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Effective Genetic-Risk Prediction Using Mixed Models

David Golan1,2,* and Saharon Rosset1,*

For predicting genetic risk, we propose a statistical approach that is specifically adapted to dealing with the challenges imposed by

disease phenotypes and case-control sampling. Our approach (termed Genetic Risk Scores Inference [GeRSI]), combines the power of

fixed-effects models (which estimate and aggregate the effects of single SNPs) and random-effects models (which rely primarily on

whole-genome similarities between individuals) within the framework of the widely used liability-threshold model. We demonstrate

in extensive simulation that GeRSI produces predictions that are consistently superior to current state-of-the-art approaches. When

applying GeRSI to seven phenotypes from the Wellcome Trust Case Control Consortium (WTCCC) study, we confirm that the use of

random effects is most beneficial for diseases that are known to be highly polygenic: hypertension (HT) and bipolar disorder (BD).

For HT, there are no significant associations in the WTCCC data. The fixed-effects model yields an area under the ROC curve (AUC)

of 54%, whereas GeRSI improves it to 59%. For BD, using GeRSI improves the AUC from 55% to 62%. For individuals ranked at the

top 10% of BD risk predictions, using GeRSI substantially increases the BD relative risk from 1.4 to 2.5.
Introduction

Despite the huge investment and considerable progress in

the study of the genetic causes of human diseases, the

underlying genetic mechanisms of many common dis-

eases, including type 1 diabetes (T1D), bipolar disorder

(BD), schizophrenia, multiple sclerosis, and Alzheimer dis-

ease, are still largely unknown. The leading methodology

for finding the genetic causes of disease is the genome-

wide association study (GWAS). In a typical GWAS, one

collects thousands of sick and healthy individuals, geno-

types them, and searches for SNPs that are more abundant

in one group or the other. To date, GWASs have flagged

thousands of SNPs as associated with hundreds of diseases.

However, our ability to accurately predict an individual’s

disease status on the basis of these SNPs still falls consider-

ably short of what is expected given the high heritability of

these diseases.

This remarkable gap between the predictive power of

significantly associated SNPs and the expected predictive

capacity based on the high heritability of the phenotypes

has been termed the ‘‘mystery’’ or ‘‘problem’’ of the

missing heritability. One leading theory attempting to

explain this mystery is that many phenotypes are driven

by a plethora of common SNPs with small effects and

that present-day GWASs are underpowered to detect these

SNPs because of their small effects. Goldstein1 estimated

the overall number of SNPs affecting height at 93,000.

In light of this theory, the traditional naive approach of

using only the SNPs found to be significantly associated

with the disease in calculating genetic-risk scores (GRSs)

is expected to perform poorly because it overlooks the

lion’s share of causal SNPs, whose effect is not large enough

to be declared significant. Instead, recent efforts in

computing GRSs have attempted to include a larger num-
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ber of SNPs, primarily by adopting much more lenient

inclusion criteria for SNPs.

Using a more permissive threshold has two effects: (1)

capturing more ‘‘true’’ causal signal through the inclusion

of causative SNPs with small effects and (2) increasing the

noise in the genetic prediction, given that every additional

parameter estimated (for either a true association or a false-

positive signal) adds uncertainty to the predictions. A good

choice of p value threshold would be such that the trade-

off between signal and noise is beneficial. Recent studies

have demonstrated that GRSs computed in this manner

have a significant association with disease—one above

and beyond that of GRSs computed with only significantly

associated SNPs—when up to half of the genotyped SNPs

are included (see, e.g., Purcell et al.2). These results suggest

that for at least some diseases, there is considerable infor-

mation in the long tail of insignificantly associated SNPs

and that the benefit from including more true positives

trumps the cost of estimating more parameters. Dud-

bridge3 and Chatterjee et al.4 provide an in-depth mathe-

matical analysis of this approach and variants thereof,

and it was recently applied to predicting risk of Celiac dis-

ease with remarkable success.5

These approaches for computing GRSs fall under the

category known in the statistics literature as ‘‘fixed-effects’’

modeling. In such models, the effects of SNPs are assumed

to be parameters (i.e., fixed but unknown quantities).

These parameters are estimated and used in subsequent

analysis. For example, one would estimate the odds ratio

of a given SNP from a GWAS and use this estimate to pre-

dict the risk of new individuals. The main difference be-

tween the methods lies in the way these parameters are

estimated, ranging from simple SNP-by-SNP regression to

shrinkage-based estimates, such as Lasso and more, as re-

viewed by Dudbridge3 and Abraham et al.5 They also differ
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in the way SNPs are chosen to be included in computation

of the risk scores.3,5 However, they all share the funda-

mental treatment of the effects as parameters that require

estimation.

An alternative approach to computing GRSs is ‘‘random-

effects’’ modeling. The basic premise of this approach is

that our goal is not to estimate the individual effect of

every SNP but rather to estimate their cumulative effect.

Hence, it is expected to be beneficial to circumvent esti-

mating each and every effect and instead target this cumu-

lative effect directly. To accomplish this goal, effect sizes

are treated not as parameters but rather as random vari-

ables with some common distribution. They can then be

‘‘integrated out,’’ thus mitigating the need to estimate

them separately. Instead, a correlation (or kinship) matrix

G is estimated with the genotypes and models the correla-

tions between the GRSs. The correlation between GRSs of

individuals who are more genetically similar would be

higher, and vice versa.

This random-effects approach has been adopted in the

context of GWASs for association tests6–10 and heritability

estimation11–14 withmuch success. All of these approaches

rely on treating the phenotype as a normally distributed

variable, which is the sum of a genetic component and

an environmental component, and utilizing well-estab-

lished linear-mixed-model (LMM) methodologies to draw

inferences about their quantities of interest.

In the context of risk prediction, the animal-breeding

literature has long used similar approaches to model and

estimate the ‘‘breeding value,’’ which is closely related

to the genetic risk. In the scenario of an observational

study of a quantitative phenotype, a well-established

methodology for estimating the breeding value is known

as the best linear unbiased predictor, or BLUP.15,16 When

breeding values are estimated, pedigree data are usually

available. In GWASs, the kinship can be estimated from

genotype data (referred to as genetic BLUP, or gBLUP17),

and this method is implemented in the widely used

GCTA software.18 It was recently extended in various

ways,19,20 resulting in a considerable improvement in pre-

diction accuracy.

However, case-control studies present amuchmore chal-

lenging statistical setup. First, the phenotype is binary

rather than quantitative and so cannot be accurately

modeled by a multivariate normal (MVN) distribution.

