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Abstract

Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers

studying the effects of an unobservable latent variable on a set of outcomes, when causes of the

latent variable are observed. There are times however when the causes of the latent variable are

not observed because measurements of the causal variable are contaminated by measurement

error. The objectives of this paper are: (1) to develop a novel model by extending the classical

linear MIMIC model to allow both Berkson and classical measurement errors, defining the

MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation

methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic

bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical

manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven

estimate of the variance of the classical measurement error associated with an estimate of the

amount of radiation dose received by atomic bomb survivors at the time of their exposure.
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1 Motivating Example

The presence of measurement error in assessing the impact of ionizing radiation on various

health outcomes within an exposed cohort such as the survivor of the atomic bombs in

Hiroshima and Nagasaki, Japan, is unavoidable [1]. Following the exposures in 1945,

survivors in both Hiroshima and Nagasaki were identified based on the 1950 Japanese

census survey and were interviewed to identify their location and shielding at the time of

exposure. A radiation dosimetry system was subsequently developed for estimating the

dosage of ionizing radiation received from the exposure. Individual dosage of radiation was
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estimated for each survivor of the bombings based on a physical dosimetry system that

included inputs such as air moisture, bomb output, distance and environmental, global and

local shielding. The initial dosimetry system used in estimating individual radiation dose

was implemented in 1965, modified in 1986 (DS86) and updated in 2002, resulting in the

current Dosimetry System 2002 (DS02). The dose estimates are based on survivor recall of

their location (translated into distance) and shielding at the time of detonation, on outputs of

the respective bombs, and humidity in the air, etc. Since these measures are based on

survivor-reported measures of distance and observations on shielding, DS02 estimates are

contaminated by measurement errors, which affect disease outcome model parameter

estimates as well as parametric inferences [2–4]. The type of error introduced to the DS02

system due to its reliance on self-reported distance and shielding is a classical measurement

error, u. The classical measurement error varies around the true value of radiation dose [1].

Once the self-reported measures of distance and shielding information have been obtained

from the survivors, the survivors’ locations are placed on grids corresponding to coordinates

on a US army map that was placed over the map of the city, see Figure 1. Individuals who

reported having been at a particular location are classified into a square region of the grid

and the estimated radiation dose associated with the center of each square is assigned to all

individuals whose reported location puts them in the assigned square grid. The Berkson

error or shared uncertainty in the DS02 system arises from assigning the estimated group

mean radiation dose to individuals who reported having being at a location in close

proximity to other group members [1, 3, 5–7]. It has recently been noted in the literature that

both Berkson and classical measurement error need to be accounted for when performing

analysis of the effects of radiation dose on various health outcomes among atomic bomb

survivors [3].

Dyslipidemia is a disorder which affects the lipoprotein metabolism and is usually

physically manifested by an elevation of the individual’s total cholesterol or low density

lipoprotein (LDL) cholesterol and triglyceride concentrations while decreasing the level of

high density lipoprotein (HDL) cholesterol in the individual’s blood [8]. In studying the

effects of radiation on the longitudinal trends of total serum cholesterol of the survivors of

the atomic bombs in Hiroshima and Nagasaki, Japan, Wong et al. [9] use a growth curve

model to study the cholesterol trends of the survivors over a 28 year period (1958–1986). In

their longitudinal analysis, log(DS86) was used as an estimate of true radiation dose while

adjusting for the classical measurement error associated with DS86 under the assumption

that the coefficient of variation associated with the classical measurement error is 0.35. In

studying the effects of radiation on risk factors for coronary heart disease (fatty liver,

obesity, hypertension, hypercholesterolemia, low HDL cholesterol, hypertriglyeridemia and

diabetes mellitus), Akahoshi and colleagues [10] studied Nagasaki survivors who had

measured levels of risk factors of the cardio-metabolic risk syndrome between November

1990 and October 1992. The DS86 system was used to estimate radiation dose under the

assumption of classical measurement error only and a coefficient of variation of 0.35.

