

not observed for gender, age, B symptoms, ECOG score, serum LDH, IPI, tumor size and

treatment response (p>0.05).

Patients with pSTAT3+ DLBCL had significantly worse OS and PFS compared with

patients with pSTAT3− DLBCL (Figure 1-A and B). The 5-year OS was 48.8% for

pSTAT3+ DLBCL and 64.7% for pSTAT3− DLBCL patients (p=0.014). The 5-year PFS

was 39.9% for pSTAT3+ DLBCL and 56.2% for pSTAT3− DLBCL patients (p=0.016). The

median OS was 56.9 months (95% CI, 18.1–95.7) for patients with pSTAT3+ DLBCL and

was not reached for pSTAT3− DLBCL patients. The median PFS were 43.5 months (95%

CI, 21.1–65.8) for pSTAT3+ DLBCL and 78.7 months (95% CI, 61.9–95.5) for pSTAT3−

DLBCL patients.

When stratified into GCB and ABC subtypes, patients with pSTAT3+ DLBCL showed a

trend suggestive of inferior OS compared with pSTAT3− DLBCL patients in the GCB

subgroup (p=0.189) and the ABC subgroup (p=0.089), respectively (Figure 1-C and E).

Patients with pSTAT3+ DLBCL had worse PFS in the GCB subgroup (p=0.044), but only

showed a trend in the ABC subgroup (p=0.325) (Figure 1-D and F). Separating stage I–II vs.

III–IV, pSTAT3 retained prognostic value in the lower stage subgroup (p=0.008 for OS and

p=0.021 for PFS), but not in the advanced stage subgroup (p=0.591 for OS and p=0.441 for

PFS). In the patient subgroup with < 2 extranodal sites of involvement, pSTAT3 predicted

poorer prognosis (p=0.029 for OS and p=0.028 for PFS), but not in patients with ≥ 2

extranodal sites (p=0.958 for OS and p=0.881 for PFS).

We also measured STAT3 mRNA levels and evaluated if STAT3 mRNA level correlated

with pSTAT3 expression. To measure mRNA expression of the STAT3 gene, from the GEP

dataset, we retrieved the intensity of four STAT3 probe-sets and used the average value as

STAT3 expression at the mRNA level. Patients were divided into 3 groups for survival

analysis according to the mean values of mRNA expression: low STAT3 mRNA (< mean –

one standard deviation), high STAT3 mRNA (> mean + one standard deviation), and

intermediate STAT3 mRNA levels (the remaining cases). The mean values of pSTAT3

expression in cases with low, intermediate and high STAT3 mRNA were 12%, 22% and

36%, respectively, showing correlation between STAT3 mRNA and pSTAT3 expression

(p=0.0002) (Figure S2). However, STAT3 mRNA did not show significant difference with

respect to OS in all cases (p=0.1487) and ABC DLBCL (p=0.6183). Although significant

stratification was seen in GCB DLBCL, cases with high STAT3 mRNA and low mRNA

showed the best and worst survival, respectively. Seven cases with high STAT3 mRNA in

GCB DLBCL is insufficient number to achieve statistical power and could be an random

event. The worse prognosis in cases with low STAT3 mRNA could be due to contamination

from background inflammatory cells.

pSTAT3 expression is associated with MYC and MYC/BCL2 expression

Immunohistochemical and genetic characteristics of pSTAT3+ and pSTAT3− DLBCL are

summarized in Table 2. An association between STAT3 and the MYC and BCL2 genes has
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been reported previously by other investigators in limited patient series (31, 32). Therefore,

in this study we comprehensively assessed MYC and BCL2 expression with respect to

pSTAT3, in association with genetic aberrations. MYC and MYC/BCL2 double expression

were more commonly observed in pSTAT3+ DLBCL cases (p<0.001 and p=0.001,

respectively). However, BCL2 expression was not significantly different in DLBCL cases

positive or negative for pSTAT3 expression (p=0.420). Rearrangements of BCL2, BCL6 or

MYC detected by FISH did not show any significant differences between pSTAT3+ DLBCL

and pSTAT3− DLBCL (p>0.05). One pSTAT3+ case (2%) showed rearrangements of both

MYC and BCL6 genes and no case had coexistent MYC and BCL2 rearrangements.

Regarding TP53 exon mutations detected by sequencing, TP53 gene deletions detected by

FISH, or p53 expression, there were no significant differences between pSTAT3+ and

pSTAT3− DLBCL cases (p>0.05). Stratifying our cohort according to p53 expression,

pSTAT3+ DLBCL showed a significant worse outcome in OS (p=0.016) and PFS (p=0.024)

in the p53 negative group (Figure 2-A and B). A total of 13 (19%) DLBCLs harbored TP53

mutations. All of the TP53 mutations were confined to exons 4 to 8, which are the most

critical sites for DNA binding (33). Eleven cases were missense mutations and 2 cases were

nonsense mutations.