Additionally, affected individuals (cases) are highly over-

represented in the sample, in comparison to the popula-

tion, and so many of the typical statistical assumptions

(namely normality and independence of the genetic and

environmental effects) are no longer legitimate.

A common approach to random-effects modeling in

case-control GWASs is to treat the phenotype as quantita-

tive and apply LMM methodologies, possibly followed by

post-hoc corrections to account for violation of the under-

lying assumptions.12,13,19 Although this approach has

proven successful in practice, its reliance on probabilistic

models that are known to be inaccurate is expected to
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result in suboptimal performance. In the context of GRS

estimation, the natural extension of the LMM approach

to case-control data is to use gBLUP and its extensions,

but this is subject to similar inaccuracy concerns, as our

simulations below demonstrate.

We describe a statistical approach for Genetic Risk

Scores Inference (GeRSI). GeRSI is based on a Markov-

chain Monte-Carlo (MCMC) method utilizing Gibbs

sampling to estimate the GRSs of individuals given the

genotypes of a case-control study under a random-effects

model. We use the well-known normal liability-threshold

model to account for the dichotomous nature of the

phenotype. Additionally, our Gibbs-sampling approach

conditions explicitly on the selection of individuals to

the study and thus accounts directly for the overrepresen-

tation of the case group in the study. By properly condi-

tioning on the selection, we can sample from the true

posterior distribution of the GRS. This is in contrast to

using LMM-based approaches, which treat a case-control

disease phenotype as if it were a randomly sampled quan-

titative one.

In addition to accounting for disease phenotypes and

nonrandom selection in prediction, GeRSI naturally ac-

commodates fixed effects within the probabilistic frame-

work. Hence, our approach also allows ‘‘mixed-effects’’

modeling, where SNPs with considerable effects can be

included as fixed effects and the long tail of insignificantly

associated SNPs is accounted for with random effects. We

distinguish between random-effects GeRSI (which treats

all SNPs as random effects) and mixed-effects GeRSI

(which, in our basic implementation, includes SNPs below

a certain p value threshold as fixed effects and treats the

rest of the SNPs as random effects). Additionally, intro-

ducing fixed effects to the model allows accounting for

additional covariates such as sex, ethnicity, and known

environmental risk factors (e.g., smoking habits). Mixed-

effects GeRSI can also utilize other schemes for selecting

fixed-effects SNPs and estimating their effects (such as

Lasso21) or including covariate effects estimated from

published data.22 Hence, it can combine state-of-the-art

approaches for fixed-effects estimation with proper infer-

ence on random effects.
Material and Methods

Generative Model of a Polygenic Disease
A polygenic quantitative trait y is typically modeled with the

following additive model:

yi ¼ mþ
X
j˛C

zijuj þ ei;

where C is the set of causal SNPs, ui is the effect of the ith causal

SNP, ei is the environmental effect associated with individual i,

and zij is the genotype of the jth SNP of the ith individual. The

term
P

j˛Czijuj is often referred to as the genetic effect and

denoted gi. Under mild independence assumptions, we have

s2g ¼ VarðgÞ ¼ jCjs2u.
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We note that the choice to use standardized SNPs rather than

just centering the SNPs hides an implicit assumption that SNPs

with lower frequencies have larger effect sizes (as noted in Zhou

et al.13). However, because we focus on common SNPs, the effects

of this assumption are minimal.

Polygenic disease phenotypes are modeled with the liability-

threshold model.12 We assume the existence of a latent quan-

titative ‘‘liability’’ phenotype. If an individual’s liability exceeds

a certain threshold, she is part of the case group. The liability

is modeled as a quantitative trait with mean 0 and variance 1.

Under these assumptions, the threshold corresponding to

disease prevalence K is F�1(1 � K) ¼ Z1�K, where F is the cumu-

lative distribution function of the standard normal distribution

and F�1 is its inverse (percentiles of the distribution), often

denoted Z.

Random-Effects Modeling
We are interested in predicting risk, and the actual values of ui
are not of direct interest. We therefore model them as random

variables drawn from a distribution with mean 0 and variance

s2g=jCj. Typically, one assumes a normal distribution (e.g., Yang

et al.11 and Zhou et al.13), but other distributions were sug-

gested as well as mixture distributions.4,13 We note that as long

as the number of causal SNPs is large enough and the effect

sizes are independent of each other, the genetic effect approxi-

mately follows a normal distribution, regardless of the underlying

distribution of the effect sizes, by virtue of the central-limit

theorem.

Assuming normality of the random effects and random sam-

pling, this implies the following MVN distribution of the liabil-

ities: l � MVNð0;Gs2g þ Is2e Þ; where G is the correlation matrix of

the genetic effects and is given by

Gij ¼ 1

j C j
X
k˛C

zikzjk;

and it is assumed without loss of generality (because l is unob-

served) that s2g þ s2e ¼ 1. Given that the identity of the causal

SNPs is unknown and additionally they are often not genotyped,

we follow previous works11,12 and estimate G by using all geno-

typed SNPs and use this estimate throughout. This matrix is often

referred to as the observed kinship matrix. The estimation of G is

the subject of much recent research (see, e.g., Golan and Rosset,14

Speed et al.,23 and Crossett et al.24) but is out of the scope of the

current paper.
GeRSI Sampling Scheme
Assume that we have a group of n individuals with known geno-

types but that the phenotypes are known only for the first n � 1

individuals. We are interested in predicting the genetic risk of

the nth individual.

We denote g and e the vectors of latent genetic and environ-

mental effects, respectively. The heritability (and hence s2g ) is

assumed to be known and in practice can be estimated directly

from the data11,12 or obtained from family studies.

Our goal is to predict P(ln > t), conditional on our entire data

(namely the genotypes of all n individuals and the phenotypes

of the first n � 1 individuals). Had we known gn, the (optimal)

risk prediction, rn, under the model would have been

rn ¼ Pðln > t j gnÞ ¼ 1�F

�
t � gn
se

�
:

The Americ
However, because gn is unknown, we generate k samples,

gn,1,.,gn,k, from the posterior distribution of gn, conditional on

all the observed data, and estimate the risk as

brn ¼ 1

k

Xk
i¼1

�
1�F

�
t � gn;i
se

��
:

To generate samples from the posterior distribution of gn, we

note that

P
�
gn j y�n;G; s

2
g

�
¼ P

�
gn j g�n; y�n;G; s

2
g

�
P
�
g�n j y�n;G; s

2
g

�
¼ P

�
gn j g�n;G; s

2
g

�
P
�
g�n j y�n;G;s

2
g

�
:

In other words, sampling the posterior can be decomposed into

two separate problems. The first problem is the problem of sam-

pling gn given the values of the other genetic effects, g�n. Because

we are conditioning on the genetic effects, gn is independent of the

phenotypes of the other individuals.

