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Biased Gene Conversion Skews Allele Frequencies
in Human Populations, Increasing the Disease Burden
of Recessive Alleles

Joseph Lachance1,2,* and Sarah A. Tishkoff1,*

Gene conversion results in the nonreciprocal transfer of genetic information between two recombining sequences, and there is evidence

that this process is biased toward G and C alleles. However, the strength of GC-biased gene conversion (gBGC) in human populations

and its effects on hereditary disease have yet to be assessed on a genomic scale. Using high-coverage whole-genome sequences of African

hunter-gatherers, agricultural populations, and primate outgroups, we quantified the effects of GC-biased gene conversion on popula-

tion genomic data sets. We find that genetic distances (FST and population branch statistics) are modified by gBGC. In addition, the site

frequency spectrum is left-shifted when ancestral alleles are favored by gBGC and right-shifted when derived alleles are favored by gBGC.

Allele frequency shifts due to gBGCmimic the effects of natural selection. As expected, these effects are strongest in high-recombination

regions of the human genome. By comparing the relative rates of fixation of unbiased and biased sites, the strength of gene conversion

was estimated to be on the order of Nb z 0.05 to 0.09. We also find that derived alleles favored by gBGC are much more likely to

be homozygous than derived alleles at unbiased SNPs (þ42.2% to 62.8%). This results in a curse of the converted, whereby gBGC causes

substantial increases in hereditary disease risks. Taken together, our findings reveal that GC-biased gene conversion has important

population genetic and public health implications.
Introduction

Meiotic recombination results in either crossover or

noncrossover events, and gene conversion can occur in

either case.1 In humans the mean tract length of these

gene conversion events is approximately 500 base pairs.2

Gene conversion is defined here as the nonreciprocal

exchange of genetic information between homologous

sequences, and two kinds of gene conversion exist: conver-

sion between two alleles of the same gene (allelic gene con-

version) and conversion between paralogs (interlocus gene

conversion).1,3 In humans there is evidence that allelic gene

conversion has affected the fast-evolving ADCYAP1 gene4

(MIM 102980), and interlocus gene conversion has shaped

the evolution of genes that encode erythrocyte glycopro-

teins in malaria-endemic African populations.5 In this pa-

per, we focus on the population genetic and public health

implications of allelic gene conversion.

Recombination results in the formation of heteroduplex

DNA, and mispairing due to differences in parental alleles

is corrected by the mismatch repair machinery.1 However,

mismatch repair preferentially retains guanine (G) and

cytosine (C) over adenine (A) and thymine (T) alleles.6

This causes gene conversion to be biased toward G or C

alleles. GC-biased gene conversion (gBGC) likely evolved

as a response to high mutation rates caused by the deami-

nation of methylated cytosine.1,7 Strong (G or C) alleles are

represented by the IUPAC code S, and weak (A or T) alleles

are represented by the IUPAC code W. Listing the ancestral

allele first and derived allele second, pairs of IUPAC codes

can be used to describe different types of SNPs (Figure 1).
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For example, a SNP with an ancestral A allele and derived

G allele is labeled WS. One implication of gBGC is that

when an individual is heterozygous for a strong (G or C)

and weak (A or T) allele, the strong allele is more likely to

be passed on to their offspring. Because equal segregation

does not occur, gene conversion results in non-Mendelian

inheritance. WWand SS SNPs are unbiased, SW SNPs have

ancestral alleles that are favored by gBGC, and WS SNPs

have derived alleles that are favored by gBGC.

There is increasing evidence that gene conversion is an

important evolutionary phenomenon. Gene conversion

influences GC content8–10 and decreases linkage disequi-

librium over small scales.11,12 Haplotypes containing vari-

ants that increase recombination rates are more likely to be

converted, and this leads to what has been called the

‘‘recombination hotspot paradox.’’13,14 Alleles favored by

gBGC are evolutionarily (and mathematically) equivalent

to semidominant mutations under positive selection.1,15

Because of this, gene conversion results in shifts in site fre-

quency spectra. Low-coverage whole-genome sequences

from the 1000 Genomes Project reveal that these allele fre-

quency shifts are stronger in high-recombination regions

of the human genome,16 and gBGC modifies the allele

frequencies of nonsynoymous SNPs that are likely to con-

tribute to hereditary disease.17 Comparisons with other

primate genomes have identified human accelerated re-

gions (HARs), and these genomic regions are enriched for

WS substitutions, a pattern that is consistent with gene

conversion.18,19 However, substitutions caused by gBGC

can be nonadaptive and these substitutions may be ‘‘the

Achilles’ heel of our genome.’’20 Indeed, gBGC modifies
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Figure 1. Biased Gene Conversion, Study Populations, and Genetic Distances
(A) Depending on ancestral and derived states, SNPs can be classified asWWor SS (gray), SW (blue), andWS (red).Weak (A or T) alleles are
represented by W and strong (G or C) alleles are represented by S.
(B) Study populations: Pygmy, YRI (Yoruba), Sandawe, Hadza, and CEU (Northern and Western European ancestry). Five high-coverage
whole genomes were analyzed for each population.
(C) Genetic distances using population branch statistics. Mean values are shown for thee different types of SNPS: WWor SS (gray), SW
(blue), and WS (red). Branch lengths depicted are for WWor SS SNPs.
dN/dS ratios and has contributed to the fixation of delete-

rious mutations in primate lineages.21

At present there is a lack of studies that analyze the ef-

fects of GC-biased gene conversion using high-coverage

whole-genome sequence data from diverse global popula-

tions. It also is unknown how gBGC affects genetic dis-

tances between human populations, and there is a need

to estimate the strength of gBGC from genomic data that

are free from ascertainment bias. In addition, the effects

of gBGC-induced allele frequency shifts on hereditary

disease risks are yet to be quantified. GC-biased gene con-

version results in the following predictions: (1) increased

genetic distances and modified evolutionary rates for vari-

ants favored by gene conversion, (2) detectable shifts in

allele frequency distributions, (3) greater effects in high-

recombination regions of the human genome, and (4) ef-

fects of gBGC observable in every population.