In this paper, we study dyslipidemia among atomic bomb survivors while recognizing that

there are two sources of measurement error in the DS02 dosimetry system. We also

recognize that dyslipidemia is a latent construct with three physical manifestations, see
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Figure 2. This example involves the studying of the effect of a latent construct,

dyslipidemia, and latent true radiation dose on the physical outcomes of dyslipidemia

(triglycerides, LDL and HDL cholesterol) among atomic bomb survivors, where true

radiation dose is treated as an underlying cause of the latent dyslipidemia and is also allowed

to have a direct effect on the outcomes of dyslipidemia, as indicated by the arrows from true

dose to triglycerides, LDL, and HDL cholesterol. The arrow from true dose to dyslipidemia

also indicates that true dose has an effect on the latent construct (see Figure 2). Dyslipidemia

is a major risk factor for cardiovascular disease in diabetes mellitus [8], therefore it is

important that both potential measurement errors be accounted for in understanding this

disorder among atomic bomb survivors. In addition, since dyslipidemia is on the causal

pathway to other cardio-metabolic diseases such as diabetes, which are becoming growing

public health concerns, we would like to know if exposure to the ionizing radiation from the

atomic bombs also has an impact on the physical manifestations of dyslipidemia. Since

dyslipidemia is a latent construct which cannot be measured directly, using a multivariate

model, one can assess the impact of true radiation dose on the multiple outcomes of

dyslipidemia allowing us to better understand how true radiation dose impacts the

development of dyslipidemia among individuals exposed to ionizing radiation. This paper is

the first to assess the associations of dyslipidemia with its multiple indicators and the impact

of radiation dose on the physical outcomes of dyslipidemia (triglycerides, LDL cholesterol

and HDL cholesterol) in the presence of both classical and Berkson measurement error.

In the next section, we provide a background on MIMIC models. The MIMIC ME model is

defined in Section 3. The application, results and discussions from the application of the

MIMIC ME model to our motivating example are presented in Sections 4 to 6, respectively.

2 Background

Multiple Indicators, Multiple Causes Models (MIMIC) [11, 12] are employed by researchers

studying the effects of an unobservable latent variable, T, on a set of outcomes or indicators.

The model has had a wide range of applications such as in evaluating effects of early

experiences of tobacco use on current smoking [13], studying the behavioral and

psychological symptoms of dementia [14], applied econometrics [15] and in studying

physical and cognitive function among geriatric patients [16].

For individual i = 1, …, n, let Ti denote dyslipidemia or the unobservable latent variable of

interest, and let Xi be a K × 1 vector of observable exogenous multiple causes of Ti. In our

motivating example, true radiation dose, Xi is scalar. In the classical MIMIC model, one

observes multiple indicators and multiple causes of a single latent variable [11, 12]. An

indicator or observed outcome variable is one whose value is determined by the underlying

latent variable. The multiple causes in the MIMIC model setting refer to the multiple

predictors in the regression equation for the unobservable latent variable. These predictors

are assumed to be causing the underlying latent construct. In a MIMIC model setting, the

unobservable latent variable induces certain relationships among the observable variables.

Here and throughout, we center all observed random variables so that they have mean zero.

The model specification for the classical linear MIMIC model is that for j = 1, …, J

indicators,
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(1)

(2)

where Yij is the jth indicator (observed outcome) for the ith individual, εi1, …, εiJ are random

errors, and ηi is the model error in the causal equation for Ti. Joreskog and Goldberger

assume that all the random errors are mutually independent and normally distributed with

mean zero. Because the model is the same if we multiply Ti by a constant and divide both α

and ηi in equation (2) by that same constant, identifiability requires that var(ηi) must be

known, and we set this variance = 1. The MIMIC model can be seen as an extension of a

confirmatory factor analysis model which allows covariates.

In previous applications of the model, it has been assumed that the multiple causes, Xi, of

the latent variable are all observed. There are times however when the causes of the latent

variable are not observed because measurements of the causal variables are contaminated by

measurement error, as in Section 1. The objectives of this paper are: (1) to develop a novel

model by extending the classical linear MIMIC model to allow both Berkson and classical

measurement errors, thus defining the MIMIC ME measurement error (MIMIC ME) model,

(2) to develop likelihood based estimation methods to fit the model, (3) to apply the MIMIC

ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation

dose on the physical manifestations of dyslipidemia, and (4) to obtain a data-driven estimate

of the variance of the classical measurement error associated with log(DS02), an estimate of

the log amount of radiation dose received by atomic bomb survivors at the time of their

exposure.

3 MIMIC Measurement Error Models

3.1 The General Model

The MIMIC model described in (1) and (2) assumes that the multiple causes, Xi, are

measured without error. In our example, however, some of the multiple causes of the latent

variable are not measured exactly, e.g., when the multiple causes are based on self-reported

variables, such as self-reported distance in the atomic bomb survival data. It has been well

documented that self-reported measures are often affected by recall bias and day-to-day

variability, therefore, any statistical method used to analyze the data arising from self-

reported measures need to account for the bias introduced by the self-reported measures [4,

17]. On the other hand, Berkson measurement error is introduced when a single predictor of

the true value is assigned to all individuals within a group with a common underlying

characteristic [5, 18]. An example of Berkson error is found with uranium workers where

the observed radiation dose assigned to a uranium worker is based on the average radiation

dose calculated for all miners within the same work location and period at the time of

exposure [5]. In our example, these imperfect measures of the multiple causes introduce

both classical and Berkson measurement error into the MIMIC model setting.