Asweshowbelow, evenwhen the sampling isnot random(e.g., in

case-control studies), the conditional distribution of gn is given by

gn j g�n;G;s
2
g � MVN

�
Gn;�nG

�1
�n;�ng�n; s

2
g

�
Gn;n �Gn;�nG

�1
�n;�nG�n;n

��
;

where positive or negative indices indicate the extraction or

removal, respectively, of rows or columns.

The second problem is the problem of sampling from g�njy;G;s2g ,
which is more involved. We introduce another set of variables,

namely the environmental effects e�n. It is then possible to write

down the conditional distribution of each variable in the set

(g�n,e�n), conditional on the rest of the variables in the set.

The knowledge of the phenotype induces dependence between

gi and ei, given that knowing the phenotype implies that we have

an upper or lower bound on their sum (the sum is either above or

below the threshold, depending on the phenotype). Additionally,

ei is independent of the other environmental effects and is also in-

dependent of the other genetic effects conditional on gi. Hence,

ei j g; e�i; yi;s
2
g ¼ ei j gi; yi;s2

g ¼
�
seZ j seZ þ gi > t yi ¼ case
seZ j seZ þ gi < t yi ¼ control

;

where Z ~ N(0,1) (hence, the distribution is simply a truncated

normal distribution). Intuitively, when gi is known and the

phenotype is known, the posterior distribution of the environ-

mental effect is a truncated normal distribution withmean 0, vari-

ance s2e , and a truncation point above or below t � gi, depending

on whether i is in the case or control group.

The conditional distribution of gi is slightly more complicated

because it depends on the other genetic effects via the correlation

between genetic effects. Thus, we need to explicitly describe its

conditional distribution, conditional on the other g�i genetic

effects and all environmental effects. By the independence

assumption between genetic and environmental effects, we only

need to consider dependence on ei and the other genetic effects

(g�i) via the correlation between genetic effects.

Denote mi and s2i the mean and variance of gi, conditional

on g�i, respectively. Then, mi ¼ Gi;�iG
�1
�i;�ig�i and s2i ¼ s2g ðGii�

Gi;�iG
�1
�i;�iG�i;iÞ:

Similarly to the conditional distribution of the environmental

effects, conditioning on the phenotype results in a truncation of

the aforementioned normal distribution:

gi j ei; g�i; yi;s
2
g ¼

�
mi þ siZ jmi þ siZ þ ei > t yi ¼ case
mi þ siZ jmi þ siZ þ ei < t yi ¼ control

:
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Again, the conditional distribution can be seen as a truncated

normal distribution, but with a mean term and variance term

that capture the influence of the other genetic effects on the

genetic effect in question.

Once all of the conditional distributions are specified, Gibbs

sampling25 can be used to draw samples from the posterior distri-

bution of g�n, and the risk is estimated as described above. This is

done is a similar fashion to Campbell et al.26

Conditional Sampling in Case-Control Studies
The fact that the observed samples are obtained via a case-control

sampling scheme and are therefore not a random sample from the

population renders the usual mixed-effects model incompatible.

In particular, under assumptions of (1) normality of genetic and

environmental effects in the population and (2) independence

of the genetic and environmental effects in the population, the

actual distribution of genetic and environmental effects in the

study is nonnormal, and they are not independent as a result of

selection, as noted in Lee et al.12 Because the distribution of the

genetic effects is no longer normal, their joint distribution is no

longer MVN, and so naive application of Gibbs sampling might

be inaccurate. However, we show here that the same sampling

scheme can be used to sample the posterior genetic effects in a

case-control study.

To model and account for the effects of selection, we define an

event S, which signifies that individuals 1,.,n�1 were selected

via a case-control scheme and not by random sampling. Hence,

the conditional distributions above now require additional condi-

tioning on S. However, we note that

f
�
gn j g�n;S;G;s2

g

�
¼

f
�
S j g�n; gn;G; s

2
g

�
f
�
gn j g�n;G;s

2
g

�
f
�
S j g�n;G;s2

g

� ;

but because S signifies only the selection of individuals 1,.,n�1, it

is independent of gn. Hence, f ðSjg�n; gn;G;s
2
g Þ ¼ f ðSjg�n;G;s

2
g Þ and

f ðgnjg�n;S;G; s2g Þ ¼ f ðgnjg�n;G; s
2
g Þ; i.e., Gibbs sampling of the ge-

netic effect of the individual in question can be carried out as if

there were no selection, given that the samples of the genetic

effects g1,.,gn�1 are drawn by correct conditioning on S. More-

over, for an individual i in the reference group, we have

f
�
gi j ei; g�i; yi;S;s2

g

�
¼

f
�
S j ei; g�i; yi; gi; s

2
g

�
f
�
gi j ei; g�i; yi;s

2
g

�
f
�
S j ei; g�i; yi;s2

g

� ;

but because we assumed that the selection is driven only

by the phenotypes, we have f ðSjei; g�i; yi; s
2
g Þ ¼ f ðSjyi; s2g Þ and

f ðSjei; g�i; yi; gi; s
2
g Þ ¼ f ðSjyi; s2g Þ, so again the sampling boils

down to the same Gibbs scheme. Lastly, we need to take care of

the sampling of the environmental effects, but because this is

done per individual, the selection has no effect. To conclude, the

same Gibbs sampling scheme can be applied to case-control

studies and yield correct posterior risk estimates.

Simulation Setup
Our simulations adopt the ‘‘spike-and-slab’’ model of genetic risk,

recently explored by Zhou et al.13 and Chatterjee et al.4 and found

to provide a good fit for the observed effect sizes for a wide variety

of GWASs. In this model, all SNPs have effects on the phenotype,

but the SNPs are divided into a small fraction of ‘‘slab’’ SNPs with

considerable effect sizes and a bulk of ‘‘spike’’ SNPs with very small

but nonzero effects.
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Given the prevalence of a disease in the population (K),

the desired proportion of cases in the study (P), the desired

study size (n), the total number of SNPs (m), the proportion

of slab SNPs (p1), the overall variance of the genetic effects

(s2g ), and the fraction of the heritability explained by the slab

SNPs (fslab), we simulated data sets by using the following

procedure:

1. We randomly sampled the minor allele frequencies (MAFs)

of m SNPs from U[0.05,0.5].

