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Abstract

Sequential multiple assignment randomized trials (SMARTs) are increasingly being used to

inform clinical and intervention science. In a SMART, each patient is repeatedly randomized over

time. Each randomization occurs at a critical decision point in the treatment course. These critical

decision points often correspond to milestones in the disease process or other changes in a

patient’s health status. Thus, the timing and number of randomizations may vary across patients

and depend on evolving patient-specific information. This presents unique challenges when

analyzing data from a SMART in the presence of missing data. This paper presents the first

comprehensive discussion of missing data issues typical of SMART studies: we describe five

specific challenges, and propose a flexible imputation strategy to facilitate valid statistical

estimation and inference using incomplete data from a SMART. To illustrate these contributions,

we consider data from the Clinical Antipsychotic Trial of Intervention and Effectiveness (CATIE),

one of the most well-known SMARTs to date.
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1. Introduction

Sequential multiple assignment randomized trials (SMARTs) [1, 2, 3] are increasingly being

advocated and used as a way to generate high-quality data concerning the effects of

sequences of treatments. In a SMART, patients move through stages of treatment; they are
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randomized to an initial treatment at study entry, and then possibly re-randomized to

additional treatments at subsequent treatment stages. An important practical difficulty with

analyzing clinical trial data, such as data collected in a SMART, is missing data. The

structure of missing data in a SMART can be complex because transition times and

randomization probabilities are outcome dependent. Contributions of this paper include

identifying five key challenges that are associated with missing data in SMARTs and

developing a flexible imputation strategy to facilitate valid estimation and inference.

Data collected in a SMART study can be used to estimate sequential individualized

treatment strategies known as dynamic treatment regimes [4], treatment polices [5], adaptive

interventions [6], or adaptive treatment strategies [7]. Precursors to SMARTs include the

CALGB study 8923 for treating elderly patients with primary acute myelogenous leukemia

[8], and the STAR*D study for treatment of depression [9, 10, 11]. Recent examples of

SMARTs include trials for treating cancer at the University of Texas MD Anderson Cancer

Center [12]; the ExTENd trial concerning alcohol dependence at the University of

Pennsylvania [13]; and the Adaptive Interventions for Children with ADHD at SUNY

Buffalo [14]. See [15] for descriptions of more SMART studies. One of the most well-

known sequential randomized trials is the Clinical Antipsychotic Trials of Intervention and

Effectiveness (CATIE) study for patients with schizophrenia [16]. The work presented in

this paper is motivated by our involvement with the CATIE study which we use as a running

illustrative example.

Dynamic treatment regimes formalize clinical decision making as a sequence of decision

rules, one for each critical decision point, that map up-to-date patient information to a

recommended treatment [17, 18, 19, 20, 21]. The sequential and longitudinal nature of

SMART studies which facilitates estimation of dynamic treatment regimes also presents

unique challenges for estimation and inference when data are missing. There is a large body

of work on accommodating missing data in non-sequential trials [22, 23, and references

therein]. Multiple imputation [22, 24, 25] has emerged as a popular method for dealing with

missing data due to its flexibility, and general applicability. Multiple imputation has been

successfully applied in a wide range of domains including longitudinal data [26, 27, 28, 29].

It is particularly appealing in this context as it accommodates both item missingness and

missingness due to study attrition and is capable of preserving smoothness across

longitudinal outcomes in the imputed data.

We propose a time-ordered nested conditional imputation strategy for use with SMART

data. This imputation strategy allows for longitudinal variables that are used in the clinical

trial design, either in dictating treatment randomization probabilities or determining the

collection schedule of other variables. In SMARTs, as in many longitudinal studies, study

attrition accounts for much of the missing data which produces a nearly monotone pattern of

missing data. We exploit this missing data pattern to ensure a coherent multivariate

predictive distribution exists, while retaining flexibility, scalability, and smoothness across

longitudinal outcomes.

The remainder of this paper is organized as follows. In Section 2 we identify five key

challenges to applying imputation methods to data collected from SMARTs and illustrate
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these challenges using the CATIE study. In Section 3 we introduce a time-ordered nested

conditional imputation strategy for SMARTs. In Section 4 we apply this imputation

methodology to the CATIE study. An analysis of the CATIE data based on the imputations

is presented in Section 5. We close with a discussion in Section 6.