In this study we use high-coverage whole-genome se-

quences from five global populations to test each of the

above predictions.We determine howmuch gBGC perturbs

population genetics statistics that are commonly used for

demographic inference and scans of selection. We then

use relative rates of fixation of biased and unbiased SNPs

to infer the strength of gene conversion. Finally, because

allele frequency shifts modify allele frequencies and the

chance of observing recessive homozygotes, we quantify

the effects of gBGC on the risk of hereditary disease.
Material and Methods

Whole-Genome Sequences
A total of 25 high-coverage (~603) genomes sequenced by Com-

plete Genomics22 were analyzed in this study. Error rates for these

genomes are on the order of 1 per 100,000 base pairs.22–24 The

standard Complete Genomics bioinformatics pipeline was used

for sequence alignment, read mapping, assembly, and SNP calling

(Assembly Pipeline v.1.10 and CGA Tools 1.4). Five genomes were

analyzed per population, and the geographic locations of study
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populations are shown in Figure 1B. Populations sampled include

Pygmies from Cameroon (Baka, Bakola, and Bedzan), Yoruba from

Nigeria (YRI), Sandawe from Tanzania, Hadza from Tanzania, and

individuals with Northern and Western European ancestry (CEU).

Pygmy, Sandawe, and Hadza genomes were previously analyzed in

a recent study of African hunter-gatherers,23 and YRI and CEU ge-

nomes were obtained from the Complete Genomics public data

release. Prior to collection of Pygmy, Hadza, and Sandawe samples,

informed consent was obtained from all research participants. Per-

mits were received from theMinistry of Health and National Com-

mittee of Ethics in Cameroon and from COSTECH and NIMR in

Dar es Salaam, Tanzania. In addition, appropriate IRB approval

was obtained from both the University of Maryland and the Uni-

versity of Pennsylvania.

Data Processing
After merging genomes using CGA Tools, we selected sites that

were polymorphic in at least one study population. We then

filtered out sex-linked and mitochondrial variants and required

that sites be fully called in all 25 genomes. For each autosomal

locus, this gives a sample size of n ¼ 10 per population. As per a

previous study, derived and ancestral states of SNPs were found

via maximum likelihood using chimpanzee, orangutan, and rhe-

sus macaque genomes as outgroups.23 A total of 10,770,084

SNPs remained after obtaining derived allele frequencies of fully

called autosomal SNPs.

Hypermutable CpG dinucleotides can cause derived allele fre-

quencies to be misestimated.25 To correct for this, base pairs flank-

ing each SNP were identified and variants were flagged if they

belong to a CpG dinucleotide in either humans or chimpanzees.

Flagged variants were then excluded from subsequent polymor-

phism analyses, resulting in a total of 7,539,623 non-CpG SNPs.

GC-biased gene conversion favors strong alleles (G or C, denoted

by the IUPAC code S) over weak alleles (A or T, denoted by the

IUPAC code W). Because of this, we binned SNPs into three broad

categories (Figure 1A): SNPs unaffected by gBGC (WWor SS SNPs),

SNPs where the ancestral allele is favored by gBGC (SW), and SNPs

where the derived allele is favored by gBGC (WS).

To generate 95% confidence intervals of genetic distances and

population genetics statistics (see below), we bootstrapped

whole-genome data sets for five different populations and four

different types of data: WW or SS, SW, WS, and all non-CpG
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SNPs. For each combination of population and SNP type, we boot-

strapped whole-genome data sets 1,000 times, generating 10,000

unlinked SNPs per bootstrap run. Mann-Whitney U tests were

used to compare bootstrapped values of population genetics statis-

tics and to generate two-tailed p values. For recombination rate

tests, bootstrapped statistics for SNPs in the lowest quintile (0%–

20%) were compared to SNPs with recombination rates in the

highest quintile (80%–100%) using Mann-Whitney U tests.

Because 10,000 SNPs were analyzed for each bootstrap run, even

small effect sizes resulted in low p values.

Calculating Genetic Distances
Pairwise FST statistics were used to estimate genetic distances

between populations and population branch statistics (PBS) were

used to estimate relative rates of evolution. To correct for small

sample size, FST was calculated using Weir and Cockerham’s

method.26 PBS statistics measure the amount of sequence change

along branches of a population tree.27,28 These statistics have also

been called locus-specific branch length29 and relative rate statis-

tics.30 Whenever four or more populations are analyzed, such as

in this present study, PBS statistics require a known topology,

and we used a neighbor joining tree generated from whole-

genome sequencing data:23 (Pygmy, (YRI, ((Hadza, Sandawe),

CEU))). An unrooted version of this tree is shown in Figure 1C.

PBS for all internal and external branches of the population tree

were calculated using pairwise FST statistics and Equations A1–A7

in Appendix A. Negative values of FST and PBS statistics were

treated as 0. To assess the effects of gBGC on genetic distances,

mean values of PBS statistics were calculated for WW or SS SNPs,

SW SNPs, and WS SNPs using the R programming language.31

Allele Frequency Distributions and Summary

Statistics
Normalized site frequency spectra (SFS) were obtained for each

population and type of SNP (WW or SS, SW, and WS). For each

pooled set of SNPs (i.e., population and type of SNP), we calculated

Tajima’s D,32 normalized Fay and Wu’s H,33,34 and mean derived

allele frequency (DAF). We also calculated a summary statistic

that comparesWS and SWDAF spectra (W/S DAF skew). This sta-

tistic involves performing a Mann-Whitney U test and then

normalizing by the maximum possible value of the test.16 To

test whether the effects of gBGC are stronger in regions of high

recombination, we obtained recombination rates from the

deCODE 2010 data set,35 averaged over 100 kb intervals, and an-

notated each SNP. SNPs were then binned into five different

recombination rate fractions, and population genetics statistics

(Tajima’s D, Fay and Wu’s H, mean DAF, and W/S DAF skew)

were calculated for sets of pooled SNPs for each recombination

rate quintile (20% bin).

Estimating the Strength of GC Bias
Relative rates of fixation were used to estimate the strength of GC-

biased gene conversion (b). We define r as the relative rate of fixa-

tion of biased WS or SW substitutions compared to unbiased WW

or SS substitutions. Accelerated evolution yields r > 1 and deceler-

ated evolution yields r < 1. Alleles favored by gBGC are evolution-

arily equivalent to semidominant mutations under selection.1,15

Because of this, the mathematics of natural selection can be repur-

posed to estimate the strength of GC bias. Here, gBGC coefficients

(b) are used instead of selection coefficients. Note that the fre-

quency of G or C alleles among gametes produced by WS or SW
410 The American Journal of Human Genetics 95, 408–420, October
heterozygotes is equal to (1þb)/2.1 The probability of fixation of

selected (or biased) substitutions follows from Kimura’s diffusion

approximation36 and the probability of fixation of neutral (or un-

biased) substitutions is equal to 1/2N, where N is the population

size. The ratio of these two expressions yields equations for the

relative rate of fixation at biased sites compared to unbiased sites.