2. We randomly sampled SNP effect sizes for p1m slab SNPs

and (1 � p1)m spike SNPs from Nð0; fslabs2g=ðp1mÞÞ and

Nð0; ð1� fslabÞs2g=ðð1� p1ÞmÞÞ, respectively.
3. For each individual, we (a) randomly generated a genotype

by using the MAFs, (b) computed the genetic effect as

described above, (c) sampled an environmental effect from

Nð0;1� s2g Þ, (d) computed liability and phenotype, and (e)

if the phenotype was in the case group, automatically

included the individual in the study. Otherwise, we

included the individual in the study with probability

K(1 � P)/(P(1 � K)) to maintain the expected proportion

of cases in the study at P.

4. We repeated steps 2 and 3 until n individuals were accumu-

lated.

Setting fslab ¼ 1 results in a model where only p1 of the SNPs

are causal and the rest of the SNPs have no effects on the

phenotype.

We note that our choice of working with SNPs in linkage equi-

libriumwasmotivated by a result of Patterson et al.27 They showed

that for the purpose of generating correlationmatrices, using SNPs

in linkage disequilibrium (LD) is equivalent to using a smaller

number of SNPs in linkage equilibrium. They also suggested a

method for estimating the effective number of SNPs (i.e., the num-

ber of SNPs in linkage equilibrium that lead to the same distribu-

tion of correlation matrices as a given set of SNPs in LD). We

thus find that our simulations using m ¼ 50,000 SNPs in equilib-

rium are of realistic size.

Computing GRSs with ‘‘Standard’’ Fixed-Effects

Models
To compute GRSs with a fixed-effects approach, we follow the

spirit of Dudbridge3 and Chatterjee et al.4 For each SNP, we esti-

mate the effect size bu by using univariate linear regression. Denote

by vi the p value of the null hypothesis of ui ¼ 0. We then define

the estimated risk score by using a p value threshold c as

risk score ðcÞj ¼
XbuiZijIfvi < cg:

When dealing with real data, where LD structure is present, we

select a subset of significant SNPs—such that the distance be-

tween included SNPs is at least 1 Mb—by choosing the SNP

with the lower p value within any such window. We note that

other alternative definitions exist, e.g., using shrinkage estimates,

but generally there is very little difference between the methods,

as noted by Dudbridge.3 For the real data, we try several p value

thresholds, namely 5 3 10�c for c˛f1;.;8g. We then choose the

threshold that maximizes the area under the ROC curve (AUC).

Hence, AUC estimates of the fixed-effects model are expected to

be slightly elevated. Our bootstrap scheme for computing confi-

dence intervals accounts for this selection scheme, as detailed

below.
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Random- and Mixed-Effects GeRSI
We use the genotyped SNPs to estimate the genetic correlation

matrix G. When applying random-effects GeRSI, we use this

matrix as the correlation matrix in the sampling scheme described

above. When applying mixed-effects GeRSI with a p value

threshold c, we keep only SNPs with a p value below that threshold

in the univariate association test.We then use logistic regression to

estimate the personal in-study risk due to the fixed effects. We

then convert this risk to the liability scale by using the following

transformation:

bt i ¼ F

 
1� CbPi

1þ CbPi � bPi

!
;

where bPi is the estimated in-study risk, bt i is the individual-specific
liability threshold, and C ¼ K(1 � P)/(P(1 � K)). We note that this

method is reminiscent of the method of Zaitlen et al.22 but differs

in the data utilized for estimating the covariate effects, given that

Zaitlen et al.22 take advantage of external data for this purpose.

gBLUP
For comparison, we compute the gBLUP by coding the discrete

phenotype as 0/1 and treating it as a quantitative and randomly

sampled phenotype. In other words, the phenotype is modeled as

y � MVNð0;SÞ;

where S ¼ Gs2g þ Is2e . Hence, if the phenotype of individual i is

unknown, then the conditional mean of her phenotype is easily

obtained with the formula for the conditional mean of a MVN

distribution:

E
h
yi j y�i;S; s

2
g

i
¼ Si;�iS

�1
�i;�iy�i:

The gBLUP method could be similarly extended to account for

fixed effects (see, e.g., Yang et al.18).

Extending to Multiple Correlation Matrices
Recently, Speed and Balding19 extended gBLUP to account for

multiple correlationmatrices (‘‘multiBLUP’’). The SNPs are divided

into k subsets according to some criteria (e.g., functional annota-

tion), and correlationmatricesG1,.,Gk are estimated for each sub-

set separately. The corresponding variances of the effect sizes,

s2g1 ;.;s2gk , are either estimated or taken from published sources,

as before. This formulation allows SNPs from different sets to

have a typically larger or smaller effect on disease risk. The corre-

lation of the genetic effect is then given by

Gmulti ¼
Xk
i¼1

Gis
2
gi
:

MultiBLUP is defined as running gBLUP with Gmulti instead of the

previously definedG. We similarly extend GeRSI to ‘‘multi-GeRSI,’’

i.e., running random-effects GeRSI with Gmulti.

Controlling for Population Structure
When attempting to control for population structure in associa-

tion studies or heritability estimation, it is customary to include

several top principal components as covariates. However, in the

context of risk prediction, this would result in inflated estimates

of the predictive accuracy. Instead, we remove the top k principal

components directly from the correlation matrix. In other words,

denote l1,.ln the sorted eigenvalues of the correlation matrix G
The Americ
and denote v1,.,vn their corresponding eigenvectors. We define

a cleaned correlation matrix as

G�ðkÞ ¼ G�
Xk
i¼1

liviv
u
i :

Describing Real Data
We obtained genotypes and phenotypes from the Wellcome Trust

Case Control Consortium (WTCCC). Following Lee et al.12 we

applied a stringent quality-control (QC) process to the WTCCC

data to avoid overestimation of the predictive capacity due to gen-

otyping differences between case and control groups or between

the different control groups. We removed SNPs with a MAF <

5%, SNPs with a missing rate > 1%, and SNPs that displayed a

significantly different missing rate between case and control

groups (p value < 0.05). We also removed SNPs that deviated

from Hardy-Weinberg equilibrium in the control groups

(p value < 0.05) or were noted for ‘‘bad clustering’’ in the geno-

type-calling step. Additionally, we removed SNPs that displayed

a significant difference in frequency between the two control

groups. Only autosomal chromosomes were included in the anal-

ysis. We removed all the individuals appearing in the WTCCC

exclusion lists. These included duplicate samples, first- or

second-degree relatives, individuals not of European descent,

and other reasons. In addition, we removed individuals with a

missing rate > 1% and all individual pairs with an estimated

genetic correlation < 0.05 according to the correlation matrix.