Association of pSTAT3 expression with NF-kB components, cyclin D1 or pAKT

Cooperation of STAT3 and NF-κB is well known (21, 34). However, few studies have

correlated expression of individual NF-κB components (p50, p52, p65 and cRel) with

pSTAT3 expression. In this study, a significant trend that p52 single component and

p52/p65 dimer were more commonly observed in pSTAT3+ DLBCL compared to pSTAT3−

DLBCL (p=0.05 and p=0.081, respectively). Other NF-κB single components or

combinations of NF-κB dimers (p50/p65, p50/cRel, and p52/cRel) were not more commonly

expressed in pSTAT3+ DLBCL (p>0.05). Neither the classical NF-κB pathway (p50/p65 or

p50/cRel), nor the alternative NF-κB pathway (p52/p65 or p52/cRel), nor both showed

significant association with pSTAT3 expression (p>0.05).

Cyclin D1 is a known downstream target of pSTAT3 (35) and protein kinase B (AKT) can

be activated via the JAK/STAT pathway (36). Therefore we assessed protein expression of

cyclin D1 and pAKT in this study. Neither cyclin D1 nor pAKT protein expression was

significantly different between pSTAT3+ DLBCL and pSTAT3− DLBCL (p>0.05).

Multivariate Analysis of Prognostic Parameters

Stratified according to MYC expression, the prognostic effect of pSTAT3 was abrogated in

patients with MYC+ DLBCL (p=0.966 for OS and p=0.818 for PFS) (Figure 2-C and D).

Survival analysis was not performed in MYC- group because only 4 MYC-/pSTAT3+ cases

were present. Stratifying DLBCL cases into MYC/BCL2 protein double positive (DP) and

non-double positive (non-DP) groups, pSTAT3 showed no effect on survival in the DP

(p=0.745 for OS and p=0.592 for PFS) as well as the non-DP patient subgroups (p=0.388 for

OS and p=0.281 for PFS) (Figure 2-E, F, G and H). When stratifying DP and non-DP

subgroups into COO classification, no effect on survival was seen (Figure S3 and Table S1).
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Univariate analysis identified advanced age, multiple extranodal sites of involvement, ABC

subtype, pSTAT3 expression and MYC expression increased hazard in patients with de novo

DLBCL (P<0.05 in all variables). Multivariate analysis using these 5 variables demonstrated

that pSTAT3 is not an independent variable (p=0.460 for OS and p=0.523 for PFS). All the

other variables were significant (Table 3).

GEP and GSEA of pSTAT3+ DLBCL

To further characterize pSTAT3+ DLBCL, we compared the GEP signatures of pSTAT3+

and pSTAT3− DLBCL using the Affymetrix HGU133plus2 platform (Affymetrix, Santa

Clara, CA, USA) (Figure 3A). With a false discovery rate (FDR) threshold of 0.3, a total of

26 genes were differentially expressed between the two groups including 15 up-regulated

genes and 11 down-regulated genes in pSTAT3+ DLBCL. Among the up-regulated genes in

pSTAT3+ DLBCL, STAT3, IL2RA, CD44, EPHA4, and CDK5R1 were significant.

Upregulation of the IL2RA gene suggests a positive feedback mechanism of pSTAT3

because IL-2 activates STAT3 via activating Janus kinase (JAK). CD44 can acetylate and

dimerize STAT3 in a growth factor- and cytokine-independent manner and has been shown

to be involved in cell migration, tumor invasion and metastasis, potentiating STAT3

function and partially explaining the adverse outcome in pSTAT3+ DLBCL (37). EPHA4

encodes ephrin receptor A4, which has receptor tyrosine kinase activity. CDK5R1 encodes

CDK5/p35, which is a downstream target molecule of ephrin receptor A4 and it expression

has been shown to predict inferior survival in patients with non-small cell lung cancer (38).

Many of the down-regulated genes encode proteins of unknown function. Huang et al

proposed a prognostically valuable 11-gene signature in PY-STAT3+ DLBCLs (24). The 11

genes were HSD17B4, MT1X, NAT8L, PCNX, RHEB, RNF149, SLA, SLC2A13, ZNF805,

C15orf29 and ZNF420. However, few of these genes (RHEB, PCNX and ZNF420) were

expressed with marginal significance for survival in our cohort and combination of the 11-

genes showed overall significant trend (p=0.07). GSEA analysis showed trends for several

gene sets, including the JAK-STAT pathway gene set, being enriched in pSTAT3+

DLCBCL (Figure 3-B).