For small values of b:

rWS ¼ 4Nb

1� e�4Nb
(Equation 1)

rSW ¼ 4Nb

e4Nb � 1
(Equation 2)

Empirical estimates of r can be calculated from the number of sub-

stitutions per site (D) and mutation rates (m). Ancestral states were

inferred at a total of 2.583 109 autosomal sites. The ancestral allele

was A or T at 1.52 3 109 sites and G or C at 1.06 3 109 sites. We

observed a total of 6.85 3 106 WS substitutions, 7.65 3 106 SW

substitutions, and 2.68 3 106 WW or SS substitutions. Mutation

rates were obtained from the Kong et al.35 (mWS ¼ 6.89 3 10�9,

mSW ¼ 1.48 3 10�8, and mWWorSS ¼ 1.91 3 10�9). For WS and SW

sites:

rWS ¼ DWS=mWS

DWWorSS=mWWorSS

(Equation 3)

rSW ¼ DSW=mSW

DWWorSS=mWWorSS

(Equation 4)

By combining Equations 1, 2, 3, and 4, we were able to numeri-

cally estimate the population-scaled strength of gBGC (Nb) from

accelerated evolutionary rates at WS sites and decelerated evolu-

tionary rates at SW sites. These estimates were made for the full

set of autosomal sites and for each recombination rate quintile.

4Nb

1� e�4Nb
¼ DWS=mWS

DWWorSS=mWWorSS

(Equation 5)

4Nb

e4Nb � 1
¼ DSW=mSW

DWWorSS=mWWorSS

(Equation 6)

Estimating Disease Burden from Site Frequency

Spectra
We used SFS shifts to determine the extent that gBGC influences

the burden of hereditary disease. Predicted disease burden (b) is

influenced by penetrance (p), derived allele frequency (p), the

probability that disease alleles are derived alleles (d), the inbreeding

coefficient (F), and the dominance coefficient (h). For a set of j

SNPs, the mean disease burden can be found by averaging across

allele frequencies andweighting by the probability that pathogenic

alleles are derived as opposed to ancestral (see Appendix A for addi-

tional equations).

b ¼
Xj

i¼1

pi

h�
dip

2
i þ ð1� diÞ

�
1� pi

�2 þ pi
�
1� pi

�
F
�

þ �
2pi

�
1� pi

�ð1� FÞ�hi

i�
j (Equation 7)

Because small sample sizes bias SFS toward intermediate frequency

alleles,37 we corrected the empirical SFS from whole-genome

sequencing using trueFS.38 Sites included in this analysis were

required to be polymorphic in at least one population.
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To determine whether b statistics are reasonable proxies of

actual disease risk, we examined whether the effects of inbreeding

on Equation 7 are comparable to increases in hereditary disease

risk from clinical data. For each population, we used the corrected

SFS of all non-CpG SNPs and assumed that disease alleles were

derived and recessive. By setting F ¼ 0 we inferred the predicted

disease burden under random mating. We then simulated the

effects of first-cousin mating by setting F ¼ 0.0625. The ratio of

bfirst-cousin / brandom was then calculated for each population. These

values were then compared to clinical estimates of increased risks

of hereditary disease due to inbreeding obtained from a global

panel of 69 populations.39

Using corrected SFS and Equation 7, the predicted disease

burden was obtained for unbiased WW or SS SNPs, SW SNPs, WS

SNPs, and all non-CpG SNPs. We then compared the relative dis-

ease burden of each type of SNP (Equations A15, A16, and A17)

and used Student’s t tests to determine statistical significance.

We also assessed whether the effects of gBGC are stronger for

recessive alleles, for alleles with intermediate dominance, or for

dominant alleles (Equations A10, A11, and A12), and how the pro-

portion of disease alleles that are derived or ancestral influences

disease burden (Equation A13). The relative disease burden of

different populations was compared using Equations A18, A19,

A20, and A21.

Because the SFS of disease alleles can be affected by natural selec-

tion, we used theoretical population genetics to examine genetic

systems where there is a balance between mutation, selection,

and gene conversion. Here, wild-type alleles can mutate to disease

alleles. These recessive disease alleles are favored by gBGC when

heterozygous and selected against when homozygous. Equilib-

rium allele frequency (bp) is affected by the strength of biased

gene conversion (b), the strength of selection against recessive al-

leles (s), and the per generation rate of mutation (m). Using Equa-

tion 4d from Glémin:40

bp ¼ bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4mðbþ sÞp
2ðbþ sÞ (Equation 8)

Values of m were obtained from the from the Kong et al., 2012

deCODE data set,35 and values of b were estimated from relative

rates of fixation of biased and unbiased sites.
Results

Genetic Distances and Rates of Evolution Are

Modified by gBGC

GC-biased gene conversion results in slower rates of evolu-

tion for sites where ancestral alleles are favored (SW SNPs)

and faster rates of evolution for sites where derived alleles

are favored (WS SNPs). We calculated genetic distances for

all ten population pairs using FST statistics, finding thatWS

SNPs result in mean values of FST that are 0.1% to 0.8%

greater than WW or SS SNPs and 0.9% to 1.7% greater

than SW SNPs. Bootstrapping 10,000 SNPs of each type

from each population 1,000 times reveals that although

the genome-wide effect of gBGC on FST is small, differences

between types of SNPs are highly significant (p value <

10�15 for all comparisons using Mann-Whitney U tests).

Population branch statistics (PBS) indicate that GC-

biased gene conversion modifies evolutionary rates across
The Americ
all branches of a human evolutionary tree (Figure 1).