We performed the last step to ensure that individuals in the study

were not closely related. In addition, when computing the correla-

tionmatrixG, we used estimatedMAFs fromHapMap’s CEU panel

(Utah residents with ancestry from northern and western Europe

from the CEPH collection)28 to mitigate any possibility of leakage

between the train and test sets. Our approach requires specifica-

tion of population parameters of each disease (prevalence and her-

itability), and we detail the parameters we used and their sources

in Table S1, available online.

Inference
We use the bootstrap29 to estimate the SD of our AUC estimates by

resampling the GRSs or genetic-risk predictions. For GeRSI, this is a

straightforward bootstrap scheme. Denote AUC(r1,.,rn,y1,.,yn)

the estimated AUC given risk predictions r1,.,rn (obtained via

the method described above) and phenotypes y1,.,yn. We sample

with return n indices i1,.,in ˛ {1,.,n}. The jth bootstrap AUC

sample is then

AUCj ¼ AUC
�
ri1 ;.; rin ; yi1 ;.; yin

�
;

and we report the empirical SD of 100 such bootstrap samples.

When dealing with fixed-effects models, we must account for the

fact that the p value threshold is selected on the basis of the AUC.

Obtained with c as a threshold, the risk score of the ith individual,

is denoted rci . A bootstrap sample accounting for threshold selec-

tion is thus given by

AUCj ¼ max
c

n
AUC

�
rci1 ;.; rcin ; yi1 ;.; yin

�o
:

Lastly, when testing whether one method performs better than

another, we note that comparing AUCs by using estimated SDs

is considerably conservative, given that AUCs obtained with the

same set of observations are expected to be highly correlated.
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Fixed effects Fixed effects Fixed effects

Figure 1. Comparison of the Perfor-
mance of Fixed-, Random-, and Mixed-
Effects Models in Predicting Disease Risk
in a Spike-and-Slab Model
Wesimulatedbalanced case-control studies
of a disease with 5% prevalence and 50%
heritability and for which the fraction of
slab SNPs with large effects was either 1%
or 10% out of a total of 50,000 simulated
SNPs and for which these slab SNPs ac-
counted for 90% of the heritability, in line
with values from Chatterjee et al.4 We
show the performance of the fixed-effects
approach with (A) a Bonferroni-adjusted
p value threshold, (B) a p value threshold
of 0.05, and (C) a p value threshold of 0.5.
In addition, we computed the correlation
matrix G and used it to predict risk with
the random-effects GeRSI approach, as
well as with mixed-effects GeRSI treating
the SNPs from (A) as fixed effects. In each
simulation, we used a train set of 3,000 in-
dividuals and estimated the AUC for each
method by using a test set of 1,000 individ-
uals. We used the results from 20 indepen-
dent simulations to draw the box plots.
Instead, we follow a similar scheme to estimate the SD of the dif-

ference in AUC directly.
Estimating Relative Risk
We are interested in estimating the relative risk (RR) of individuals

at the top X of the risk predictions. A subtle aspect is that we wish

to do so with case-control data because we don’t have a random

sample from the population. For a given risk threshold v, we esti-

mate the fraction of the population with risk predictions higher

than this threshold as

ppop ¼ K

ncases

X
yi¼case

Ifri > vg þ 1� K

ncontrols

X
yi¼control

Ifri > vg:

We then search for a value v such that ppop is the desired value.

The fraction of cases with risk predictions higher than the

threshold is pcases ¼ ð1=ncasesÞ
P

yi¼1Ifri > vg, and the RR is esti-

mated as pcases/(1 � pcases) 3 (1 � ppop)/ppop.
Results

We tested GeRSI in extensive simulations, as described in

the Material and Methods. Prediction quality is measured

by the AUC, which is the probability that a randomly

sampled affected individual (case) attains a higher GRS

than a randomly sampled unaffected individual (control).

Our results demonstrate, as expected, that fixed-effects

modeling is generally effective when the phenotype is

driven by a small number of SNPs with sizable effects

(i.e., most causal SNPs are easily identified) and that the

random-effects approach is most effective when the

phenotype is driven by a large number of SNPs with small

effects. Mixed-effects GeRSI performs well in both sce-

narios, as well as in intermediate scenarios, and was never

inferior to fixed-effects modeling or gBLUP in any of our

simulations.
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In Figure 1, we present the results for the spike-and-slab

model of genetic risk, recently explored by Zhou et al.4 and

Chatterjee et al.13 and described in the Material and

Methods. The results illustrate the power and flexibility

of GeRSI and its superior performance in comparison to

fixed-effects modeling (superior in all 20 simulation runs;

for both setups, p value < 10�6 with sign tests). When

slab effects were relatively small (as in the bottom panel),

random-effects GeRSI and mixed-effects GeRSI performed

similarly, but in the presence of large slab effects (as in

the top panel), the mixed-effects version allowed us to

capture these as fixed effects and was far superior to the

random-effects version. The results for other simulation

settings are presented in Figures S1–S21.

In Figure 2, we compare GeRSI to gBLUP, which similarly

utilizes random-effects modeling to reduce the number of

parameters. Here, too, GeRSI’s performance was uniformly

superior, as expected from the fact that it utilizes the cor-

rect probabilistic model rather than an approximated

model. We also investigated the recently described

multiBLUPmethod of Speed and Balding,19 which extends

the BLUP model to include several variance components.

We did this by constructing two correlation matrices in

our spike-and-slab model—one for the spike SNPs and

one for the slab SNPs. Using this refined correlation struc-

ture yielded considerably more accurate results. Impor-

tantly, GeRSI can be similarly extended to accommodate

several variance components (multi-GeRSI), thus taking

advantage not only of the refined correlation structure

but also of GeRSI’s improved statistical-modeling

approach. As expected, multi-GeRSI outperformed multi-

BLUP in our simulations (Figure 2). Lastly, multi-GeRSI

can be extended to incorporate fixed effects (mixed

multi-GeRSI) so that SNPs with remarkably significant

effects are treated as fixed effects while the rest aremodeled
2, 2014



Figure 2. Comparison of the Perfor-
mance of BLUP andGeRSIMethods in Pre-
dicting Disease Risk in a Spike-and-Slab
Model
We compared the performance of BLUP,
multiBLUP, GeRSI, multi-GeRSI, and
mixed multi-GeRSI by using the same
simulation setup as in Figure 1. We
observed that GeRSI outperformed BLUP
by utilizing the correct probabilistic setup.
MultiBLUP takes into account the different
effect-size distributions of spike and slab
SNPs and therefore outperformed both.
Multi-GeRSI enjoys the best of both
worlds—correct sampling scheme and
improved correlation structure—and so
trumped all previous methods. Lastly,
mixed multi-GeRSI improves over multi-
GeRSI by including the most significant
SNPs as fixed effects in addition to the
other advantages of the multi-GeRSI
approach.
as random effects. This approach improved the perfor-

mance even further (Figure 2).