DISCUSSION

In the present study, 16% of de novo DLBCL cases expressed pSTAT3. The prevalence of

pSTAT3 expression in DLBCL is lower than that reported in earlier studies in which 30–

40% of DLBCL expressed pSTAT3 (22, 24, 39, 40). Of note, pSTAT3 expression are 67%,

51%, 34%, 23%, 16%, and 11% if the pSTAT3 cutoffs are 10%, 20%, 30%, 40%, 50% and

60%, respectively (Table S2). With 30% cutoff, the prevalence of pSTAT3 expression is in

similar range to prior data. However, our cutoff value for pSTAT3 was determined based on

a ROC curve to achieve optimal sensitivity and specificity. Compared to survival analysis

using 50% cutoff (Figure 1), 30% cutoff does not show any significant differences between

pSTAT3+ DLBCL and pSTAT3− DLBCL (Figure S4). Furthermore, no clinical differences

are observed between the two groups using 30% cutoff except COO classification (Table

S3). We additionally conducted survival analysis in 4 separate quartile groups (Q1: <30%,

Q2: ≥30% and <50%, Q3: ≥50% and <70%, and Q4: ≥70%, Table S4). Although overall

quartile analysis showed significant stratification, Q3 and Q4 did not show significant
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difference (Figure S5, lower row). Merging Q3 and Q4, we conducted survival analysis in 3

groups (T1: <30%, T2: ≥30% and <50%, T3: ≥50%, Table S5). T2 and T3 showed

significant difference, whereas T1 and T2 did not (Figure S5, upper row). Based on our

analysis, we chosed 50% as an optimal cutoff for pSTAT3 expression. With 50% cutoff, we

could minimize possible contamination of pSTAT3 expression in non-lymphoma cells. As

has also been shown by others (22–24, 39), pSTAT3 was more commonly expressed in

ABC-DLBCL. Such a finding can be explained by Ding et al who showed STAT3 gene

transcription was negatively regulated by BCL6, hence providing a basis for STAT3

activation in ABC-DLBCL (20). We also showed that STAT3 mRNA level is quantitatively

correlated with pSTAT3 expression. (Figure S2)

We showed that pSTAT3 expression in de novo DLBCL is associated with adverse

outcome, confirming a similar observation by Huang et al and Meier et al (24, 40). We could

not, however, show that pSTAT3 expression is an independent prognostic factor in DLBCL

patients in multivariate analysis (Table 3). Furthermore, pSTAT3 expression is associated

with MYC expression and MYC/BCL2 double expression. However, when MYC expression

was controlled, pSTAT3 did not significantly predict prognosis (Figure 2). In cases with

MYC/BCL2 DP or non-DP, significant difference was not observed, either. No survival

difference was seen after stratified into GCB/ABC in DP and non-DP groups (Figure S4).

Furthermore, multivariate analysis did not identify pSTAT3 as an independent hazard.

Instead, other variables, such as stage, cell-of-origin classification and MYC expression,

were shown to be independent prognosticators (Table 3). We additionally conducted

bivariate analyses including each variable in the multivariate analysis and pSTAT3

expression to see if increased hazardous effect of pSTAT3 is observed (Table S6). pSTAT3

did not show increased hazard except when pSTAT3 co-analyzed with ABC phenotype.

Therefore, inferior outcome of patients with pSTAT3+ DLBCL appeared to be a result of

the associated poor prognostic indicators such as advanced stage disease and multiple

extranodal sites of involvement. Interestingly, in patients with less aggressive or advanced

disease such as limited stage (stage I or II), involvement of < 2 extranodal sites, absence of

p53 expression, or GCB-type DLBCL, pSTAT3 expression showed a worse outcome. Our

data therefore suggest that pSTAT3 expression predicts poor outcome in less aggressive/

advanced DLBCL, but it does not provide additional survival impact in patients with

advanced disease or with already known poor prognostic factors including MYC expression

or BCL2/MYC co-expression (23, 30, 41).

The results of GEP analysis in this study showed that pSTAT3+ DLBCL is distinct from

pSTAT3− DLBCL. Many of the up-regulated genes, such as STAT3, IL2RA, IL1B, EPHA4,

and CDK5R1 in pSTAT3+ DLBCL contain several binding sites for STAT3 in their

promoters and some of the up-regulated genes have been reported to correlate with

aggressive features in carcinomas (37, 38). The results of GSEA also provide evidence that

the JAK-STAT pathway is enriched in pSTAT3+ DLBCL, although the statistical

significance is marginal. In a recent study by Huang et al (24), the authors suggested that an

11-gene signature was associated with poor OS in patients with STAT3+ DLBCL, treated

with CHOP and R-CHOP, respectively, without achieving statistical significance. Some of
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these genes were marginally up-regulated in pSTAT3+ DLBCL by GEP in our study,

partially in agreement with Huang et al (24).