When comparisons are made between different types of

SNPs, we find the same rank order for each internal and

external branch: SW SNPs have the smallest PBS, WW or

SS SNPs have intermediate PBS, and WS SNPs have the

largest PBS (p value < 10�15 for all comparisons using

Mann-Whitney U tests). PBS differences between different

types of SNP are modest for each branch (WS SNPs have

PBS statistics that are 1.9% to 3.1% greater than WW or

SS SNPs and 4.5% to 6.6% greater than SW SNPs). Howev-

er, values shown in Figure 1C are genome-wide estimates,

and they include SNPs in recombination hotspots and

coldspots. Furthermore, we find that PBS outliers (defined

as the top 1% sites) are enriched for WS SNPs (p value <

0.0001 for all branches, two proportion Z-test). Comparing

PBS statistics for different branches of the tree in Figure 1,

we find that the largest branch lengths are for CEU and

Hadza populations and WS SNPs. Note that PBS statistics

reflect both divergence times and the amount of genetic

drift that occurs along each branch of an evolution tree.

gBGC Leads to Shifts in the SFS

The site frequency spectrum is left-shifted when ancestral

alleles are favored by GC-biased gene conversion and

right-shifted when derived alleles are favored by GC-biased

gene conversion. This pattern occurs for all five global pop-

ulations (Figure 2). Note that SW SNPs (blue) are enriched

for low-frequency (DAF¼ 0.1) alleles andWS SNPs (red) are

enriched for high-frequency (DAF > 0.5) alleles. When

these allele frequency shifts are quantified by population

genetics statistics, we find that SNPs favored by gBGC

tend to result in an excess of intermediate-frequency

derived alleles. Tajima’s D, which is positive when there

is an excess of intermediate-frequency alleles, is signifi-

cantly higher for WS SNPs than SW and unbiased WW or

SS SNPs (Table 1, p value < 10�15 for all populations using

Mann-Whitney U tests). Similarly, Fay and Wu’s H, which

is negative when there is a lack of rare alleles, is signifi-

cantly lower for WS than SW and unbiased WW or SS

SNPs (p value < 10�15 for all populations using Mann-

Whitney U tests). The mean frequency of derived alleles

also differs for different types of SNPs (p value < 10�15

for all populations using Mann-Whitney U tests), with

SW SNPs having the lowest derived allele frequencies and

WS SNPs having the highest derived allele frequencies.

We also note that Hadza and CEU populations have signif-

icantly higher values of Tajima’s D and lower values of Fay

and Wu’s H than Pygmy, YRI, and Sandawe populations

(Table 1 and Figure 3, p value < 10�15 for all comparisons

using Mann-Whitney U tests). This pattern is consistent

with population growth for each of the latter three

populations.

Effects of gBGC Are Stronger in Regions of High

Recombination

Allele frequency shifts for WS SNPs are magnified in high-

recombination regions of the genome, a pattern that is
an Journal of Human Genetics 95, 408–420, October 2, 2014 411



Figure 2. GC-Biased Gene Conversion
Modifies the Site Frequency Spectra of
Diverse Human Populations
Pygmy (A), YRI (B), and Sandawe (C) pop-
ulations have an excess of low-frequency
derived alleles relative to Hadza (D) and
CEU (E) populations. Probability distribu-
tions sum to one for each type of SNP:
WW or SS (gray), WS (blue), and WS
(red). Site frequency spectra of SW SNPs
are left-shifted and site frequency spectra
of WS SNPs are right-shifted.
consistent with GC-biased gene conversion (Figure 3). The

effects of recombination and gBGC on the SFS were quan-

tified using multiple summary statistics: Tajima’s D, Fay

and Wu’s H, mean DAF, and W/S DAF skew. We find

that values of Tajima’s D are higher for high-recombina-

tion regions of the genome for all three types of SNPs (p

value < 10�15 for Mann-Whitney U tests comparing bot-

tom and top quintile data for all types of SNPs). This effect

arises because Tajima’s D is defined as the ratio of two

random variables that are functions of the number of

segregating sites in a sample.41 Values of Fay and Wu’s H

are strikingly different for WS SNPs, and we find that

values of H are lower in high-recombination regions of

the genome (p value < 10�15 for Mann-Whitney U tests

comparing bottom and top quintile data for WS SNPs).

Fay andWu’s H indicate that derived alleles are more likely

to be found at intermediate and high frequencies for WS

SNPs in high-recombination regions of the genome. On a

related note, WS SNPs in high-recombination regions of

the genome have a higher mean DAF than WS SNPs in

low-recombination regions (p value < 10�15 for Mann-
412 The American Journal of Human Genetics 95, 408–420, October 2, 2014
Whitney U tests comparing bottom

and top quintile data for WS SNPs).

Finally, relative amounts of allele fre-

quency skew for different types of

SNPs were quantified using a W/S

DAF skew statistic. This statistic com-

pares the derived allele frequencies of

WS and SW SNPs and is higher than

0.5 when G or C alleles are found at

higher frequencies than A or T al-

leles.16 We found similar patterns for

each population: WS SNPs have a

SFS that is skewed more toward

high-frequency derived alleles than

the SFS of SW SNPs, and this effect is

greater in regions of high recombina-

tion (Figure 3). Although the deCODE

recombination map uses data from

Icelandic individuals, recombination

rates had similar effects on European

and African samples. This pattern

probably arises because we used

recombination rates averaged over

100 kb intervals and large-scale recombination rates are

known to be similar for different populations.42

Recombination rates also influence genetic distances

and rates of fixation. In the top recombination quintile,

PBS statistics for WS SNPs are 4.6% greater than WW or

SS SNPs and 9.7% greater than SW SNPs. By contrast, in

the lowest recombination quintile, PBS statistics for WS

SNPs are 0.6% greater than WW or SS SNPs and 2.4%

greater than SW SNPs. Similarly, the strength of gBGC (as

inferred by relative rates of fixation) is greater in high-

recombination regions of the genome (Figure 4B).

Strength of gBGC

Using relative rates of fixation, we inferred that the strength

of GC-biased gene conversion is akin to weak selection. Per

base pair rates of substitution are greater for WS (4.50 3

10�3) and SW (7.25 3 10�3) sites compared to WW or SS

sites (1.04 3 10�3). However, mutation rates for WS sites

are 3.61 times that of WW or SS sites and mutation rates

for SW sites are 7.75 times that of WW or SS sites.36 After

correcting for mutation rate differences, rWS ¼ 1.198 and



Table 1. Biased Gene Conversion Modifies Summary Statistics of the Site Frequency Spectrum

Population Type of SNP Tajima’s D (95% CI) Fay and Wu’s H (95% CI) Mean DAF (95% CI)

Pygmy WWor SS �0.430 (�0.479 to �0.383) 0.264 (0.192 to 0.332) 0.271 (0.265 to 0.277)

SW �0.465 (�0.515 to �0.415) 0.248 (0.186 to 0.317) 0.270 (0.264 to 0.276)