Let Wi denote the measured version of Xi, and let Zij be additional covariates measured

without error found in the jth indicator equation. To incorporate the mixture of classical and
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Berkson measurement errors, we employ latent intermediate variables Li [5, 6, 19], so that

the MIMIC measurement error model for the ith individual is

(3)

(4)

(5)

(6)

(7)

where Xi, Li, Wi and Ui are all K × 1 vectors, and ζ is K × K. The intermediate latent

variables, Li, are intermediate between Xi and Wi and allow for the modeling of the mixture

of measurement errors [4, 6, 19].

Equation (3) is an extension of Equation (1) by allowing the multiple causes of Ti and Xi, to

be measured imperfectly prone to measurement error. Not only is the MIMIC measurement

error model novel, but in MIMIC models in general a combination of Berkson and classical

measurement errors has not been considered. We make the following assumptions.

• The εij are conditionally independent with variance  given the unobservable

variables Ti, Xi and the error free covariates, Zij. This is a standard assumption in

MIMIC models [11].

• The components of Yi are multiple indicators of the underlying latent construct, Ti,

and are assumed to be conditionally independent given the unobservable variables

Ti, Xi and the error free covariates, Zij.

• The random variables Vi, Ui and ηi have mean zero, are mutually independent and

are independent of the εij’s. As in model (2), for identifiability var(ηi) = 1. We also

define cov( ) = Σvv with  and cov(Ui) = Σuu with

. The Vi and Ui are the vectors corresponding to

the Berkson and classical measurement errors, respectively.

• The causal variable, Ti, is independent of Vi, Ui, εi, and Zi.

• The random variable ξi has mean zero, covariance matrix ΣL and is independent of

all other random variables except Xi.

• The Xi are independent of the error terms ηi and Ui.
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3.2 Reduced Form Equations

The MIMIC measurement error model can be rewritten in its reduced form by substituting

the causal equation (4) for Ti into the structural equation models (3) for the outcome

variables. The reduced form equations for the ith subject thus combine (3)–(4) into

(8)

where κj = β1j + β2jα. The κj allows the assessment of the total effect of Xi on Yij. The

estimation of the parameters in the models is based on the reduced form model. Therefore,

the impacts of the latent causal variables on the outcome variables are assessed indirectly

with their total effects, κj. Similarly, the impact of the underlying latent construct is assessed

directly through β2j.

Model (5)–(8) thus forms the model for the observed data. As in any measurement error

model, identifiability requires additional information on the measurement error process, and

must be done on a case-by-case basis. In our example, this additional information comes

from a combination of previous experiments and instrumental variables, see Section 4.

4 Application of the MIMIC Measurement Error Model With Instrumental

Variables

4.1 Background on the Data Set

The development of the MIMIC measurement error model was motivated by studies of the

effects of radiation exposure from the detonation of the atomics bombs over Hiroshima and

Nagasaki, Japan. The atomic bomb survivor data maintained by the Radiation Effects

Research Foundation [RERF, see http://rerf.jp] provides us with a rich resource for studying

the effects of radiation on various health outcomes.

In assessing the relationship between dyslipidemia and radiation dose, we apply the MIMIC

measurement error model to a subset of the Adult Health Study (AHS) cohort of the atomic

bomb survivor data. The AHS cohort consists of 22,397 survivors with 15,054 Hiroshima

and 7,343 Nagasaki survivors. The current study consists of 209 survivors in Nagasaki who

were within 500 to 2500 meters of the hypocenter at the time of the exposure. Subjects who

were seen between January, 1988 and January, 1996 are included in the analysis. Nagasaki

survivors had blood measures taken between 1988 and 1996, therefore, these survivors had

data on the outcomes. No validation data were available. In this application, dyslipidemia is

the latent variable T while true radiation dose at the time of exposure is the scalar latent

causal variable X.

4.2 The Data

Dyslipidemia is a metabolic syndrome with three outcomes: elevated levels of LDL

cholesterol and triglycerides concentrations and decreased levels of HDL cholesterol. The J

= 3 multiple indicators included in the current application are transformed to achieve

normality (Y1, Y2, Y3), with Y1 being log{log(triglycerides)}, Y2 being log(low-density
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lipoprotein) and Y3 being the log(high-density cholesterol). These outcomes are assumed to

be physical manifestations of dyslipidemia. The error-free covariates included in the

indicator models are age at the time of measurement, sex, number of cigarettes smoked per

day, and body mass index (BMI). There are two instrumental variables included in the

analysis, namely M1 = log(TCA) and M2 = score. The instrumental variable, log(TCA), is a

log transformation of the arc sine of the proportion of stable chromosome aberrations per

cell in order to achieve normality. The score variable is a combination of epilation, bleeding

of the gums and oral lesions, which are all indicators of acute exposure to radiation.