2. Background

2.1. Missing Data Challenges Arising in SMART studies

There are at least five issues that present difficulties for building an effective imputation

model for missing data in SMARTs. Issue 1: the transition from one treatment stage to the

next does not necessarily occur at pre-specified times, but instead is determined by a

patient’s outcomes. Issue 2: Some outcome variables are collected at the end of irregularly

spaced stages, in replacement of, or in addition to, variables collected during regularly

scheduled study visits, resulting in irregular collection times for these variables. Issue 3: The

observation of some variables may depend on patient covariate and outcome history,

resulting in structural missingness for a data-dependent portion of information on some of

the participants. Issue 4: Some individuals will be lost to follow-up prior to leaving a

treatment stage, and thus theirend-of-stage variables, along with regularly scheduled

outcome variables, that would have been used to determine the randomization probabilities

for treatment assignment in remaining stages are missing. Issue 5: Some individuals will be

lost to follow-up prior to entering some treatment stages, and thus, treatments that they

would have been assigned in remaining stages are unknown.

2.2. The CATIE Study

The CATIE study was an 18 month SMART that enrolled 1460 patients with schizophrenia.

Schizophrenia is a chronic disease characterized by abnormalities in a person’s perception of

reality, such as hallucinations, delusions, and confused speech and thought processes.

Effective management of schizophrenia requires sequential, individualized, adaption of

treatment due the chronic nature of the disease, heterogenous treatment response, poor

adherence, and/or intolerable side effects. As CATIE is described in detail elsewhere [16,

30, 31, 32, 33], we only give a simplified overview of the study, placing emphasis on

missing data.

There were two main randomized treatment stages in CATIE, which we term stage 1 and

stage 2. In CATIE, as in most SMARTs, two types of time-varying variables were collected,

scheduled variables and end-of-stage variables. Scheduled variables are collected at pre-

specified collection times on all individuals; e.g., treatment adherence was measured

monthly on all CATIE participants. End-of-stage variables are specific to SMARTs and are

collected only at the end of a treatment stage. An example of an end-of-stage variable is the

reason for discontinuing current treatment.

A large number of variables were collected at CATIE enrollment, e.g., demographics and

disease history. Longitudinal scheduled variables, e.g., symptom measurements, adherence,

and side effects, were planned to be collected either monthly, quarterly, or semi-annually

(depending on the variable). At an end-of-stage visit, the reason for discontinuing current

treatment, as well as all time-varying outcome variables, were collected regardless of the
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regular collection schedule. See Table 1 for a partial list of variables and their collection

schedules in CATIE.

At study entry, CATIE patients were randomized to one of five stage 1 treatments:

olanzapine, risperidone, quetiapine, ziprasidone, or perphenazine. At any monthly visit, a

patient, in consultation with his/her care provider, could decide to discontinue their current

assigned treatment and enter the next treatment stage (Issues 1 and 2 above). At any monthly

visit in which a patient’s current treatment was deemed adequate, only scheduled variables

were collected (see Table 1). Thus, no end-of-stage variables were collected from CATIE

participants who had adequate response to their stage 1 treatment for the entire CATIE trial

(i.e., never transitioned into a later CATIE treatment stage; Issue 3 above).

Patients who transitioned into the second treatment stage were offered a choice of two

randomization arms, the tolerability arm or the efficacy arm. The tolerability arm was

intended for individuals experiencing intolerable side effects; in this arm participants were

randomized to olanzapine, risperidone, quetiapine, or ziprasidone, excluding previous

treatment. The efficacy arm was intended for participants experiencing a lack of symptom

control; in this arm participants were randomized to either clozapine, olanzapine,

risperidone, or quetiapine, excluding previous treatment.†

Study attrition was high in CATIE with only 705 of 1460 patients staying for the full 18

months. The distribution of most baseline covariates appeared similar for participants that

completed the CATIE ztudy and those that dropped out. However, individuals who

completed the CATIE study were more likely to be white, less likely to be treatment naive at

baseline, and more likely to be abstinent from drugs and alcohol (see Supplementary

Material for full comparison.). Of the 705 participants who left the CATIE study, 509

dropped out of the study before entering stage 2 (Issue 4 and 5 above). Dropout is generally

high in studies of antipsychotics for schizophrenia [34]. Additionally, in the CATIE study,

the primary outcome was time until all-cause treatment discontinuation, providing little

incentive for clinicians to keep non-adherent patients enrolled. Consequently, the majority of

missing data (78.1%) was due to study attrition which produced a nearly monotone missing

data pattern.