Although our GEP results did not show that MYC was significantly up-regulated in

pSTAT3+ DLBCL, it is not surprising to observe the correlation between MYC expression

and pSTAT3 in this study because MYC is a known target of STAT3 (31, 42, 43). Kikuchi et

al demonstrated that STAT3 was essential for MYC mRNA expression in a proB cell line

(BAF/B03) (31). Barre et al showed that STAT3 was recruited to the MYC promoters upon

IL-6 stimulation of glioblastoma cells using chromatin immunoprecipitation (ChIP) (42).

Bowman et al reported that MYC expression was induced by STAT3 in fibroblasts (43). In

primary DLBCL patient samples, Gupta et al showed a trend between pSTAT3 and MYC

expression in a small study of 23 patients (23).

NF-κB and pSTAT3 are known to cooperate and four different modes of reciprocal

interaction in transcriptional control have been suggested (34). 1) STAT3/p65 in the nucleus

can recruit p300 histone acetyltransferase, which acetylates histone as well as p65.

Acetylated p65 is less prone to nuclear export, hence persists longer in the nucleus where it

is transcriptionally active. 2) In the nucleus, NF-κB/STAT3 can bind to particular DNA

target sequences at sites where neither can bind alone. 3) Unphosphorylated STAT3 can

bind with and displace IκB so that NF-κB can be activated without any upstream signals. 4)

I-κBζ, which is induced by NF-κB, can bind to STAT3 and inhibit STAT3− DNA binding.

We showed a significant trend that p52 single expression and p52/p65 dimer expression was

more commonly seen in pSTAT3+ DLBCL, supporting a crosstalk between STAT3 and NF-

κB (44, 45). Lam et al showed the induction of IL-6 and IL-10 by NF-κB pathway in ABC

DLBCL cell lines (21). Considering constitutive activation of NF-κB and common pSTAT3

expression in ABC DLBCL, targeting either or both of them appears to be an attractive

addition to the current R-CHOP regimen especially in this subtype.

Recently, STAT3 was found to be a substrate of histone deacetylase 3 (HDAC3) in ABC-

DLBCL (46). Although the primary substrates of HDACs are histones, non-histone proteins

including NF-κB transcription factors also could be targeted by HDACs (47). In the context

of crosstalk between NF-κB and STAT3, targeting HDAC seems to be a reasonable

approach. Gupta et al demonstrated that a HDAC inhibitor panobinostat (also known as

LBH589) could dephosphorylate STAT3 in an ABC-DLBCL cell line, (Ly3), as well as

DLBCL patient samples, in a dose-dependent manner (46). However, a recent phase I study

using panobinostat with everolimus in patients with relapsed and refractory lymphoma did

not show a response in patients with DLBCL (48). Lam et al also showed that blocking

JAK/STAT3 activation using a JAK inhibitor in ABC-DLBCL cell lines reduces cell

proliferation and survival (21). They also demonstrated a synergistic effect on tumor cell

death by combining JAK/STAT3 and NF-κB inactivation in ABC-DLBCL cell lines. A

phase II clinical trial using an oral JAK inhibitor (INCB18424) is in progress in patients

with relapsed or refractory DLBCL or peripheral T-cell lymphoma (NCT01431209).

Scuto et al demonstrated that inhibition of STAT3 with short hairpin RNA was associated

with apoptosis in a human ABC-like DLBCL cell line (Ly3), as well as tumor regression in

NOD-SCID (nonobese diabetic/severe combined immunodeficient) mice injected by Ly3
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cells (49). In their study, direct STAT3 inhibition induced significant reduction of STAT3

targets such as MYC and survivin at the protein level. Survivin is an anti-apoptotic protein

and has been shown to be unfavorable prognostic marker in DLBCL (50). Furthermore,

Scuto et al also showed that inhibition of STAT3 thwarted IL-10-dependent STAT3

activation, proving that STAT3 can be an attractive therapeutic target. Currently, a multi-

institution phase I/II clinical trial using an antisense oligonucleotide inhibitor targeting

STAT3 in DLBCL patients is in progress (NCT01563302).

In summary, pSTAT3 expression is more commonly seen in ABC-DLBCL and is associated

with advanced stage, multiple extranodal sites of involvement, MYC expression and MYC/