WS �0.385 (�0.438 to �0.334) �0.048 (�0.125 to �0.031) 0.297 (0.291 to 0.304)

YRI WW or SS �0.357 (�0.411 to �0.300) 0.182 (0.106 to 0.255) 0.282 (0.275 to 0.288)

SW �0.389 (�0.444 to �0.333) 0.172 (0.099 to 0.243) 0.281 (0.274 to 0.287)

WS �0.319 (�0.374 to �0.268) �0.123 (�0.206 to �0.041) 0.307 (0.300 to 0.315)

Sandawe WW or SS �0.349 (�0.401 to �0.294) 0.159 (0.080 to 0.231) 0.284 (0.278 to 0.291)

SW �0.386 (�0.441 to �0.333) 0.152 (0.075 to 0.225) 0.282 (0.276 to 0.289)

WS �0.311 (�0.365 to �0.257) �0.139 (�0.227 to �0.050) 0.309 (0.302 to 0.316)

Hadza WW or SS �0.011 (�0.072 to 0.046) �0.013 (�0.109 to 0.075) 0.319 (0.311 to 0.326)

SW �0.036 (�0.094 to 0.022) �0.003 (�0.087 to 0.081) 0.316 (0.309 to 0.323)

WS 0.015 (�0.050 to 0.073) �0.280 (�0.378 to �0.188) 0.340 (0.332 to 0.348)

CEU WWor SS 0.102 (0.038 to 0.168) �0.310 (�0.415 to �0.208) 0.348 (0.340 to 0.357)

SW 0.057 (�0.011 to 0.123) �0.291 (�0.393 to �0.191) 0.344 (0.336 to 0.352)

WS 0.120 (0.051 to 0.189) �0.550 (�0.657 to �0.445) 0.367 (0.358 to 0.376)

SNPs analyzed here are autosomal and non-CpG (a total of 7.54 million fully called SNPs). Values of Fay and Wu’s H were normalized as per Zeng et al.34 95%
confidence intervals of each statistic were found by bootstrapping 10,000 random SNPs a total of 1,000 times.
rSW¼ 0.899. This indicates that evolutionary rates are accel-

erated at WS sites where derived alleles are favored by gene

conversion and decelerated at SW sites where ancestral

alleles are favored by gene conversion. Using population

genetics theory, we inferred the mathematical relationship

between rates of fixation and the population-scaled

strength of gBGC (Equations 5 and 6), and the mapping

of r to Nb is shown in Figure 4A. Nb was estimated to be

0.0934 for WS sites and 0.0523 for SW sites. These scaled

gBGC coefficients are comparable to weak, nearly neutral

selection (jNsj< 1). Assuming N¼ 10,000, values of b range

from 5.23 3 10�6 to 9.34 3 10�6.

Predicted Disease Burden

b statistics calculated from SFS data (Equation 7) can be

used as a proxy of hereditary disease risk. To test the valid-

ity of Equation 7, we estimated how inbreeding would in-

crease the probability of observing a homozygote and

compared this to known values of increased disease burden

from the clinical literature. Using the corrected SFS for all

non-CpG SNPs and comparing the relative homozygosity

that would arise from first-cousin mating as opposed to

random mating, we find that the predicted increase in ho-

mozygosity due to first-cousin mating ranges between

2.3% (CEU) and 3.8% (YRI). These values are comparable

to clinical estimates of 3.5% excess mortality in the prog-

eny of first cousins.39 This suggests that it is reasonable

to use corrected SFS and Equation 7 to infer how gBGC af-

fects disease burden.

Allele frequency changes due to gBGC have a secondary

effect of increasing the risk of hereditary disease. Because

most deleterious mutations are recessive43–46 and derived
The Americ
alleles are more likely to be pathogenic than ancestral

alleles47–49 (but see Di Rienzo and Hudson50), we focus on

the disease burden of recessive derived alleles. Subse-

quently, this restriction is relaxed. After correcting for ascer-

tainment bias due to small sample sizes, we weighted SNPs

by the probability of observing a homozygote to obtain the

mean recessive disease burden for unbiased and biased

SNPs. The probability of observing derived homozygotes

is similar for biased SW SNPs and unbiased WW or SS

SNPs where the ancestral is favored by gene conversion

(bSW=bWW or SSz1, p value > 0.3 using a two-tailed Stu-

dent’s t test). These similarities may arise because higher

mutation rates for SW SNPs may balance out the effects of

gBGC, or because small sample sizes limit our ability to

distinguish between allele frequency shifts at the rare end

of the SFS. However, SNPswhere the derived allele is favored

by gene conversion exhibited a strikingly different pattern

(Figure 5). In all five populations, WS SNPs have a signifi-

cantly higher probability of being homozygous than WW

or SS SNPs (bWS=bWW or SS >> 1, p value < 1 3 10�6 using

a one-tailed Student’s t test). This increased homozygosity

translates to a 42.2% (Hadza) to 62.8% (Pygmy) increase

in the predicted risk of recessive diseases. Because only a

subset of all SNPs are WS SNPs, we also quantified the over-

all effect of gBGC on recessive disease burden by calculating

the relative homozygosity of all non-CpG SNPs compared

to unbiased SNPs (i.e., bAll non CpG=bWW or SS). Within each

population, the overall predicted increase in disease burden

due to gBGC ranges from 17.9% to 27.8% (Figure 5A). The

probability of observing homozygous derived alleles also

varies by population. Comparing different populations,

we find that the predicted disease burden of recessive alleles
an Journal of Human Genetics 95, 408–420, October 2, 2014 413



Figure 3. The Effects of Biased Gene Conversion Are Stronger in High-Recombination Regions of the Genome
SNPs were divided into quintile (20%) bins based on recombination rates from the 2010 deCODE data set. Four population genetic sta-
tistics were calculated for each population and recombination bin: Tajima’s D, Fay andWu’s H, mean derived allele frequency (DAF), and
a measure of W/S DAF skew. For the first three of these statistics, values were calculated separately for WWor SS (gray), SW (blue), and
WS (red) SNPs.
is lowest for YRI genomes and highest for Hadza and CEU

genomes (Figure 5B). This pattern is consistent with the an-

cestors of modern-day Hadza and Europeans having a lower

effective population size due to population bottlenecks,

reducing the efficacy of natural selection to eliminate dele-

terious mutations in each of these populations.