4.3 Model and Instruments

In our data, K = 1, so that X, W, L, U, V, Σuu and Σvv are all scalar, and we denote the latter

two as  and . Two instrumental variables are used to identify the variance of the

classical measurement error, , while we assume  is known based on a calculation

from summary data from previous experiments. A side goal of our analysis is to obtain a

data driven estimate of . Currently, a coefficient of variation 0.35, corresponding to a 

of 0.1155, is assumed by researchers largely based on weak evidence and/or heuristic terms.

Again, remembering that all observed random variables are centered to have mean zero, the

MIMIC measurement error model for our current application can then be expressed as (3)–

(7) with the addition that for r = 1, 2,

(9)

where (ωi1, ωi2) are independent of all other random variables and has mean zero and

covariance matrix . The instrument is dependent of course on the causal

variable T, and we are assuming that the errors in (9) are independent given Xi, although this

restriction can be relaxed. Obviously, the reduced form equations remain (8).

It is easy to develop conditions under which the model is identified as long as  is known

and additional information such as instrumental variables are available in the data, see the

Appendix for a proof when instrumental variables are used as the identifying information.

As it happens, in our example,  was previously estimated based on previously

collected data in Chapter 13 of [20] while an initial value of 0.181 is used for 

based on a previous estimate.

For modeling the multiple outcomes (Y1, Y2, Y3), we include the covariates Z1, consisting of

age at measurement, sex, smoking status and body mass index. For the two instruments, we

also include covariates Z21 consisting of age at which the TCA measure was obtained, sex,

smoking status and body mass index, while Z22 consists of the age at time of exposure to the

atomic bomb, sex, smoking status and body mass index.

4.4 Model Fitting

The models (3)–(9) can be fit in any number of ways. Because all components of these

models are linear, the model can be fit consistently without distributional assumptions by
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assuming normality and computing the maximum likelihood estimator using the reduced

form (5)–(9), which gives the mean and covariance matrix of (Yi1, …, YiJ, Wi, Mi1, …, Mir)

given (Zi, Zi21, …, Zi2R). Indeed, since E(Xi|Zi) = ζZi, , E(Wi|Zi)

= ζZi and E(Mir|Zi2r) = ζZiδ1r + Zi2rδ2r. In addition, since Xi = ζZi + ξi + Vi,

. In

addition, since Wi = ζZi + ξi + Ui, . In addition,

. Of course, var(Wi|Zi) = ΣL + Σuu. Further,

cov(Wi, Mir) = cov{ξi + Ui, (ξi + Vi)Tδ1r}ΣLδ1r,

, and

, where the (r, s) element of Σω is Σω(r, s).

Hence the likelihood is easily computed analytically. Using matrix derivatives, it is then

possible to implement Fisher-scoring, with analytical score and the expectation of the

Hessian.

An alternative is to use an EM algorithm [21], and indeed it is even easier to implement a

Monte-Carlo EM algorithm [22], based on the models (3)–(7) and (9), where we treat (Xi,

Li, ηi) as missing data. Here the conditional distributions of the missing data given the

observed data (Yi1, …, YiJ, Wi, Mi1, …, MiR) and the current values of the parameters are all

normally distributed and analytically computable, and having generated values of the

missing data, the structure of the models make the M-step trivial. We generated 2, 000

values of the missing data at each E-step for this purpose. The starting values for the

coefficient on the error free covariates were obtained by fitting regression models to the

observed outcomes under the assumption of no measurement error, while the coefficients on

ηi and the unique variances for the manifest variables were obtained by fitting a principal

components factor analysis model to the partial residuals from the manifest equations. The

methods were implemented using R and WinBUGS. Details are available from the first

author.