BCL2 double expression. Although pSTAT3 is not an independent prognostic marker,

pSTAT3 expression in DLBCL predicts an unfavorable outcome. Gene expression profiling

suggests that pSTAT3+ DLBCL is molecularly distinct from pSTAT3− DLBCL with a

unique oncogenic pathway activation signature, which identify a group of patients with who

might benefit from the use of molecularly targeted therapies. Ongoing successful clinical

trials targeting the STAT3 pathway may shed new light on the significance of STAT3

expression, particularly in refractory/resistant DLBCL.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the Fellowship Award (C.Y.O); the Harold C. and Mary L. Daily Endowment
Fellowships and Shannon Timmins Fellowship for Leukemia Research Award (Z.Y.X.-M.); The University of
Texas MD Anderson Cancer Center Institutional Research Grant Award, an MD Anderson Lymphoma Specialized
Programs of Research Excellence (SPORE) Research Development Program Award, an MD Anderson Myeloma
SPORE Research Development Program Award, MD Anderson Collaborative Research Funds with High-
Throughput Molecular Diagnostics, Gilead Pharmaceutical, Adaptive Biotechnologies, and Roche Molecular
Systems (K.H.Y.). This work was also partially supported by National Cancer Institute and National Institutes of
Health grants (R01CA138688, 1RC1CA146299, P50CA136411 and P50CA142509), and by the MD Anderson
Cancer Center Support Grant CA016672.

References

1. Stein, H.; Warnke, RA.; Chan, WC.; Jaffe, ES.; Chan, JKC.; Gatter, KC., et al., editors. Diffuse
large B-cell lymphoma, not otherwise specified. 4th ed.. Lyon: International Agency for Research
on Cancer (IARC); 2008.

2. Cultrera JL, Dalia SM. Diffuse large B-cell lymphoma: current strategies and future directions.
Cancer Control. 2012; 19:204–213. [PubMed: 22710896]

3. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse
large B-cell lymphoma identified by gene expression profiling. Nature. 2000; 403:503–511.
[PubMed: 10676951]

4. Sehn LH, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R, et al. Introduction of
combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell
lymphoma in British Columbia. J Clin Oncol. 2005; 23:5027–5033. [PubMed: 15955905]

5. Visco C, Li Y, Xu-Monette ZY, Miranda RN, Green TM, Tzankov A, et al. Comprehensive gene
expression profiling and immunohistochemical studies support application of immunophenotypic
algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the
International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia. 2012; 26:2103–
2113. [PubMed: 22437443]

Ok et al. Page 10

Clin Cancer Res. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



6. Niemand C, Nimmesgern A, Haan S, Fischer P, Schaper F, Rossaint R, et al. Activation of STAT3
by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of
cytokine signaling 3. J Immunol. 2003; 170:3263–3272. [PubMed: 12626585]

7. Yu H, Jove R. The STATs of cancer--new molecular targets come of age. Nat Rev Cancer. 2004;
4:97–105. [PubMed: 14964307]

8. Bhattacharya S, Schindler C. Regulation of Stat3 nuclear export. J Clin Invest. 2003; 111:553–559.
[PubMed: 12588893]

9. Wen Z, Zhong Z, Darnell JE Jr. Maximal activation of transcription by Stat1 and Stat3 requires both
tyrosine and serine phosphorylation. Cell. 1995; 82:241–250. [PubMed: 7543024]

10. Wang R, Cherukuri P, Luo J. Activation of Stat3 sequence-specific DNA binding and transcription
by p300/CREB-binding protein-mediated acetylation. J Biol Chem. 2005; 280:11528–11534.
[PubMed: 15649887]

11. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. Stat3 as an
oncogene. Cell. 1999; 98:295–303. [PubMed: 10458605]

12. Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, et al. STAT proteins: from
normal control of cellular events to tumorigenesis. J Cell Physiol. 2003; 197:157–168. [PubMed:
14502555]

13. Xie TX, Huang FJ, Aldape KD, Kang SH, Liu M, Gershenwald JE, et al. Activation of stat3 in
human melanoma promotes brain metastasis. Cancer Res. 2006; 66:3188–3196. [PubMed:
16540670]

14. Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, et al. Mutations in the EGFR kinase
domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin
Invest. 2007; 117:3846–3856. [PubMed: 18060032]

15. Berishaj M, Gao SP, Ahmed S, Leslie K, Al-Ahmadie H, Gerald WL, et al. Stat3 is tyrosine-
phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase pathway in breast cancer.
Breast Cancer Res. 2007; 9:R32. [PubMed: 17531096]

16. Yang C, Lee H, Jove V, Deng J, Zhang W, Liu X, et al. Prognostic significance of B-cells and
pSTAT3 in patients with ovarian cancer. PLoS One. 2013; 8:e54029. [PubMed: 23326565]

17. Lin L, Liu A, Peng Z, Lin HJ, Li PK, Li C, et al. STAT3 is necessary for proliferation and survival
in colon cancer-initiating cells. Cancer Res. 2011; 71:7226–7237. [PubMed: 21900397]

18. Barton BE, Murphy TF, Shu P, Huang HF, Meyenhofer M, Barton A. Novel single-stranded
oligonucleotides that inhibit signal transducer and activator of transcription 3 induce apoptosis in
vitro and in vivo in prostate cancer cell lines. Mol Cancer Ther. 2004; 3:1183–1191. [PubMed:
15486184]

19. Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI, et al. Somatic
STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012; 366:1905–1913.
[PubMed: 22591296]

20. Ding BB, Yu JJ, Yu RY, Mendez LM, Shaknovich R, Zhang Y, et al. Constitutively activated
STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-
cell lymphomas. Blood. 2008; 111:1515–1523. [PubMed: 17951530]

21. Lam LT, Wright G, Davis RE, Lenz G, Farinha P, Dang L, et al. Cooperative signaling through the
signal transducer and activator of transcription 3 and nuclear factor-{kappa}B pathways in
subtypes of diffuse large B-cell lymphoma. Blood. 2008; 111:3701–3713. [PubMed: 18160665]

22. Wu ZL, Song YQ, Shi YF, Zhu J. High nuclear expression of STAT3 is associated with
unfavorable prognosis in diffuse large B-cell lymphoma. J Hematol Oncol. 2011; 4:31. [PubMed:
21806788]

23. Gupta M, Maurer MJ, Wellik LE, Law ME, Han JJ, Ozsan N, et al. Expression of Myc, but not
pSTAT3, is an adverse prognostic factor for diffuse large B-cell lymphoma treated with
epratuzumab/R-CHOP. Blood. 2012; 120:4400–4406. [PubMed: 23018644]

24. Huang X, Meng B, Iqbal J, Ding BB, Perry AM, Cao W, et al. Activation of the STAT3 Signaling
Pathway Is Associated With Poor Survival in Diffuse Large B-Cell Lymphoma Treated With R-
CHOP. J Clin Oncol. 2013; 31:4520–4528. [PubMed: 24220563]

25. Xu-Monette ZY, Moller MB, Tzankov A, Montes-Moreno S, Hu W, Manyam GC, et al. MDM2
phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell

Ok et al. Page 11

Clin Cancer Res. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the
International DLBCL Rituximab-CHOP Consortium Program. Blood. 2013; 122:2630–2640.
[PubMed: 23982177]

26. Tzankov A, Xu-Monette ZY, Gerhard M, Visco C, Dirnhofer S, Gisin N, et al. Rearrangements of
MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with
rituximab-CHOP. Mod Pathol. 2013 Dec 13. [Epub ahead of print].

27. Xu-Monette ZY, Wu L, Visco C, Tai YC, Tzankov A, Liu WM, et al. Mutational profile and
prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP:
report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2012;
120:3986–3996. [PubMed: 22955915]

28. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration,
normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics.
2003; 4:249–264. [PubMed: 12925520]

29. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high
density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19:185–193.
[PubMed: 12538238]

30. Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A, et al. MYC/BCL2
protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large
B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The
International DLBCL Rituximab-CHOP Consortium Program. Blood. 2013; 121:4021–4031.
[PubMed: 23449635]

31. Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizuno K, et al. STAT3 is required for
the gp130-mediated full activation of the c-myc gene. J Exp Med. 1999; 189:63–73. [PubMed:
9874564]

32. Fukada T, Hibi M, Yamanaka Y, Takahashi-Tezuka M, Fujitani Y, Yamaguchi T, et al. Two
signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of
STAT3 in anti-apoptosis. Immunity. 1996; 5:449–460. [PubMed: 8934572]

33. Joerger AC, Ang HC, Fersht AR. Structural basis for understanding oncogenic p53 mutations and
designing rescue drugs. Proc Natl Acad Sci U S A. 2006; 103:15056–15061. [PubMed: 17015838]

34. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk
in cancer. Cytokine Growth Factor Rev. 2010; 21:11–19. [PubMed: 20018552]

35. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in
the tumour microenvironment. Nat Rev Immunol. 2007; 7:41–51. [PubMed: 17186030]

36. Wu K, Chang Q, Lu Y, Qiu P, Chen B, Thakur C, et al. Gefitinib resistance resulted from STAT3-
mediated Akt activation in lung cancer cells. Oncotarget. 2013; 4(12):2430–2438. [PubMed:
24280348]

37. So JY, Smolarek AK, Salerno DM, Maehr H, Uskokovic M, Liu F, et al. Targeting CD44-STAT3
signaling by Gemini vitamin D analog leads to inhibition of invasion in basal-like breast cancer.
PLoS One. 2013; 8:e54020. [PubMed: 23326564]

38. Liu JL, Wang XY, Huang BX, Zhu F, Zhang RG, Wu G. Expression of CDK5/p35 in resected
patients with non-small cell lung cancer: relation to prognosis. Med Oncol. 2011; 28:673–678.
[PubMed: 20354813]