We relax the assumption that disease alleles are recessive

and derived and find that predicted disease burden is still

increased by gBGC, albeit to a lesser extent. The effects of

gBGC on disease burden are strongest for recessive disease

alleles and weakest for dominant alleles (Table 2). This oc-

curs because the SFS is weighted toward rare alleles and

small increases in the frequency of derived alleles lead to

relatively large homozygosity increases. We also find that

the effects of gBGC are stronger if 100% of disease alleles

are derived as opposed to 90% derived and 10% ancestral

(Table 2). It is likely that the effects of gBGC in different

populations are modulated by demographic phenomena

like population bottlenecks, admixture, and the explosive

growth of modern human populations.51
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Because selection against deleterious alleles can also

modify the SFS and affect the risk of hereditary disease,

we calculated the effects of gBGC for genetic systems

that include mutation, selection, and gene conversion.

Here, recessive disease alleles are removed by natural selec-

tion when homozygous and favored by gBGC when het-

erozygous, leading to a form of balancing selection. Using

gBGC coefficients from Figure 4A and mutation rates from

the 2012 deCODE data set,35 we calculated equilibrium

allele frequencies for a theoretical model of mutation-se-

lection-conversion balance. Figure 5 shows equilibrium

allele frequencies for biased WS SNPs (red), biased SW

SNPs (blue). and unbiased WW or SS SNPs (gray). Due to

elevated mutation rates, equilibrium allele frequencies for

WS and SW SNPs are higher than unbiased WW or SS

SNPs (Figure 5C). When selection is weak, equilibrium

allele frequencies are driven by a balance between gBGC

and mutation, and when selection is strong, equilibrium

allele frequencies are driven by a balance between selection

and mutation. Because otherwise deleterious alleles can be
2, 2014



Figure 4. Estimated Strength of Biased
Gene Conversion
After correcting for mutation rate differ-
ences, relative rates of fixation were used
to estimate the population-scaled strength
of gBGC.
(A) Curves describe the mathematical rela-
tionship between Nb and r for WS sites
(red, Equation 5) and SW sites (blue, Equa-
tion 6). Circles denote genome-wide esti-
mates of Nb from empirical data (0.0934
for WS sites and 0.0523 for SW sites).
(B) Effects of different recombination rate
quintiles on the population-scaled
strength of gBGC.
pushed to intermediate frequencies by biased gene conver-

sion, recessive disease alleles are more likely to be homozy-

gous at WS SNPs. This increased hereditary disease burden

is magnified when selection is weak.
Discussion

The Population Genetic Effects of gBGC in Humans

Using high-coverage whole-genome sequencing data from

multiple populations, we have demonstrated that GC-

biased gene conversion modifies evolutionary distances

and confirmed that allele frequency shifts are greater in

high-recombination regions of the human genome.

High-coverage sequence data minimizes the confounding

effects of genotyping error, and by studying multiple pop-

ulations we were able to show that the population genetics

effects of gBGC are robust to demographic history. Statisti-

cal differences between different types of SNPs in a single

population are comparable to statistical differences for

the same type of SNP in different populations (Table 1).

Because allele frequency distributions and population

genetics statistics differ for variants that are favored or

unfavored by gBGC, demographic inference is likely to

be inaccurate if biased SNPs are analyzed. For example,

computational tools like dadi52 rely on accurate SFS to infer

demographic history. Modified values of FST can also lead

to misestimates of population split times. Inclusion of

WS SNPs results in lower values of Fay and Wu’s H, and

this can be misinterpreted as evidence of a recent popula-

tion bottleneck (Table 1 and Figure 3). We also find that

gBGC behaves like natural selection: the SFS of SW SNPs

is left-shifted, a pattern that mimics negative selection,

and the SFS of WS SNPs is right-shifted, a pattern that

mimics positive selection (Figure 2). Because of this,

studies that ignore gBGC may overestimate the effects of

selection. Similarly, phylogenetic data from multiple pri-

mates indicate that gBGC results in elevated dN/dS ratios,

a pattern that can be misinterpreted as selection.4 gBGC

decreases the allele frequencies of derived A or T alleles

and increases the allele frequencies of derived G or C al-

leles. Furthermore, because A/T and G/C alleles differ in
The Americ
their chance of being passed to the next generation, the

effects of gBGC are similar to meiotic drive. Classical pop-

ulation genetics theory does not focus on the molecular

nature of alleles (i.e., whether variants involve adenine,

thymine, guanine, or cytosine). Instead, it traditionally

describes populations in terms of allele frequencies.53,54

Our findings underscore the need for theoretical popula-

tion genetics to include molecular phenomena such as

biased gene conversion.

gBGC Is a Weak, but Important, Evolutionary Force

Comparisons between the relative rates of fixation of

biased and unbiased sites reveal that the population-scaled

strength of gBGC is on the order of Nbz 0.0523 to 0.0934

(Figure 4A). This indicates that gene conversion is a rela-

tively weak force on a genomic scale—comparable to a

nearly neutral allele under weak selection. Assuming an

effective population size of 10,000 individuals, gBGC coef-

ficients range between 5.23 3 10�6 and 9.34 3 10�6. This

means that WS or SW heterozygotes have a 50.000364%

chance of passing on a G or C allele to their offspring,

and gBGC results in non-Mendelian inheritance. As a

point of comparison, gBGC coefficients are approximately

600 times greater than the genome-wide mutation rate

parameter.35 Even a modest amount of bias can have a

noticeable effect on the genetics of populations because

the effects of gBGC are compounded over evolutionary

time. For example, we find that FST and PBS statistics are

greater for SNPs favored by gBGC. We also note that Nb

is greater in high-recombination regions of the genome

(Figure 4B) and that the strength of gene conversion is

known to be greater in recombination hotspots.40

This present study marks the first time that the evolu-

tionary strength of gBGC in humans has been quantified

using high-coverage whole-genome sequencing data. Our

estimates of Nb for the top recombination quintile (0.056

for SW sites and 0.121 forWS sites) are roughly comparable

to prior estimates that use data from chromosome 20

(0.325).9,17 Aside from methodological differences, we

note that estimates from prior studies are complicated by

the use of SFS data from admixed African American sam-

ples. Our genome-wide estimates of Nb were also smaller
an Journal of Human Genetics 95, 408–420, October 2, 2014 415