5 Results of the Example

5.1 Summary Statistics

In this section, we present the results from the application of the MIMIC measurement error

model with instrumental variables to RERF data to study the effects of dyslipidemia and true

radiation dose on the physical manifestations of dyslipidemia among atomic bomb survivors

in Nagasaki, Japan. Table 1 provides the descriptive summary of the data used in the

analysis. Our total sample size included in the analysis was 209. The number of individuals

also used in the instrumental variable analysis was 209. About 41% of the sampled survivors

in our analysis are males (n = 86) while about 59% (n = 123) of the sample are females. The

range of the number of cigarettes smoked per day ranged from 0–40. The average estimated

radiation dose was 1286.91 μGy or equivalently an average log(DS02) of 7.16 (SD = 0.60),

while the average age of the survivors included in the analysis was 60.88 years.
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5.2 Analysis of Radiation Effects on the Instrumental Variables

We now discuss the results of the analysis of the instrumental variables. Table 2 provides a

summary of the results from the assessment of the effect of true radiation dose on the log of

transformed chromosome aberrations after adjusting for age at the time of CA measurement,

sex, smoking and BMI. We found that the survivor’s gender, smoking status and BMI level

have no statistical significant impact on the log of transformed chromosome aberrations with

p-values of 0.28, 0.43 and 0.073 respectively, after controlling for other variables in the

model. Survivor’s age at the time of measurement had a statistically significant effect on this

outcome (p-value < 0.0001). Our analysis also confirmed a statistically significant

association between chromosome aberrations and radiation dose (p-value < 0.0001) after

adjusting for ageCA, sex, smoking, and BMI. The variance of the error term in the model

was estimated to be 0.1169. Approximately, 41% of the variation is explained by the effect

of radiation dose.

In Table 3, we report the results of the modeling of the aggregate score of acute symptoms

of exposure to radiation as an instrumental variable for true radiation dose. We found that

the survivor’s gender, smoking status and BMI had no statistically significant effects on the

survivor’s acute symptoms as measured by the aggregate score (p-value = 0.15, 0.47, 0.26,

respectively) after adjusting for the other error free covariates and true radiation dose. Age at

the time of bombing or exposure had a statistically significant effect (p-value = 0.004) after

adjusting for the other error free covariates and true radiation dose. That is, the older the

survivor at the time of exposure, the higher the score of acute symptoms. We also found a

statistically significant relationship between true radiation dose and the acute symptoms

score (p-value < 0.0001). The estimated  for this model was 0.83, while the R2 was 0.31.

The percent of the score of acute symptoms of radiation explained by the presence of

radiation dose in the model was 33%.

5.3 Analysis of Triglycerides

Table 4 provides the results from fitting the outcome model for transformed triglycerides.

Based on our fit, we find that there is a highly statistically significant relationship between

triglycerides and dyslipidemia (p-value < 0.0001) after adjusting for the effects of age, sex,

smoking status, BMI and radiation dose. As the dyslipidemia becomes more severe,

triglycerides levels increase. True radiation dose was also found to have a highly statistically

significant effect on the survivor’s triglyceride level (p-value < 0.0001) after adjusting for

age at the time of triglyceride measurement, sex, number of cigarettes smoked per day, BMI

and dyslipidemia. The effects of true radiation dose are assessed indirectly through its total

effects, κ̂1. Age, sex, smoking and BMI were also found to have statistically significant

effects on the triglyceride level (p-value < 0.0001, < 0.0001, < 0.0001, < 0.0001,

respectively) after adjusting for the other covariates in the model. Male survivors generally

had higher levels of triglycerides when compared to the females in the study. Also, on

average, as the survivor’s age increases by a year, we predict a decrease of 0.0019 in the

individual’s transformed triglyceride level when holding the other covariates included in the

analysis constant. Increasing BMI, by one unit, results in an increase of 0.01 in the

survivor’s log{log(trig)} level after adjusting for all the other covariates included in the
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model. After adjusting for both the Berkson and classical measurement errors as well as the

error free covariates and dyslipidemia, we find that on average log{log(trig)} is increased by

0.014 when the survivor’s true radiation dose is increased by one unit while an increase of

0.094 is expected in log{log(trig)} when dyslipidemia is increased by one unit after

adjusting for all the covariates included in the analysis.

The partial R2 value for dyslipidemia in this model was calculated and found to be 0.85

{0.0942/(0.1022)}. Therefore, we find that after adjusting for true radiation dose and all the

error free covariates, approximately 85% of the total variation in the transformed

triglyceride data can be explained by variation in the severity of dyslipidemia. The variance

of the error term in the model was estimated to be 0.00005 and the full model R2 was 0.995

{= (0.1022 − 0.0005)/(0.1022)}. The model error variance for this model was estimated to be

close to zero because the estimate was converging to zero as we increase the number of

MCEM iterations. Thus, we have a boundary value problem in this analysis. Inferences

concerning the parameters included in the model are affected by the boundary value

problem. An explanation for this result is that log{log(trig)} is highly correlated with the

latent construct, dyslipidemia. Approximately, 2% of the variation is explained by the total

effect of radiation dose.