The trend in the amount of missing data over time, and the proportion of missing data due to

dropout, are similar for all scheduled time-varying variables collected during the CATIE

study. We use three variables to illustrate this pattern: Positive and negative syndrome scale

(PANSS), Body mass index (BMI), and treatment adherence. The PANSS score is the

standard medical scale for measuring symptom severity in patients with schizophrenia with

higher values corresponding to more symptoms [35]. Weight gain, captured by BMI, is an

important side effect associated with many antipsychotics that impacts a patient’s overall

health and their likelihood to adhere to treatment [36, 37]. Monitoring a patient’s treatment

adherence is important for optimal therapeutic benefit; adherence is measured using the

proportion of prescribed pills taken since the last visit. Figure 1 shows the proportion of

missing data in PANSS, BMI, and treatment adherence at scheduled visits. As illustrated

here, most missing data is due to participant dropout [22, 38].
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3. Imputation Methods

There are three types of missing data generating mechanisms: missing completely at random

(MCAR) in which the missing data pattern is independent of any variables, measured or

unmeasured; missing at random (MAR) in which the missing data pattern is dependent on

observed variables; and not missing not at random (NMAR) in which the missing data

pattern depends on unobserved variables [39, 22]. Imputation methods, such as those

described here, assume an MAR generating mechanism.

Generally, imputation models fall into one of two categories: fully conditional models

wherein a separate model is fit for each variable [40, 41, 42], or joint multivariate models

wherein a single joint model is fit to all variables [22, 25]. The data-dependent structural

missingness inherent to SMART designs makes specifying a single joint distribution

difficult. For this reason we opt for conditional imputation models. However, we exploit the

near-monotonicity and SMART-specific, sequential, structure of the data to ensure a

coherent multivariate joint distribution.

Let t = 0, 1, …, T denote the scheduled clinic visit times where t = 0, denotes baseline and t

= T denotes the end-of-study visit (see below for details). At each time t let vt,1, …, vt,Jt

denote the set of all covariates on all n trial participants that could potentially be collected

on any participant at time t. In general, the covariates potentially collected at time t need not

be identical to those potentially collected as some other time s ≠ t as collection schedules

vary across variables. In our implementation, the order vt,1, …, vt,Jt includes first the

covariates which, according to the protocol, dictate when and if additional covariates should

be collected and second include variables which are potentially missing by design. For

example, in CATIE, an indicator of treatment discontinuation, would precede a variable

coding reason for treatment discontinuation. The imputation models used at each time point

t are nested so that the model for vt,k depends only on vt,k−1, …, vt,1; this sequential

conditioning framework provides a straightforward approach for specifying a coherent

multivariate distribution. An example dataset based on the CATIE study with the foregoing

time-ordered structure is provided in the Supplemental Materials. Below we describe this

time-order conditional nested imputation modeling framework in general terms, before

illustrating this approach with the CATIE data.

3.1. Overview of Time-ordered Nested Conditional Imputation Models

Fully Conditional Specification (FCS) imputation methods have been used to accommodate

missing data in a wide range of applications [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. In

general, FCS methods only require the specification of conditional distributions for each

variable, and not a full joint distribution. When no restrictions are placed on which variables

are used as predictors in these conditional models, a number of theoretical and practical

issues can arise. For example, the existence of a joint multivariate distribution that is

consistent with all conditional distribution models is not guaranteed [54, 55, 38, 41] and

convergence properties are not yet known [41, 46]. Nonetheless this approach appears to

work well in practice, where missing data is imputed with a pseudo-Gibbs sampler, applying

repeated iterations through the conditional distribution models [55, 41].
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Conditionally specified imputation models extend naturally to time-ordered data collected

from longitudinal clinical trials. For example, assuming all baseline variables are observed,

these variables can be used as predictors in an imputation model for missing data from the

first follow-up visit. The imputed and observed values from this first visit, in addition to the

observed values from the baseline visit, can then be used as predictors in an imputation

model for missing information at the second follow-up visit, and so on. The predictors at

earlier visits are a subset of predictors at later visits, creating a time-ordered nested structure

in the set of predictors used in the conditional imputation models. Thus, the set of potential

predictors used in imputation models increases with t.

Conditional models have been used to specify complex joint distributions in many areas [56,

38, 54]. Provided that at least some of the baseline variables are fully observed, a time-

ordered nested conditional imputation model avoids some of the problems associated with

general FCS, e.g., lack of convergence, or lack of joint multivariate distribution that is

consistent with the conditional models. The tradeoff, in terms of model quality, is that one

does not use future information, say at time t + h, to impute data occurring at time t. But as

long as the pattern of missing data is monotone or nearly monotone, i.e. if a participant is

missing information at time t then all information at any time t + h is also missing, then little

is lost in terms of efficiency or bias.

We employ a Bayesian framework for generating values to impute missing information [57].

As before denote the vector of the jth variable collected at time t for all n trial participants by

vt,j with vt,j,obs denoting the observed values and vt,j,miss denoting the missing information.

Define .