Figure 5. Predicted Disease Burden of
Recessive Alleles and Mutation-Selection-
Conversion Balance
(A) After correcting for small sample sizes
using trueFS, the disease burden of reces-
sive alleles was estimated from the cor-
rected site frequency spectrum and the
probability of observing homozygous indi-
viduals. Values for each population are
normalized relative to unbiased WW or
SS SNPs. The overall effect of gBGC (dark
gray) was found by weighting the proba-
bility of observing WW or SS, SW, or WS
SNPs.
(B) Relative disease burden of recessive al-
leles compared across different popula-
tions. Values shown are for all non-CpG
SNPs and are normalized relative to YRI.
(C) The joint effects ofmutation, selection,
and GC-biased gene conversion on equi-
librium allele frequencies. Equation 8 was
used to generate equilibrium allele fre-
quencies (bp) for deleterious recessive al-
leles at WS (red), SW (blue), and WW or
SS SNPs (gray). Parameter values used:
bWS ¼ 9.34 3 10�6, bSW ¼ �5.23 3 10�6

(negative because gBGC favors S alleles),
bWWorSS ¼ 0, mWS ¼ 6.89 3 10�9, mSW ¼
1.48 3 10�8, and mWWorSS ¼ 1.91 3 10�9.
than a previous study that focused on GC-rich coding re-

gions21 and a pair of studies that used phylogenetic

methods to estimate the strength of gBGC.55,56 Minor dif-

ferences in the estimated strength of gBGC at WS and SW

sites in Figure 4may be due to ancestral state misidentifica-

tion. Consider the situation where cytosine in a hypermu-

table CpG dinucleotide mutates to thymine and reaches

fixation in chimpanzee and orangutan lineages, causing

an ancestral C to bemisinferred as T. If this site remains un-

changed in the human lineage, it will incorrectly appear to

be a WS substitution, and if this site also fixes in the hu-

man lineage it will incorrectly appear to be unchanged as

opposed to a SW substitution. Taken together, these two

scenarios suggest that the ancestral state misidentification

may cause the strength of gBGC to be overestimated at WS

sites and underestimated at SW sites. We also note that the

effects of recombination rate onNb appear to be greater for

WS sites than SW sites. This pattern can arise if mutation

rates for different types of sites are not independent of

recombination rates. We anticipate that estimates of Nb

in future studies will benefit from higher-resolution recom-

bination maps (including maps of actual gene conversion

events57) and more accurate mutation rates.

GC-biased gene conversion can be an important mecha-

nism for loss of genetic variation and divergence of isolated

populations, and it is known that small biases in gene con-

version can dramatically affect fixation probabilities and

segregation times.15 Indeed, human accelerated regions

of the genome are enriched for the signatures of biased

gene conversion.18 In contrast to selection, gBGC is

sequence dependent and it can act genome-wide, while

only a small fraction of base pairs are likely to actually be
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under selection. One key difference between gBGC and se-

lection is that gene conversion tracts are on the order of a

few hundred base pairs,2 while genetic hitchhiking can in-

fluence linked variation up to 1 Mb away if selection is

strong (s > 0.01).58

The Curse of the Converted

What sort of processes can cause disease alleles to be com-

mon? Our results indicate that biased gene conversion

should be added to the list more familiar causes (popula-

tion bottlenecks, evolutionary tradeoffs, and recessivity).

We find that hereditary disease burden can be reasonably

captured by the SFS and Equation 7. Allele frequency shifts

due to gBGC result in a curse of the converted, whereby WS

SNPs are more likely to result in genetic diseases. The in-

crease in predicted disease burden can be substantial

(þ42.2% to 62.8% for recessive derived alleles). To our

knowledge, this marks the first time that relative increases

in hereditary disease risks due to gBGC have been quanti-

fied for human populations. The increased disease risk

due to allelic gene conversion found here parallels the

increased disease risk that arises from interlocus gene con-

version between paralogs.59 Similarly, gBGC tracts identi-

fied using a phylogenetic hidden Markov model (HMM)

appear to be enriched for disease-associated polymor-

phisms.60

The curse of the converted is stronger for recessive disease

alleles. We find that biased WS SNPs are more likely to be

homozygous than biased SW or unbiased WW or SS

SNPs, and this leads to an increased recessive disease

burden (Figure 5). Increases in allele frequency at WS

SNPS will have a disproportionate effect compared to
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Table 2. Relative Disease Burden of Biased WS SNPs Compared to
Unbiased WW or SS SNPs

Scenario Pygmy YRI Sandawe Hadza CEU

Recessive alleles (p ¼ 1,
h ¼ 0, d ¼ 1, F ¼ 0)

1.628 1.576 1.485 1.422 1.436

Alleles with intermediate
dominance (p ¼ 1,
h ¼ 0.5, d ¼ 1, F ¼ 0)

1.390 1.357 1.307 1.268 1.315

Dominant alleles (p ¼ 1,
h ¼ 1, d ¼ 1, F ¼ 0)

1.294 1.268 1.229 1.198 1.251

Recessive alleles, 90%
derived, 10% ancestral
(p ¼ 1, h ¼ 0, d ¼ 0.9,
F ¼ 0)

1.206 1.180 1.166 1.157 1.170

Corrected SFS and Equations A10, A11, A12, A13, A14, and A15 were used to
obtain the relative disease burden (bWS=bWW or SS) for each scenario. Parame-
ters: p (penetrance), h (dominance coefficient), d (proportion of disease alleles
that are derived), and F (inbreeding coefficient).
decreases in allele frequency at SW SNPs because the prob-

ability of observing a recessive homozygote is a function of

the square of allele frequency. The overall effect of gBGC is

to increase the homozygosity of derived alleles (and conse-

quently increase the disease burden of recessive alleles).

This is shown in Figure 5, as the set of all non-CpG SNPs

has an increased recessive disease burden compared to un-

biased WW or SS SNPs. The effects of gBGC on hereditary

disease risk also apply to scenarios where disease alleles

are not recessive, albeit to a lesser degree (Table 2). Interme-

diate dominance (h ¼ 0.5) yields increases in risk that are

two-thirds that of recessive alleles, and complete domi-

nance yields increases in risk that are half that of recessive

alleles. Similarly, the effects of gBGC on hereditary disease

risk are reduced if a fraction of disease-causing alleles are

ancestral.