5.4 Analysis of LDL Cholesterol

Table 5 provides the results for fitting the outcome model for the log of LDL cholesterol.

Based on our fit, we find that there is a statistically significant relationship between LDL

cholesterol and the latent construct, dyslipidemia (p-value < 0.0001) after adjusting for the

potential effects of age, sex, smoking status, BMI and true radiation dose. In fact, as the

survivor’s level of dyslipidemia increases, so does the LDL cholesterol level. True radiation

dose was not found to have a statistically significant effect on the survivor’s bad cholesterol

level (p-value = 0.14) after adjusting for the other covariates in the model. The survivor’s

gender and BMI level were both found to have statistically significant relationships with

LDL cholesterol level (p-value < 0.0001 and < 0.0001, respectively) after adjusting for the

other covariates included in the model. There was no statistical significant relationship

between the survivor’s LDL cholesterol level and the survivor’s age or the number of

cigarettes smoked per day (smoking) after adjusting for the other covariates included in the

model (p-value = 0.42 and 0.49, respectively). We find that the females included in the study

had higher LDL cholesterol levels than did the males included in the study, while a one unit

increase in the survivor’s BMI level on average resulted in an increase of 0.022 in log(LDL)

after adjusting for the other covariates included in the model. After adjusting for radiation

dose and the error free covariates, we find that the survivor’s log(LDL) increases by 0.093

for each unit increase in the latent construct, dyslipidemia.

The partial R2 for dyslipidemia indicates that approximately 14% of the total variation in the

LDL cholesterol data can be explained by the variation in dyslipidemia. The variance for the

error term in the model is estimated to be 0.042, and the overall R2 for the model was 0.327.

Approximately, 0.35% of the variation is explained by the total effect of radiation dose.
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5.5 Analysis of HDL Cholesterol

Table 6 provides the results for fitting the model for log(HDL) cholesterol. There was a

statistically significant relationship between log(HDL) and dyslipidemia (p-value < 0.0001)

after adjusting for the potential effects of age, sex, smoking status, BMI and true radiation

dose. As the dyslipidemia level increases, the log(HDL) cholesterol decreases, indicating an

inverse relationship between dyslipidemia and the HDL cholesterol. True radiation dose is

also found to have a highly statistically significant effect on the survivor’s log(HDL) level

(p-value = 0.001) after adjusting for the error free covariates and dyslipidemia. The

survivor’s gender and BMI were statistically significant (p-value = 0.009 and < 0.0001,

respectively) after adjusting for the other covariates included in the analysis. No statistically

significant effect was found for the age of the survivor at the time of measurement (p-value

= 0.61) after adjusting for the other error free covariates, dyslipidemia and true radiation

dose. Women generally had higher log(HDL) levels than the men in the study. A one unit

increase in BMI results in a reduction of 0.024 in log(HDL) when holding the other error

free covariates, true radiation dose and dyslipidemia constant. We also found that an

increase of one unit in true radiation dose results in a decrease of 0.06 in log(HDL), on

average, when holding dyslipidemia and the error free covariates constant. A reduction of

0.10 in log(HDL) was seen with a one unit increase in dyslipidemia.

The partial R2 for dyslipidemia was 0.15 indicating that approximately 15% of the variation

in the HDL cholesterol data is due to variation in dyslipidemia while the overall R2 for the

model was 0.281. The variance for the error term in the model was estimated to be 0.0492.

Approximately, 18% of the variation is explained by the total effect of radiation dose.

5.6 Estimating 

Two instrumental variables were used to identify the model due to the presence of the

classical measurement error, u, in the amount of radiation received by the survivors. Based

on our analysis,  was estimated to be 0.092. Our estimated value for  is based on an

adjustment for both classical and Berkson measurement errors.

The corresponding coefficient of variation based on our estimated value for  is 0.31. The

current coefficient of variation being used at RERF is 0.35, which corresponds to a  of

0.1156. The estimated mean for L was μ̂L = 7.16 while . In summary, we assume 

is known and  while two instrumental variables are used to identify  allowing us to

have sufficient moments to identify the model parameters.