Denote the conditional distribution of vt,j by , the prior distribution of θt,j

by π(θt,j), and the posterior distribution of θt,j by

. Then, assuming fully observed v0 for ease of

notation, the resulting joint posterior predictive distribution of the missing observations

given the observed is:

We sample from this distribution by first evaluating the posterior distribution π(θ1,1|v0,

v1,1,obs), then sampling a value of  to impute the missing values of v1,1 using

. We use these imputations to estimate , again

sampling a value  to impute missing values of v1,2 using . We continue

until all posterior distributions have been estimated and all missing values have been

imputed. The foregoing process yields a single imputed dataset, which we repeat to produce

multiple complete datasets. Multiple imputation is recommended over a single imputation

because the uncertainty in the imputed values can be better accounted for in an analysis [22].
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This imputation strategy accommodates the missing data issues cataloged in Section 2.1. By

first imputing missing patient outcomes from early study visits, this information can be use

to impute missing patient-specific transition times, end-of-stage variables, and treatment

assignments at later stages. Additionally, this time-ordered nested approach can be used to

accommodate data-dependent structural missingness by first imputing patient information

needed to determine the collection timing, and then imputing non-structurally missing

values.

3.2. Specifying the Conditional Models

Because it considers separate models for each covariate, the general FCS framework has two

important strengths: scalability and flexibility. However, one potential drawback of

specifying each univariate conditional model separately at each time point is that

smoothness in the mean (or variance) of longitudinal outcomes is not imposed. In many

situations, one can expect the time-varying mean of a longitudinal process to be smooth. For

example, in the CATIE study one would expect that symptom severity and BMI would

exhibit such smoothness. We use a longitudinal Baysian Mixed Effects Model (BMEM) [58]

to impose smoothness on conditional imputation models for longitudinal variables when

warranted.

To the best of our knowledge, a description of how to incorporate longitudinal imputation

methods that use time-varying predictors with missing information in the conditional

specification framework is lacking. Below we detail how to incorporate the BMEM into the

proposed nested conditionally specified framework. For clarity, we focus on a continuous

outcome variable at time t denoted by Rt (appropriate generalized linear BMEMs can be

implemented for binary or categorical variables).

We construct a model for the distribution of Rt conditional on {R0, R1, …, Rt−1} and all

other variables at all times s ≤ t. This conditional model is derived from a BMEM for {R0,

R1, …, Rt} using random effects to model correlation between observations on the same

individual and a spline (or similar smooth function) to enforce smoothness over time on the

conditional mean of {R0, R1, …, Rt}. Equation (1) provides an example BMEM with the

subscript i denoting individual i:

(1)

The random intercept terms, gi, i = 1, …, n are assumed to be independent and normally

distributed, allowing individual outcomes to vary independently across trial participants.

The error terms εs,i, i = 1, …, n, s = 1, … t, are also assumed to be normally distributed and

independent across both trial participants and study visits. In this example, a linear spline is

used to model the smoothness in the expected value of the longitudinal outcome, R over

time, with the coefficients, νj j = 1, …, t, constrained so that Eq. (1) is continuous in s ≤ t.

Note that the normally distributed error term and random effects terms will define the

covariance matrix for {R0, R1, …, Rt}. The conditional distribution implied by this

multivariate normal distribution defines our model for the distribution of Rt conditional on

{R0, R1, …, Rt−1} and all other variables at all times s ≤ t. The Bayesian imputation model is
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estimated by defining priors on the fixed-effects coefficients in Eq (1) and the variances of

the Gaussian models the random intercept and error terms are drawn from. Using this model,

we sample from the posterior predictive distribution to impute the missing values of Rt.

We construct a new BMEM at each time t, specify priors on the fixed-effects coefficients in

Eq (1), the variances of the random intercepts and variances of the error terms. Then if

needed, we use this model to impute missing values in Rt. This strategy borrows more

information over time at later time points for estimating imputation models than at earlier

ones; due to study attrition, this is precisely when more information is needed. Evaluating a

BMEM at an early time point using this strategy will utilize information on many

independent individuals (as little attrition has occurred), but fewer time-varying observations

on R for any one individual. Later time points will utilize information from measurements

on R over more time points because more longitudinal observations on the same individuals

are used to evaluate the imputation models, but fewer independent observations (due to

attrition) are present at later time points.

Our use of the BMEM builds on the strengths of conditionally specified imputation models

(scalability and flexibility), while incorporating the advantage of using longitudinal

imputation models to borrow information over time. This imputation strategy is not

restricted to imputing missing data collected from a SMART, and can be generalized to any

longitudinal missing data problem. Due to the conditional nature of the trial design, the

time-ordered conditional structure is especially powerful for imputing missing information

from a SMART.

4. CATIE Schizophrenia Trial

In Section 2.1, we described five characteristics of SMART studies that present challenges

for imputation. In Section 3 we proposed a time-ordered nested imputation strategy to meet

these challenges. Here we illustrate the proposed strategy with data from the CATIE study.