The predicted disease burden also varies for different

global populations. Specifically, genomes from bottle-

necked Hadza and CEU populations are more likely to be

homozygous for derived alleles than genomes from Pygmy,

YRI, and Sandawe populations (Figure 5). This result is

consistent with a previous study that used high-coverage

whole-genome sequences to find that non-African ge-

nomes contain more damaging homozygous alleles than

African genomes.49 Similarly, a smaller proportion of ge-

netic variation found in African and African American

genomes involves deleterious nonsynonymous muta-

tions.23,61 By contrast, data from the 1000 Genomes Proj-

ect suggest that non-African individuals do not have an

excess of loss-of-function mutations.62

A general pattern is that the effects of gBGC are damp-

ened by selection against disease alleles. Genetic systems

where selection against recessive alleles is balanced by

gene conversion and mutation have equilibrium allele

frequencies that are substantially different than genetic

systems with just selection and mutation (Figure 5C).

The effects of gBGC on hereditary disease risk are robust

to weak selection. These effects are greater for recessive al-

leles that are nearly neutral, and if selection is sufficiently
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weak, gBGC can result in the fixation of deleterious G or C

alleles.15 However, if selection is sufficiently strong (s >

0.01), the effects of gBGC on disease burden are likely to

be minimal.

In conclusion, GC-biased gene conversion shapes pat-

terns of diversity in human genomes, and it contributes

to substantially increased risks of hereditary disease. These

effects are stronger in high-recombination regions of the

genomes and are observed in multiple populations. Ge-

netic data obtained from high-coverage whole-genome

sequencing suggest that realistic models of evolution

should incorporate the details of molecular genetic phe-

nomena like gene conversion.
Appendix A

Population Branch Statistics

Equations for population branch statistics (PBS) were ob-

tained using pairwise genetic distances between popula-

tions (as quantified by FST) and the topology in Figure 1.

PBSPygmy ¼ FSTðPygmy;YRIÞ þ FSTðPygmy;CEUÞ � FSTðYRI;CEUÞ
2

(Equation A1)

PBSYRI ¼ FSTðPygmy;YRIÞ þ FSTðYRI;CEUÞ � FSTðPygmy;CEUÞ
2

(Equation A2)

PBSððYRI;PygmyÞ;ðCEU;ðHadza;SandaweÞÞÞ ¼
2FSTðPygmy;CEUÞ þ FSTðYRI ;HadzaÞ þ FSTðYRI;SandaweÞ

4

� 2FðPygmy;YRIÞ þ FSTðCEU ;HadzaÞ þ FSTðCEU ;SandaweÞ
4

(Equation A3)

PBSCEU ¼ 2FSTðYRI;CEUÞ þ FSTðCEU ;HadzaÞ þ FSTðCEU ;SandaweÞ
4

� FSTðYRI;HadzaÞ þ FSTðYRI;SandaweÞ
4

(Equation A4)

PBSðððYRI;PygmyÞ;CEUÞ;ðHadza;SandaweÞÞ ¼
2FSTðCEU ;SandaweÞ þ FSTðPygmy;HadzaÞ þ FSTðYRI;HadzaÞ

4

� 2FðSandawe;HadzaÞ þ FSTðPygmy;CEUÞ þ FSTðYRI;CEUÞ
4

(Equation A5)

PBSHadza ¼ FSTðCEU ;HadzaÞ þ FSTðHadza;SandaweÞ � FSTðCEU ;SandaweÞ
2

(Equation A6)

PBSSandawe ¼ FSTðCEU ;SandaweÞ þ FSTðHadza;SandaweÞ � FSTðCEU;HadzaÞ
2

(Equation A7)
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Disease Burden of Ancestral and Derived SNPs

Disease burden (b) is influenced by penetrance (p), derived

allele frequency (p), the probability that disease alleles are

derived alleles (d), the inbreeding coefficient (F), and the

dominance coefficient (h). When ancestral alleles are

pathogenic:

bd¼0 ¼ p
h�

ð1� pÞ2 þ pð1� pÞF
�
þ ð2pð1� pÞð1� FÞÞh

i
:

(Equation A8)
When derived alleles are pathogenic:

bd¼1 ¼ p
��
p2 þ pð1� pÞF�þ ð2pð1� pÞð1� FÞÞh	:

(Equation A9)

Mean Disease Burden in Special Cases

Simplified equations for the mean disease burden per SNP

can be found by considering special cases of Equation 7.

Unless otherwise specified, these equations assume pene-

trance to be complete, derived alleles to be pathogenic,

and populations to be outbred. Mean disease burden per

SNP when disease alleles are recessive:

bh¼0; d¼1; F¼0 ¼
Xj

i¼1

�
p2i
	�

j: (Equation A10)

Mean disease burden per SNP when disease alleles have in-

termediate dominance:

bh¼0:5; d¼1; F¼0 ¼
Xj

i¼1

�
pi
	�

j: (Equation A11)

Mean disease burden per SNP when disease alleles are

dominant:

bh¼1; d¼1; F¼0 ¼
Xj

i¼1

�
pi
�
2� pi

�	�
j: (Equation A12)

Mean disease burden per SNP when disease alleles are

recessive (90% of pathogenic alleles derived and 10% of

pathogenic alleles ancestral):

bh¼0; d¼0:9; F¼0 ¼
Xj

i¼1

h
0:9p2i þ 0:1

�
1� pi

�2i�
j:

(Equation A13)

Mean disease burden per SNP when disease alleles are

recessive and there is first-cousin mating:

bh¼0; d¼1; F¼0:0625 ¼
Xj

i¼1

�
p2i þ 0:0625pi

�
1� pi

�	�
j:

(Equation A14)

Relative Disease Burden

The relative disease burden of different types of SNPs can

be obtained by dividing the mean disease burden of a

particular type of SNP by the mean disease burden of unbi-

ased WWor SS SNPs.

Relative disease burden of WS SNPs ¼ bWS



bWW or SS

(Equation A15)
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Relative disease burden of SW SNPs ¼ bSW



bWW or SS
(Equation A16)

Overall effect of gBGC on disease burden ¼
bAll non-CpG



bWW or SS

(Equation A17)

Similarly, the relative disease burden of different popula-

tions can be compared:

Pygmy disease burden relative to YRI ¼
bAll non-CpG; Pygmy



bAll non-CpG; YRI

(Equation A18)

Sandawe disease burden relative to YRI ¼
bAll non-CpG; Sandawe



bAll non-CpG; YRI

(Equation A19)

Hadza disease burden relative to YRI ¼
bAll non-CpG; Hadza



bAll non-CpG; YRI

(Equation A20)

CEU disease burden relative to YRI ¼
bAll non-CpG; CEU



bAll non-CpG; YRI

(Equation A21)
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