5.7 Impact of Measurement Error on Parameter Estimates

In this section, we briefly discuss the impact of not adjusting for the mixture of

measurement errors on the estimated coefficients from the MIMIC ME model. The impact

of classical measurement error in a simple linear regression model with an additive classical

measurement error is to attenuate the parameter estimates toward zero [4]. While the naive

parameter estimates obtained in the presence of Berkson measurement error alone in the

simple linear regression model are unbiased [4]. However, the impact of the mixture of these

two measurement errors on the parameter estimates in a multiple regression setting is more
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complex. In our current application, most of the estimated coefficients from the indicator

models remain unchanged when comparing the measurement error adjusted coefficients to

the unadjusted coefficients. However, the coefficient on true dose was estimated to be 0.025

in measurement error adjusted model for log(LDL) while the unadjusted estimated

coefficient was 0.004. We also observed a downward bias on the coefficients for true

radiation dose in the instrumental variable models when we failed to adjust for the

measurement errors. The coefficient for true radiation dose after the adjustment in the

log(TCA) model was 0.049 while the unadjusted estimated coefficient was 0.36. Similarly,

in the instrumental variable model for the aggregate score of the acute symptoms of

radiation dose exposure, we found the estimated coefficient on true radiation dose to be 1.02

while it was estimated to be 0.745 in the unadjusted model. The error free covariates in the

unadjusted models were equivalent to the estimated coefficients under the mixed

measurement error adjusted models. In summary, we conclude that the impact of adjusting

for the mixture of measurement errors in the MIMIC ME model is massive but its direction

depends on the model.

5.8 Simulation Study on the Impact of the Magnitude of the Measurement Error Values on
the Parameter Estimates

Pierce et al. [3] find that after adjusting for both types of measurement error in assessing

cancer risk, the risk estimates were not very sensitive to the assumed magnitudes of the

radiation dose errors. In this section, we assess the impact of the assumed magnitude of the

radiation dose error for both types of measurement errors on the estimated coefficients. We

also assess the impact of these assumed values in obtaining a data driven estimate for the

variance of the classical measurement error, . In our simulation study, the estimated model

parameters from the adjusted MIMIC ME models were treated as the true parameter values

and we allowed the value of the variance of the Berkson error, , to range from 0.02 to 0.08

while the values of  ranged between 0.05 to 0.25.

Based on our simulation study, we find that the estimated parameters were not very sensitive

to the assumed values of both  and . We also find the same patterns on the coefficients

on true radiation dose and dyslipidemia over all the range of the values considered for the

dose errors. However, as  increased to 0.08, we find that the estimated coefficients on

radiation dose, log(TCA), and score slightly reduced from their true parameter value when

compared to the estimated values obtained under  and .

The objective of this application was to assess the impact of radiation dose on the indicators

of dyslipidemia among survivors of the atomic bomb. However, by applying our proposed

model, we are also able to obtain a data driven estimate for  as a by-product of the model.

In our simulation study, we also assessed the impact of the magnitudes of the assumed

values for the dose errors in obtaining a data driven estimate for . We find that the

estimated value for  is highly dependent on the assumed value for , as the value of 

increases, the data driven estimate for  decreases. We also find that the estimated value for

 is highly sensitive to the data as well as the true value of the parameters.
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6 Discussion

In this paper, we developed and applied the MIMIC measurement error model with

instrumental variables to assess the impact of true radiation dose and dyslipidemia on the

physical manifestations of dyslipidemia. In addition to studying the relationship between

true radiation dose and dyslipidemia on the physical manifestations of dyslipidemia, a by-

product of these analyses was to obtain a data driven estimate for the variance of the

classical measurement error, .

In addition to estimating , we applied our defined model to assess the impact of true

adjusted radiation dose on the physical outcomes of dyslipidemia. Based on our analysis, we

found that exposure to radiation has an impact on all three physical manifestations of

dyslipidemia, namely, triglycerides, LDL and HDL cholesterol.

Our current analysis confirms the previous finding reported on the relationship between

dyslipidemia and radiation dose, as well as the relationship between radiation dose and

cholesterol levels. The advantage of the current analysis is that it accounts for the effects of

both Berkson and classical measurement error by using an instrumental variable approach

and has, therefore, resulted in a data driven estimate for . The data driven estimate for 

provides an alternative estimate for  which can be used to reduce the bias introduced by

the presence of classical measurement error in obtaining radiation dose risk estimates among

individuals exposed to ionizing radiation.
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Appendix: Sketch of Technical Arguments

A.1 Identifiability and Method of Moments Estimates in the Example

In our data, we know . The unknown parameters that appear in the covariance matrix are

, Σω, (β21, …, β2J), (κ1, …, βJ), (δ11, …, δ1R). In our example, R = 2, J

= 3 and there are thus 16 unknown parameters in the covariance matrix of (Yi1, …, YiJ, Wi,