The primary motivation for using imputation to accommodate missing data in CATIE is to

perform a range of secondary analyses, including estimation of an optimal dynamic

treatment regime [17, 19], which we demonstrate in Section 5. The primary outcome for the

CATIE study was time until treatment discontinuation, but a large amount of longitudinal

information was collected on all participants, and several secondary outcomes are of clinical

interest. For clarity, PANSS will be the only variable imputed with a BMEM.

The multiple imputation methods we employ are essentially the same across time points;

thus, we describe the imputation procedure for a generic time point t. The imputation

process is repeated to generate twenty-five complete CATIE datasets. In some special cases,

substantive and logical arguments can be used to justify a single imputation for a missing

variable, in these cases, the imputed value will be the same across all completed datasets.

We first describe our imputation procedure for baseline variables. We then determine if, and

when, a participant who dropped out of CATIE should be imputed to transition into a

subsequent treatment stage. We then describe imputation models for end-of-stage variables

and treatment assignment for these later stages. Finally, we detail how to interweavethe

imputation of these transition times, treatment assignments, end-of-stage variables, and
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scheduled variables within the time-ordered nested format. In Section 4.6 we provide

algorithm implementation details.

4.1. Imputing baseline variables

There are 11 baseline variables in CATIE with no missing data, and 16 that contain some

missing values; a total of 3% of these baseline observations are missing. We use

independent conditionally specified models to impute the small amount of missing data at

baseline, conditioning on the variables that were fully observed (see Table 1). As this is

standard, we omit a description.

4.2. Imputing stage transition times

We assume that had an individual who dropped out of CATIE instead remained in the study,

s/he would have elected to discontinue their current treatment at the month they were

observed to dropout. Hence, individuals who dropped out of CATIE at stage 1 are, at the

month of dropout, singly imputed to transition into the next treatment stage and thus receive

a different treatment. The rationale for this decision is that schizophrenia is a chronic disease

requiring continuous treatment. Furthermore since treatment in CATIE is blinded, it is

unlikely that an individual who drops out of CATIE will continue to be treated with their

assigned CATIE medication.

The single-imputation for transition times in CATIE relies on an assumption informed by

clinical practice. In other settings such an assumption may not be plausible and an

imputation model for the transition time could be used. For example, one could impute a

binary indicator of transition at each clinic visit subsequent to patient dropout.

4.3. Imputing end-of-stage variables

Some end-of-stage information will also be singly imputed. When an individual chose to

stop participating in CATIE while at a study visit, the CATIE protocol required clinicians to

record the reason for this early termination and collect all time-varying participant

information, that is, the same information that is recorded at an end-of-stage visit. Thus, we

singly impute all end-of-stage information, including reason for discontinuing treatment,

with information collected at the participant’s exit visit when available. Not all individuals

had information collected before leaving the CATIE study; we multiply impute all

remaining missing end-of-stage information for these subjects.

With the exception of PANSS (see Section 4.5 below), we utilize a univariate regression

model for each end-of-stage variable. The predictors in the univariate end-of-stage

imputation models are baseline variables, most recent treatment and scheduled time-varying

variables, and the reason for discontinuing previous treatment. Because the distribution of

end-of-stage variables for individuals who discontinue treatment due to lack of therapeutic

results will likely be different from that of individuals who discontinued treatment due to

intolerable side effects, we nest the most recent scheduled variables within reason for

discontinuing treatment in the imputation models. This allows the distribution of end-of-

stage variables to depend on reason for discontinuing treatment, while preserving

computational tractability.
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In CATIE, a small number of observed stage transitions occurred in any given month.

Consequently, we pool the data within time-windows: months {1}, {2, 3}, {4, 5, 6}, {7, 8, 9},

{10, 11, 12}, {13, 14, 15}, {16, 17, 18}, to increase stability in estimating the parameters in

the end-of-stage imputation models. That is, data from individuals who transition into the

next treatment stage within one time-window are used to estimate imputation models for

end-of-stage variables within that time-window. These time-windows were chosen because

most scheduled variables were collected at months 0, 1, 3, 6, 9, 12, 15 and 18.

4.4. Imputing new randomly assigned treatment

If an individual dropped out during stage 1, the choice of stage 2 randomization arm must be

imputed. Reason for discontinuing previous treatment was highly predictive of treatment

arm choice; of the 99 individuals who were observedto enter the stage 2 efficacy arm, 75

(85.9%) gave “lack of therapeutic effect” as their primary reason for discontinuing

treatment. Thus, our imputation model for the choice of stage 2 randomization arm includes

all baseline variables, previous treatment, reason for discontinuing previous treatment, and

all end-of-stage variables. After the randomization arm is multiply imputed, assigned

treatment is imputed using stage 2 treatment randomization probabilities defined in the

CATIE protocol.