39. Stewart DA, Bahlis N, Mansoor A. pY-STAT3 and p53 expression predict outcome for poor
prognosis diffuse large B-cell lymphoma treated with high dose chemotherapy and autologous
stem cell transplantation. Leuk Lymphoma. 2009; 50:1276–1282. [PubMed: 19562614]

40. Meier C, Hoeller S, Bourgau C, Hirschmann P, Schwaller J, Went P, et al. Recurrent numerical
aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod Pathol.
2009; 22:476–487. [PubMed: 19136931]

41. Valera A, Lopez-Guillermo A, Cardesa-Salzmann T, Climent F, Gonzalez-Barca E, Mercadal S, et
al. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse
large B-cell lymphoma treated with immunochemotherapy. Haematologica. 2013; 98:1554–1562.
[PubMed: 23716551]

42. Barre B, Avril S, Coqueret O. Opposite regulation of myc and p21waf1 transcription by STAT3
proteins. J Biol Chem. 2003; 278:2990–2996. [PubMed: 12438313]

Ok et al. Page 12

Clin Cancer Res. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



43. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, et al. Stat3-mediated
Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl
Acad Sci U S A. 2001; 98:7319–7324. [PubMed: 11404481]

44. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, et al. Persistently activated Stat3
maintains constitutive NF-kappaB activity in tumors. Cancer Cell. 2009; 15:283–293. [PubMed:
19345327]

45. Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR. Unphosphorylated STAT3
accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev.
2007; 21:1396–1408. [PubMed: 17510282]

46. Gupta M, Han JJ, Stenson M, Wellik L, Witzig TE. Regulation of STAT3 by histone deacetylase-3
in diffuse large B-cell lymphoma: implications for therapy. Leukemia. 2012; 26:1356–1364.
[PubMed: 22116549]

47. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC. NF-kappaB p50
promotes HIV latency through HDAC recruitment and repression of transcriptional initiation.
EMBO J. 2006; 25:139–149. [PubMed: 16319923]

48. Oki Y, Buglio D, Fanale M, Fayad L, Copeland A, Romaguera J, et al. Phase I Study of
Panobinostat plus Everolimus in Patients with Relapsed or Refractory Lymphoma. Clinical cancer
research : an official journal of the American Association for Cancer Research. 2013; 19:6882–
6890. [PubMed: 24097867]

49. Scuto A, Kujawski M, Kowolik C, Krymskaya L, Wang L, Weiss LM, et al. STAT3 inhibition is a
therapeutic strategy for ABC-like diffuse large B-cell lymphoma. Cancer Res. 2011; 71:3182–318.
[PubMed: 21521803]

50. Adida C, Haioun C, Gaulard P, Lepage E, Morel P, Briere J, et al. Prognostic significance of
survivin expression in diffuse large B-cell lymphomas. Blood. 2000; 96:1921–1925. [PubMed:
10961895]

Ok et al. Page 13

Clin Cancer Res. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Translational Relevance

Activated signal transducer and activator of transcription 3 (STAT3) plays a role in

tumor invasion, cell proliferation, angiogenesis and immune response. Enhanced STAT3

activity has been found in many cancers, but its role in diffuse large B-cell lymphoma

(DLBCL) has not been heavily studied. In this study, we showed that expression of

phosphorylated STAT3 (pSTAT3) was seen in 16% of de novo DLBCL and was

associated advanced stage, multiple extranodal sites of involvement, activated B-cell-like

(ABC) subtype, MYC expression and MYC/BCL2 expression. Although multivariate

analysis did not show expression of pSTAT3 was an independent prognostic marker, the

expression of pSTAT3 showed inferior overall survival and progression-free survival in

de novo DLBCL patients treated with R-CHOP. pSTAT3+ DLBCL up-regulates genes

potentiating function of STAT3, that has been found to be an attractive therapeutic

targets.
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Figure 1.
Survival impact of pSTAT3 in de novo DLBCL. A and B. Overall, pSTAT3 showed inferior

overall survival (OS) and progression-free survival (PFS). C and D. In the germinal center

B-cell-like (GCB) subtype, significant survival difference is only seen in PFS (p=0.044). E

and F. In the activated B-cell-like (ABC) subtype, significant survival difference is not seen

in either OS or PFS.
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Figure 2.
Survival impact of pSTAT3 in subsets of de novo DLBCL. A and B. In group of DLBCL

without p53 expression by immunohistochemistry, pSTAT3 expression shows adverse effect

in OS and PFS. C and D. In the group of MYC expression, pSTAT3 expression does not

show different outcome in OS and PFS. E and F. In the group of MYC/BCL2 double protein

expression (DP), pSTAT3 expression does not have prognostic impact. G and H. In the

group without MYC/BCL2 double expression (non-DP), pSTAT3 expression does not show

differences in OS and PFS..
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Figure 3.
Gene expression profiling and gene set enrichment analysis. A. Gene expression profiling

shows that pSTAT3+ DLBCL is genetically distinct from pSTAT3− DLBCL.