Mi1, …, Mir). However, as seen in Section 4.4, there are 21 sufficient statistics for the

covariance matrix, and so at least in principle the parameters are over-identified from the

sufficient statistics.
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Taking J = 3 and R = 2, the parameters other than (β21, …, β2J) and ( ) are

readily identified from moments calculations. For example,

, and hence  is identified. Then for

example,  and hence δ1r is identified. Similarly, , so

that κj is identified, and of course , and thus  is identified. By

appropriate subtraction of these identified terms, we are left with a covariance matrix arising

from the factor model  = β2jηi + εij, and thus ( ) are identified as are the

absolute values of (β21, …, β2J). Since the parameters in the covariance matrix are identified,

it is readily seen that the remaining unknown parameters in the mean functions are also

identified. These calculations also lead to good starting values for the parameters.
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Figure 1.
Illustration of Berkson error in DS02 estimates. The bottom map indicates a sample map

which was placed over the city and the grids within which the survivor-reported distances

from the hypocenter were classified. DS02 estimates were calculated by assigning the

calculated dose for the center of the grid for all reported distances within each grid,

introducing a shared error or Berkson error into the radiation dose estimation.
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Figure 2.
Illustration of the dyslipidemia example. Dyslipidemia is a latent construct which is

physically measured by triglycerides, HDL and LDL cholesterol levels. True radiation dose

received at the time of exposure also has an impact on the physical measures of dyslipidemia

(triglycerides, HDL and LDL cholesterol). True radiation dose is not directly observable, it

is therefore estimated by log(DS02) which is affected by both classical (u) and Berkson (v)

measurement errors. While transformed chromosome aberrations (TCA) and scores of acute

symptoms of radiation exposure (score) are instrumental variables for true radiation dose.
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Table 2

Results from the analysis of log(TCA), where TCA is the arc sine transformation of the proportion of

chromosome aberrations per cell. The covariates included in the model are age at measurement, gender,

number of cigarettes smoking per day, BMI, and true radiation.

Variable β̂ SE P-value

Age 0.006 0.0017 < 0.0001

Sex −0.044 0.04 0.28

Smoking −0.002 0.002 0.43

BMI −0.009 0.005 0.073

True Dose 0.49 0.0103 < 0.0001

 R2 {Radj(z)
2}

0.12 0.43 0.41
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Table 3

Results from the analysis of Score, where score is an aggregate score of the acute symptoms of radiation dose

exposure. The covariates included in the model are age at the time of exposure, gender, number of cigarettes

smoking per day, BMI, and true radiation.

Variable β̂ SE P-value

Age 0.015 0.0051 0.004

Sex −0.154 0.11 0.15

Smoking 0.004 0.006 0.47

BMI 0.016 0.144 0.26

True Dose 1.02 0.022 < 0.0001

 R2 {Radj(z)
2}

0.83 0.31 0.33
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Table 4

Results from the analysis of log{log(triglycerides)}. The covariates included in the model are age at

measurement, gender, number of cigarettes smoking per day, BMI, true radiation dose and dyslipidemia. The

table also includes the estimated variance and adjusted correlations coefficients.

Variable β̂ SE P-value

Age −0.0019 0.0004 < 0.0001

Sex −0.02 0.0008 < 0.0001

Smoking 0.0002 0.00004 < 0.0001

BMI 0.009 0.00011 < 0.0001

True Dose 0.014 0.0006 < 0.0001

Dyslipidemia 0.094 0.0003 < 0.0001

 (R2)

0.00(0.99)

Radj(η)
2 {Radj(z)

2} 0.85(0.01)
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Table 5

Results from the analysis of log(LDL cholesterol). The covariates included in the model are age at

measurement, gender, number of cigarettes smoking per day, BMI, true radiation dose and dyslipidemia. The

table also includes the estimated variance and adjusted correlations coefficients.

Variable β̂ SE P-value

Age −0.0009 0.0011 0.42

Sex 0.132 0.024 < 0.0001

Smoking −0.00085 0.0012 0.49

BMI 0.022 0.0032 < 0.0001

True Dose 0.025 0.017 0.14

Dyslipidemia 0.093 0.01 < 0.0001

 (R2)

0.04 (0.33)

Radj(η)
2 {Radj(z)

2} 0.14(0.00)
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Table 6

Results from the analysis of log(HDL cholesterol). The covariates included in the model are age at

measurement, gender, number of cigarettes smoking per day, BMI, true radiation dose and dyslipidemia. The

table also includes the estimated variance and adjusted correlations coefficients.

Variable β̂ SE P-value

Age 0.0006 0.0012 0.61

Sex 0.068 0.026 0.009

Smoking −0.0021 0.001 0.014

BMI −0.024 0.0035 < 0.0001

True Dose −0.06 0.0184 0.001

Dyslipidemia −0.10 0.01 < 0.0001

 (R2)

0.05 (0.28)

Radj(η)
2 {Radj(z)

2} 0.15(0.018)
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