4.5. Imputing additional missing time-varying information

As detailed in Table 1, collection schedules differed for variables collected in CATIE. For

each scheduled variable collected at month t (except PANSS) we estimate a separate

imputation model. For example, treatment adherence was measured monthly; thus, separate

imputation models were utilized for each month. The imputation models for all scheduled

variables (except PANSS) include as predictors: baseline covariates, previous scheduled

time-varying variables, current stage and randomized treatment. Appropriate conditional

models were selected to suit the variable type (binary, continuous, etc.).

Recall from the discussion in the beginning of Section 3 that at each month t the variables

are ordered; we put PANSS last in this ordering. Thus the model for PANSS at month t can

utilize all other variables collected at month t. The nested structure described in Section 3.2

uses a series of longitudinal mixed effect imputation models, one for each time point. For

example, suppose we are imputing missing values in PANSS at month t; the model uses the

PANSS score at months 0, 1, …, t as the longitudinal outcome and predictors: baseline

covariates, currently assigned treatment, treatment stage, all time-varying variables

measured at the month of PANSS observation, and a spline on month of observation. The

spline included knots at monthly intervals, with spline coefficients constrained so the mean

of PANSS was continuous in time. In our implementation we include a random (participant

specific) intercept to model the correlation of PANSS scores measured on the same

individual over time. We nest all time-varying predictors within a binary indicator variable

for if the PANSS measurement is a scheduled or end-of-stage variable; if it is an end-of-

stage variable, then the time-varying predictors are further nested within reason for

discontinuing previous treatment. It is worth emphasizing that we estimate a separate

PANSS BMEM imputation model at each time-point PANSS was scheduled to be collected;

each BMEM includes observations for all time points up to the current one.
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4.6. Algorithmic details for CATIE imputations

Here we outline some algorithmic details for creating multiple complete datasets using data

from the CATIE study. There are many implementations for standard imputation methods

[59, 60, 61, 62, 63]. We implemented the methods described in Sections 4.2-4.5 using the R

software packages mice [63] and pan [62]. The former was used to estimate the univariate

conditionally specified models, while the latter to estimate a longitudinal BMEM for

PANSS. In both mice and pan, imputed values are drawn from the posterior predictive

conditional distribution of the missing data given the selected predictors and the observed

values of the variable being imputed [57].

The mice “norm” argument was used for continuous variables (sometimes transformations

were applied prior to imputing); this assumes a Gaussian conditional distribution. To form

conditional models for binary and categorical variables we used the “logreg” and “polyreg”

arguments in mice which correspond to logistic and multinomial logistic regression models

respectively [63]. We used the packages’s default flat, improper priors; the priors are

independent both across models and across parameters in these models. We modified the

mice package to permit interaction terms and to enforce upper and lower bounds on imputed

values. Finally, we added internal checks to increase stability when near singularities occur

due to small sample sizes and collinearity. Imputing PANSS with the R package pan implies

a multivariate Gaussian distribution for the imputation model. The default priors for this

model are a flat improper prior for the fixed effects with Inverse-Wishart priors placed on

the variance components of the random effect and error terms. Sensitivity analyses can be

used to assess the influence of the prior distribution of the imputed data [64].

We first used mice to impute missing values in baseline variables, conditioning on the fully

observed baseline variables. Next, we used mice to impute the missing month 1 variables.

Note that the missing values of baseline variables in theconditioning set were filled in on the

prior step with mice. To impute missing values of the month 1 longitudinal outcome, R1, we

used pan to evaluate a BMEM for the longitudinal outcome {R0, R1}. Draws from the

posterior predictive distribution were used to impute missing values of R1. The imputation

with pan was performed as if there were no missing values in the baseline and month 1

variables (except PANSS), as any missing values have been filled in. This interweaving of

mice and pan continued though all 18 months of CATIE until all missing values were

imputed. The Supplementary Material contains an artificial CATIE data set with missing

data and corresponding R code implementing the imputation strategy described here.

5. Evaluating CATIE treatment regimes

The goal of a SMART study is not just to compare one treatment with another, but to

compare entire treatment regimes. As an illustration we compare nine treatment regimes in

terms of expected PANSS score averaged over the quarterly PANSS scores collected during

the CATIE study. Here, a treatment regime is composed of two decision rules with the first

decision rule dictating the first treatment, and the second decision rule dictating a second

treatment if the first treatment is discontinued. The regimes under evaluation are given in

Table 2. Ziprasidone was approved by the US Food and Drug Administration after CATIE

enrollment had begun, consequently Ziprasidone was not included as a first stage treatment
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option for 571 CATIE participants; thus, Ziprasidone is not included as a first stage

treatment option in Table 2. We also excluded Perphanazine since it cannot be taken by

subjects with a prior diagnosis of tardive dyskensia, a movement disorder and side-effect of

first generation anti-psychotics. The remaining 1014 CATIE participants were eligible to be

included in our comparison of treatment regimes and were randomized to one of olanzapine,

risperidone, or quetiapine in the first CATIE treatment stage.