Representative up-regulated and down-regulated genes in the pSTAT3+ DLBCL are

illustrated at the upper end and lower end, respectively. B. Gene set enrichment analysis

shows a trend that KEGG JAK-STAT pathway is enriched in the pSTAT3+ DLBCL.
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Table 1

Clinical characteristics of 443 cases of de novo DLBCL with regard to phosphorylated STAT3 expression

pSTAT3+ pSTAT3−

N (%) N (%) P value

Patients 72 (16) 371 (84)

Gender

  Male 49 (68) 211 (57)

  Female 23 (32) 160 (43) 0.089

Age

  <60 26 (36) 159 (43) 0.300

  ≥60 46 (64) 212 (57)

B symptoms

  Absent 39 (60) 223 (68) 0.252

  Present 26 (40) 107 (32)

ECOG

  <2 53 (83) 267 (85) 0.706

  ≥2 11 (17) 48 (15)

Stage

  I/II 24 (34) 172 (48) 0.036

  III/IV 46 (66) 185 (52)

Extranodal site

  <2 47 (67) 283 (80) 0.026

  ≥2 23 (33) 70 (20)

LDH

  Normal 25 (37) 116 (35) 0.780

  Elevated 42 (63) 216 (65)

IPI

  0–2 32 (44) 210 (58) 0.051

  3–5 40 (56) 154 (42)

Tumor size, cm

  <6 34 (63) 194 (68) 0.529

  ≥6 20 (37) 92 (32)

Treatment response

  CR/PR 63 (88) 332 (90) 0.678

  No response 9 (12) 39 (10)

COO classification

  GCB 24 (33) 204 (55) 0.001

  ABC 48 (67) 166 (45)
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*
pSTAT3, phosphorylated STAT3; OS, overall survival; PFS, progression-free survival; ECOG, Eastern Cooperative Oncology Group; LDH,

lactic dehydrogenase; IPI, International Prognostic Index; CR, complete remission; PR, partial remission; COO, cell-of-origin; GCB, germinal
center B-cell-like; ABC, activated B-cell-like
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Table 2

Immunophenotypic and genetic characteristics of 433 cases of de novo DLBCL with regard to phosphorylated

STAT3 expression

Overall (%) pSTAT3+ (%) pSTAT3− (%) P value

MYC expression 260/398 (65) 61/65 (94) 199/333 (60) <0.001

BCL2 expression 192/398 (48) 35/66 (53) 157/332(47) 0.420

MYC/BCL2 co-expression 130/396 (33) 34/65 (52) 96/331 (29) 0.001

BCL2 rearranged 69/378 (18) 7/59 (12) 62/319 (19) 0.201

BCL6 rearranged 107/321 (33) 20/50 (40) 87/271 (32) 0.327

MYC rearranged 35/382 (9) 4/62 (6) 31/320 (10) 0.630

Double hit* 13/287 (5) 1/42 (2) 12/245 (5) 0.700

TP53 deletion 47/402 (12) 5/67 (7) 42/335 (13) 0.300

TP53 mutated 91/408 (22) 13/67 (19) 78/341 (23) 0.631

p53 expression 140/395 (36) 27/66 (41) 113/329 (34) 0.326

p50 expression 154/428 (36) 27/70 (39) 127/358 (35) 0.683

p52 expression 119/422 (28) 27/71 (38) 92/351 (26) 0.050

p65 expression 144/428 (34) 27/71 (38) 117/357 (33) 0.411

cRel expression 99/422 (24) 13/67 (19) 86/355 (24) 0.436

p50/p65 co-expression 77/422 (18) 14/70 (20) 63/352 (18) 0.735

p50/cRel co-expression 47/420 (11) 6/67 (9) 41/353 (12) 0.674

p52/p65 co-expression 41/414 (10) 11/70 (16) 30/344 (9) 0.081

p52/cRel co-expression 44/406 (11) 6/66 (9) 38/340 (11) 0.829

Classical NF-κB expression 100/427 (23) 15/70 (21) 85/357 (24) 0.758

Alternative NF-κB expression 71/417 (17) 12/70 (17) 59/347 (17) 1.000

NF-kB expression** 134/417 (32) 20/69 (29) 114/348 (33) 0.575

CD30 expression 72/439 (16) 12/72 (17) 60/367 (16) 1.000

pAKT expression 76/435 (17) 17/71 (24) 59/364 (16) 0.125

Cyclin D1 expression 10/432 (2) 2/71 (3) 8/361 (2) 0.672

pSTAT3, phosphorylated STAT3

*
double hit, MYC and BCL2 or BCL6 rearrangements

**
Summation of the classical and alternative NF-κB pathway expression
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