We then proceeded to apply GeRSI to seven WTCCC30

case-control studies on BD, coronary artery disease

(CAD), Crohn disease (CD), hypertension (HT), T1D,

type 2 diabetes (T2D), and rheumatoid arthritis (RA). For

each phenotype, we first performed stringent QC as sug-

gested by Lee et al.12 and detailed in the Material and

Methods to mitigate batch effects. We then estimated the

AUC with 4-fold cross-validation by using both the fixed-

effects method of Dudbridge3 and the random-effects

and mixed-effects GeRSI approaches. To demonstrate the

potential clinical utility of the risk-prediction approaches

examined, we also estimated the RR of an individual found

to be in the top 1% and 10% of risk predictions. For the

fixed-effects approaches, we considered a range of possible

p value thresholds (5 3 10�c for c˛f1;.;8g) and display

here the best result for each phenotype.

Comparing the fixed-effects approach to random-effects

GeRSI, we observed that random-effects GeRSI obtained

significantly higher AUC than the optimized fixed-effects

approach for four of the seven phenotypes: BD, T2D,

CAD, andHT (p value< 10�9, 10�3, 10�3, and 10�5, respec-
Table 1. Comparison of the Fixed-Effects Approach and Random-Effe

Phenotype

Fixed

Best Threshold AUC (SE) RR a

BD 0.5 0.55 (0.01) 1.4

T2D 0.005 0.55 (0.01) 1.48

CAD 5 3 10�5 0.65 (0.01) 1.85

HT 0.5 0.54 (0.01) 1.31

The AUC and RR of the top 10% and top 1% of individuals were estimated by 4-f
effects GeRSI approach to the predictions obtained by a fixed-effects approach. W
thresholds (53 10�c for c ˛ {1,.,8}) and display here results for the value with the
as a covariate. CI stands for confidence interval.

The Americ
tively; Table 1; see the Material and Methods for details).

Specifically for HT, no SNPs were found to be associated

at the 5 3 10�8 genome-wide-significance level in the

WTCCC data,30 and very few associations have been found

in any studies to date (only seven associations are listed in

the NHGRI GWAS Catalog [see Web Resources]). The

optimal p value threshold for the fixed-effects model was

0.5, indicating a true polygenic architecture and thus an

ideal phenotype for random-effects modeling. As ex-

pected, random-effects GeRSI yielded substantially better

predictive power with an AUC around 0.6 and a consider-

able increase in RR for individuals at the top 10% of GeRSI

risk predictions (1.61 versus 1.31). Figure 3 contrasts the

ROC curves and the risk-prediction behavior of the two

approaches on HT data.

Contrary to HT, BD has numerous replicated associa-

tions, some of which were identified in the original

WTCCC study. However, in agreement with other

studies,2 we found that using a permissive p value

threshold for risk predictions is appropriate (the optimal

p value threshold was 0.5). Here, too, using random-effects

modeling was beneficial, as expected. This is reflected in

the AUC and 10% RR numbers in Table 1. Additionally,
cts GeRSI on Four Phenotypes from the WTCCC

Random

t Top 10% [CI] AUC (SE) RR at Top 10% [CI]

[1.03–1.65] 0.62 (0.01) 2.5 [2.16–2.96]

[1.2–1.83] 0.59 (0.01) 1.67 [1.34–1.99]

[1.17–2.3] 0.67 (0.01) 2.16 [1.79–2.72]

[1.06–1.55] 0.60 (0.01) 1.61 [1.42–1.97]

old cross-validation. We compared the predictions obtained from our random-
e computed the AUC of the fixed-effects approach for a wide range of p value
highest AUC (note that GeRSI has no such parameter). All analyses included sex
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Figure 3. Comparison of HT Risk Predictions with Fixed-Effects Models and Random-Effects GeRSI
We used the fixed-effects approach with a p value threshold of 0.5. With fixed effects, there is very little difference between the distri-
bution of risk scores of cases and control (top-left panel), but with random-effects GeRSI, out-of-sample risk predictions for cases is clearly
skewed to the right (bottom-left panel). This is also evident in the comparison of the ROC curves of both methods (right panel).
the top 1% of risk scores attained a RR of almost 4 in

random-effects GeRSI but only 1.26 with the fixed-effects

approach.

Random-effects GeRSI did not improve over fixed-effects

modeling for CD and performed significantly worse for RA

and T1D (Table 2). This is consistent with our knowledge

regarding the genetic architecture of these diseases: all

three are autoimmune diseases with strongly associated

SNPs with considerable effect sizes, primarily in the MHC

region on chromosome 6. Gusev et al.31 recently showed

that a significant portion of the heritability of these dis-

eases is due to variants in the vicinity of previously identi-

fied causal SNPs and is not uniformly distributed along the

genome. To demonstrate the flexibility of mixed-effects

GeRSI to combine the power of fixed- and random-effects

modeling, we also show its performance in Table 2, where

it is generally comparable to that of the fixed-effects

approach (slightly superior for CD, p value < 10�3).
Discussion

An important aspect in applying prediction methodology

to case-control data is that of population structure. It is

well established that population structure must be ac-

counted for in GWASs, and this is often done with mixed

models8 or by inclusion of several top principal compo-

nents as covariates.32 In the context of heritability estima-

tion, population structure can inflate the estimated

heritability if unaccounted for, and typically a number of

principal components of G are included as fixed effects
390 The American Journal of Human Genetics 95, 383–393, October
to control for that structure. During risk prediction, the

role of population structure is more complicated. We

distinguish between two types of population structure:

actual and induced. Actual population structure is struc-

ture that is truly present in the population and is properly

reflected in the study group. Importantly, taking advantage

of this type of structure for the purpose of risk prediction is

legitimate, even if the effect of the structure on the pheno-

type is not via genetics. For example, if the diet of individ-

uals of a certain ethnicity affects their disease risk, but this

is not accounted for with fixed effects (e.g., if dietary infor-

mation is not collected), this can still be captured in GeRSI

via the genetic differences between these individuals and

others in the population.

On the other hand, induced structure is an artifact of

the sampling procedure. For example, a certain sub-

population might be considerably more likely to be

sampled as cases rather than controls. In this case, GeRSI

predictive-power estimates based on the study sample

might be illegitimately inflated if this structure is not

accounted for.