Recall that a CATIE participant, in consultation with their clinician, could decide at any visit

that their stage 1 treatment was no longer adequate and choose to enter the next treatment

stage. We define this choice to switch treatment a non-response to the first line of treatment.

For non-responders, we consider three possible second line treatments: always assign

olanzapine, quetiapine, or risperadone. According to the CATIE protocol, a participant could

not be re-randomized to the same treatment they received in the first treatment stage; thus,

each participant is only eligible for two of these three treatments. We also consider a second

stage decision rule that depends on the reason given for non-response: if non-response is due

to insufficient therapeutic effects treat with clozapine, if non-response is due to intolerable

side-effects treat with ziprasidone. Note that in this example we use treatment arm choice as

a proxy for reason for discontinuing treatment. In CATIE, reason for treatment

discontinuation and treatment arm were highly (but not perfectly) correlated.

Our analysis employs methods described in [65, 66]. In particular, we used weighted

regression to estimate the mean response and corresponding confidence intervals (CIs) for

each regime under consideration (the weights are used to adjust for unequal randomization

probabilities). Individuals who remain on their stage 1 treatment for the full 18 months are

replicated to contribute information to all treatment regimes beginning with that treatment.

The sandwich estimator for standard errors accounts for the weights and replicated

observations [65, 66, 67].

Table 2 reports estimated mean responses and 95% CIs based on 25 imputed datasets

constructed using the algorithm described in Section 4.1. The mean response is averaged

over 25 imputations. Standard corrections are applied to adjust CIs to accommodate

uncertainty in the imputations [22, p. 86-87]. We also report the average number of

individuals over the 25 completed datasets that contribute information to the estimated mean

response of each regime. For comparison, we report the corresponding estimates based on a

complete case analysis limited to CATIE individuals for whom all baseline covariate

information was collected, who remained in the CATIE study through the full 18 month and

for whom PANSS was recorded at all quarterly scheduled visits. (N=321)

Note that the complete case estimates appear to be systematically lower and more variable

than estimates using imputation. The lower mean is partially explained by the fact that

patients with favorable responses had a higher propensityto remain in the study. This is the

type of bias we aim to correct using imputation. Using the 25 imputations, the estimated

treatment regimes that first treat with olanzapine all have the lowest expected PANSS

scores. The previously published primary analysis, also found that olanzapine was the most

effective first-line medication in the CATIE study [31].
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6. Discussion

As more SMARTs are implemented, it becomes increasingly important to provide practical

and reliable methods for dealing with missing data. In this paper, we identified five key

challenges to applying imputation methods to SMARTs, and proposed an imputation

procedure to meet these challenges. We specified a joint distribution over all variables by

using time-ordered nested conditional models, and used a BMEM to induce smoothness in

longitudinal variables. While we used the CATIE study as an illustration, the issues we

raised and addressed apply to SMARTs in general.

Dropout is a major source of missing data in all longitudinal studies, as it was in CATIE

[23]. While strategies to minimize study dropout should be applied in the SMART setting,

these strategies cannot completely eliminate participant dropout. For this reason, developing

new, and evaluating existing, methods for accommodating missing data in SMARTs is an

important area of research. Multiple imputation is one of several approaches for addressing

the problem of missing data in these settings. Multiple imputation is a natural choice for

CATIE because of the need to conduct a variety of secondary analyses. In particular, we not

only want to facilitate a variety of longitudinal analyses, we also want to investigate the

quality of several dynamic treatment regimes using different variables for individualizing

treatment and possibly different outcomes, as illustrated in Section 5. Two alternate

approaches to multiple imputation are inverse probability weighting and likelihood methods

[22, 68, 69]; a comparison of multiple imputation to these methods is needed in the SMART

setting.

There are a number of interesting directions in which this work might be extended. While it

is common for data from a SMART to exhibit a (nearly) monotone missingness pattern, this

need not always be the case. When the missingness pattern is not monotone, imputation

models for variables measured at time t should utilize variables measured at subsequent

times s > t. A principled approach to imputing data for non-monotone missing data in

SMARTs is needed. Afurther issue is extending imputation models for longitudinal

covariates with non-normal distributions, and constructing data-driven diagnostics to

indicate when such extensions are needed. Additionally, multiple imputation relies on the

untestable assumption that the data are missing at random (MAR). It is unclear how

violations of the MAR assumption will impact the estimation of dynamic treatment regimes

using data collected from a SMART. Specifically, it is unclear if violations of this

assumption will differentially impact the results of different methods for managing missing

data. In addition to the diagnostics, which can be found in the web appendix (web address),

sensitivity analyses [70] could be performed to evaluate the impact of any violations to the

MAR assumption on a particular analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Bar plots showing the amount of missing data in the CATIE study. The total height of the

bar displays the absolute number of people who have missing (a) PANSS, (b) BMI, and (c)

adherence, as measured by pill count, at each of the monthly visits at which the scheduled

variable was collected. The dark grey area represents individuals with missing values

because they have dropped out of the study prior to that month. The unshaded area is the

amount of item missingness in each variable.
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Table 1

Variables collected during CATIE utilized in the imputation strategy and the months they were scheduled to

be collected. The type of the variable is indicated in parentheses; continuous variables are denoted with (cont),

dichotomous variables with (dich), and categorical with (cat).

Variables with no missing information:

Time independent variables.

 Age (cont), Sex (dich), Race (cat), Tardive dyskinesia status at baseline (dich), Marital status at baseline
 (dich), Patient education (cat), Hospitalization history in 3 months prior to CATIE (dich), Clinical setting
 in which patient received CATIE treatment (cat), Treatment prior to CATIE enrollment (cat), stage 1
 randomized treatment assignment (cat)

Variables with missing information:

Time independent variables:

 Employment status at baseline (cat), Years since first prescribed anti-psychotic medication at baseline
 (cont), Neurocognitive composite score at baseline (cont)

Variables recorded at all months 1-18 and at end-of-stage visits:

 Adherence measured by the proportion of capsules taken since last visit (cont)

Variables recorded at months 0,1,3,6,9,12,15,18 and at end-of-stage visits:

 Body mass index (cont), Clinical drug use scale (cat), Clinical alcohol use scale (cat), Clinical global
 impressions of Severity of illness score (cat), Positive and negative syndrome scale (cont), Calgary
 Depression Score (cont), Simpson-Angus EP mean scale (cont), Barnes akathisia scale (cont), Total
 movement severity score (cont)

Variables recorded at months 0, 6, 12, 18 and at end-of-stage visits:

 Quality of life total score (cont), SF-12 Mental health summary (cont), SF-12 Physical health summary
 (cont), Illicit drug use (dich)

Variables recorded only at end-of-stage visits:

 Reason for discontinuing treatment (cat), Stage 2 randomization arm (dich, when applicable), Stage 2
 treatment (cat, when applicable)
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Table 2

Estimated mean PANSS score over the 18 months of the CATIE study for each of the 9 treatment regimes and

95% confidence intervals. The columns entitled Complete Case report the number of people (N) contributing

information to estimating the mean response for each regime, the estimated mean response and corresponding

95% CI. The columns entitled Multiple Imputation report the number of people (N) averaged over 25

imputations contributing information to estimating the mean response for each regime as well as the estimated

mean response and 95% CI.

Complete Case Multiple Imputation

Treatment Regimes N Mean [95% CI] N Mean [95% CI]

Olanzapine, if nonresponder, then Quetiapine 101 62.41 [60.05, 64.76] 186.3 65.99 [63.97, 68.00]

Olanzapine, if nonresponder, then Risperidone
Olanzapine, if nonresponder

103 62.93 [60.46, 65.40] 186.8 66.08 [64.09, 68.07]

   due to efficacy, then clozapine,
   due to tolerance, then ziprasidone

109 63.21 [60.77, 65.65] 208.9 66.96 [65.04, 68.87]

Quetiapine, if nonresponder, then Olanzapine 56 64.09 [60.66,67.51] 145.4 68.86 [66.57,71.15]

Quetiapine, if nonresponder, then Risperidone
Quetiapine, if nonresponder

61 65.12 [62.01,68.23] 146.1 69.32 [67.06,71.57]

   due to efficacy, then clozapine,
   due to tolerance, then ziprasidone

64 65.75 [62.62, 68.89] 169.5 70.25 [67.92, 72.57]

Risperidone, if nonresponder, then Olanzapine 83 66.67 [63.80, 69.54] 167.5 69.14 [66.92,71.35]

Risperidone, if nonresponder, then Quetiapine
Risperidone, if nonresponder

79 65.49 [62.55, 68.44] 168.8 69.51 [67.31,71.71]

   due to efficacy, then clozapine,
   due to tolerance, then ziprasidone

83 66.32 [63.50,69.14] 186.7 70.29 [68.08, 72.49]
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