The WTCCC studies are considered to have relatively

little structure,30 and we are not able to separate the struc-

ture that does exist into its legitimate and induced compo-

nents. To examine the robustness of our results to removal

of structure, we reran our analyses while removing the top

ten principal components from the correlation matrix

(Table 3). This had a small negative effect on the perfor-

mance of GeRSI for some of the phenotypes, such as BD

and RA, but the general spirit of the results remained

unchanged.
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Table 2. Comparison of the Random- and Mixed-Effects GeRSI Approach and the Fixed-Effects Approach for Three Autoimmune Diseases
in the WTCCC Data

Phenotype

AUC (SE) RR at Top 10% [CI]

Fixed Random Mixed Fixed Random Mixed

CD 0.59 (0.01) 0.59 (0.01) 0.62 (0.01) 2.02 [1.67–2.34] 2.18 [2.12–2.53] 2.63 [2.32–2.81]

T1D 0.72 (0.01) 0.55 (0.01) 0.71 (0.01) 3.4 [3.19–3.63] 1.46 [1.31–1.83] 3.45 [2.76–3.57]

RA 0.67 (0.01) 0.63 (0.01) 0.68 (0.01) 2.85 [2.62–3.61] 1.83 [1.44–2.07] 2.93 [2.55–3.54]

The AUC and RR of the top 10% of individuals were estimated by 4-fold cross-validation. We compared the predictions obtained from our random-effects GeRSI
approach, our mixed-effects GeRSI approach, and a fixed-effects approach. We computed the AUC of the fixed-effects approach and the mixed-effects GeRSI
approach for a wide range of p value thresholds (5 3 10�c for c ˛ {1,.,8}) and display here results for the value with the highest AUC. All analyses included
sex as a covariate. CI stands for confidence interval.
Another key point is that of QC. Following Lee et al.,12

we applied very stringent QC as described in the Material

and Methods. Such stringent QC is particularly important

during the evaluation of predictions, given that different

cohorts are genotyped at different times and different

centers, and so systematic genotyping errors might mani-

fest as inflated estimates of the predictive capacity. On

the other hand, stringent QC results in fewer SNPs and

fewer individuals in the inspected data sets, which could

result in conservative estimates of the predictive power.

The major computational bottleneck in GeRSI is the

computation of the genetic correlation matrix (time

complexity of Oðn2mÞ, where n is the number of individ-

uals in the reference sample and m is the number of

SNPs). However, it is very easy to parallelize this task, and

the correlations for the reference panel could be computed

offline. Additionally, faster implementations of correla-

tion-matrix computations could be utilized for improved

performance.33 The second bottleneck is the inversion of

the correlation matrix for the purpose of computing the

conditional means and variances (time complexity of

Oðn3Þ). This task could also be completed for the reference

set offline, and rank-one updates could be used once the

correlations between the reference set and the new individ-
Table 3. Investigating the Possible Effect of Sampling-Induced
Population Structure on Estimating Accuracy of Risk Prediction

Phenotype

AUC (SE) RR at Top 10% [CI]

0 PCs 10 PCs 0 PCs 10 PCs

BD 0.62 (0.01) 0.59 (0.01) 2.5 [2.3–3.05] 1.81 [1.66–2.23]

CD 0.59 (0.01) 0.57 (0.01) 2.18 [1.83–2.55] 1.74 [1.49–2.01]

T1D 0.55 (0.01) 0.52 (0.01) 1.46 [1.09–1.7] 1.03 [0.94–1.16]

T2D 0.59 (0.01) 0.57 (0.01) 1.67 [1.58–1.8] 1.66 [1.46–1.76]

CAD 0.67 (0.01) 0.68 (0.01) 2.16 [1.75–2.61] 2.5 [2.24–2.93]

RA 0.63 (0.01) 0.6 (0.01) 1.83 [1.47–1.91] 1.77 [1.45–1.97]

HT 0.59 (0.01) 0.6 (0.01) 1.61 [1.48–1.91] 1.68 [1.46–1.85]

We compared the AUCs and RRs for the top 10% of individuals when using the
correlation matrix G directly or after removing the top ten principal compo-
nents (PCs) as described in the Material and Methods. As expected, we
observed a minor decrement in performance in some phenotypes, but others
(such as CAD and HT) displayed no real change in performance. All analyses
included sex as a covariate. CI stands for confidence interval.

The Americ
ual are computed. Lastly, the time complexity of the Gibbs

sampling itself is linear in the number of individuals. In

conclusion, if proper prepossessing is carried offline, the

time complexity of predicting the risk of a newly observed

genotype is OðnmÞ. Our main simulations used a reference

set of 3,000 individuals to predict the phenotype of 1,000

individuals, in which case the three parts—computing the

correlation matrix, inverting the matrix, and predicting

risk—were completed in approximately 2 hr, 20 min, and

2 min, respectively, with a single core of a standard laptop

computer. Our implementation is available in the Web

Resources.

To study the scalability and performance of GeRSI

when larger reference panels are used, we repeated the

simulations of Figure 1 with reference panels of 6,000 or

9,000 individuals (Figures S22 and S23). For the largest

studies simulated, the entire simulation and prediction

process took about 2 days with a single CPU with 16 GB

RAM. As expected, the performance of all methods

improved as the size of the reference panel increased,

but qualitatively, the results remained the same. Impor-

tantly, mixed-effects GeRSI still outperformed all other

methods.

In conclusion, GeRSI is a method that takes advantage of

the full power of random-effects modeling to accumulate

evidence from the entire genome for the purpose of ob-

taining accurate risk predictions from GWASs. This is

accomplished through an appropriate probabilistic-infer-

ence approach, also allowing for inclusion of relevant fixed

effects, including associated SNPs and other covariates.

Thus, any method for selecting a subset of SNPs or esti-

mating covariate effects for the purpose of fixed-effects

modeling can be used to model the fixed part of GeRSI

and gain power from treating the rest of the SNPs as

random effects.3,4,21,22,34,35 Our results demonstrate the

significant benefits of using this approach on both simu-

lated and real data. Additionally, approaches designed for

predicting quantitative phenotypes and that already uti-

lize random effects could be easily adapted to take advan-

tage of the GeRSI sampling scheme when applied to

case-control data and benefit from a more accurate proba-

bilistic model. We have demonstrated the improvement in

performance for BLUP and multiBLUP, but similar im-

provements can be expected for other methods designed
an Journal of Human Genetics 95, 383–393, October 2, 2014 391



for predicting quantitative phenotypes by using both fixed

and random effects (e.g., LMM-Lasso20).

Specifically for BD, random-effects GeRSI allows us to

identify 1% of the population at 4-fold risk of disease

and 10% of the population at 2.5-fold risk. These numbers

represent a major improvement over current state-of-the-

art approaches and bring us closer to the ultimate goal of

obtaining clinically useful risk predictions from GWAS

data. We believe that random-effects modeling is a key

component in this quest.
Appendix A

Matrix Identities for Fast Computation of the

Conditional Mean and Variance

This section contains some matrix identities that are used

in the software for faster computation.

Let x � MVNðm;SÞ. We are interested in the conditional

distribution xijx�i. It is well known that for the MVN case,

it is given by

xi j x�i�N
�
Si;�iðS�i;�iÞ�1ðx�i � m�iÞ;Sii � Si;�iðS�i;�iÞ�1S�i;i

�
:

We wish to quickly compute the mean and variance

for every i. Naively, this implies inverting an (n � 1) 3

(n � 1) matrix for n individuals in the train set, resulting

in running-time complexity of o(n4), which is infeasible

for realistic values of n. We are therefore interested in

computing the conditional mean and variance for every

individual in a more effective fashion.

To do so, focusing on i ¼ n WLOG, we write

S ¼
�

A b
cu d

�
and S�1 ¼

�
E f
gu h

�
;

where A and E are (n� 1)3 (n� 1) matrices, so b, c, f, and g

are column vectors, and d and h are scalars.

The first result is

A�1 ¼ E� fgu

h

(for a derivation, see Mathematics Stack Exchange in the

Web Resources). In other words, the inverses of all prin-

cipal submatrices can be computed from the inverse of

the overall matrix.

However, we are not interested directly in A�1 but rather

in the conditional mean and variance.

The conditional mean is given by Si;�iðS�i;�iÞ�1ðx�i�
m�iÞ, so all we need to compute is Si;�iðS�i;�iÞ�1, in other

words,

cuA�1 ¼ cu
�
E� fgu

h

�
¼ cuE� cufgu

h
¼

� dgu � ð1� dhÞgu
h

¼ �gu

h
;

where we use the identities cuE þ dgu ¼ 0 and cuf þ
dh ¼ 1, which stem from the identity SS�1 ¼ I.
392 The American Journal of Human Genetics 95, 383–393, October
With our notation, the variance is

Sii � Si;�iðS�i;�iÞ�1S�i;i ¼ d � cuA�1b ¼ d � cu
�
E� fgu

h

�
b:

Again, using the fact that cufþ dh¼ 1 and cuEþ dgu¼ 0,

we get

. ¼ d � cu
�
E� fgu

h

�
b ¼ d �

�
cuE� cufgu

h

�
b ¼ d

�
�
� dgu � ð1� dhÞgu

h

�
b ¼ d þ gu

h
b ¼ d

þ 1� dh

h
¼ 1

h
:

Supplemental Data

Supplemental Data include 23 figures and 1 table and can be

found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2014.09.007.
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D.W., Eyre, S., et al. (2012). Informed conditioning on clinical

covariates increases power in case-control association studies.

PLoS Genet. 8, e1003032.

23. Speed, D., Hemani, G., Johnson, M.R., and Balding, D.J.

(2012). Improved heritability estimation from genome-wide

SNPs. Am. J. Hum. Genet. 91, 1011–1021.

24. Crossett, A., Lee, A.B., Klei, L., Devlin, B., and Roeder, K.

(2013). Refining genetically inferred relationships using tree-

let covariance smoothing. Ann. Appl. Stat. 7, 669–690.

25. Casella, G., and George, E.I. (1992). Explaining the gibbs

sampler. Am. Stat. 46, 167–174.

26. Campbell, D.D., Sham, P.C., Knight, J., Wickham, H., and

Landau, S. (2010). Software for generating liability distribu-

tions for pedigrees conditional on their observed disease states

and covariates. Genet. Epidemiol. 34, 159–170.

27. Patterson, N., Price, A.L., and Reich, D. (2006). Population

structure and eigenanalysis. PLoS Genet. 2, e190.

28. Gibbs, R.A., Belmont, J.W., Hardenbol, P., Willis, T.D., Yu, F.,

Yang, H., Ch’ang, L.-Y., Huang, W., Liu, B., Shen, Y., et al.;

International HapMap Consortium (2003). The international

hapmap project. Nature 426, 789–796.

29. Efron, B., and Tibshirani, R.J. (1994). An introduction to the

bootstrap (Boca Raton: CRC Press).

30. Burton, P.R., Clayton, D.G., Cardon, L.R., Craddock, N.,

Deloukas, P., Duncanson, A., Kwiatkowski, D.P., McCarthy,

M.I., Ouwehand, W.H., Samani, N.J., et al.; Wellcome Trust

Case Control Consortium (2007). Genome-wide association

study of 14,000 cases of seven common diseases and 3,000

shared controls. Nature 447, 661–678.

31. Gusev, A., Bhatia, G., Zaitlen, N., Vilhjalmsson, B.J., Diogo, D.,

Stahl, E.A., Gregersen, P.K., Worthington, J., Klareskog, L.,

Raychaudhuri, S., et al. (2013). Quantifying missing heritabil-

ity at known GWAS loci. PLoS Genet. 9, e1003993.

32. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E.,

Shadick, N.A., and Reich, D. (2006). Principal components

analysis corrects for stratification in genome-wide association

studies. Nat. Genet. 38, 904–909.

33. Gray, A., Stewart, I., and Tenesa, A. (2012). Advanced complex

trait analysis. Bioinformatics 28, 3134–3136.

34. Zaitlen, N., Pasxaniuc, B., Patterson, N., Pollack, S., Voight, B.,

Groop, L., Altshuler, D., Henderson, B.E., Kolonel, L.N., Le

Marchand, L., et al. (2012). Analysis of case-control associa-

tion studies with known risk variants. Bioinformatics 28,

1729–1737.

35. Kooperberg, C., LeBlanc, M., and Obenchain, V. (2010). Risk

prediction using genome-wide association studies. Genet.

Epidemiol. 34, 643–652.
an Journal of Human Genetics 95, 383–393, October 2, 2014 393


	Effective Genetic-Risk Prediction Using Mixed Models
	Introduction
	Material and Methods
	Generative Model of a Polygenic Disease
	Random-Effects Modeling
	GeRSI Sampling Scheme
	Conditional Sampling in Case-Control Studies
	Simulation Setup
	Computing GRSs with “Standard” Fixed-Effects Models
	Random- and Mixed-Effects GeRSI
	gBLUP
	Extending to Multiple Correlation Matrices
	Controlling for Population Structure
	Describing Real Data
	Inference
	Estimating Relative Risk

	Results
	Discussion
	Appendix A
	Matrix Identities for Fast Computation of the Conditional Mean and Variance

	Supplemental Data
	Acknowledgments

	Web Resources
	References


