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Abstract

Functional imaging refers broadly to the visualization of organ or tissue physiology using medical

image modalities. In load-bearing tissues of the body, including articular cartilage lining the bony

ends of joints, changes in strain, stress, and material properties occur in osteoarthritis (OA),

providing an opportunity to probe tissue function through the progression of the disease. Here,

biomechanical measures in cartilage and related joint tissues are discussed as key imaging

biomarkers in the evaluation of OA. Emphasis will be placed on the a) potential of radiography,

ultrasound, and magnetic resonance imaging to assess early tissue pathomechanics in OA, b)

relative utility of kinematic, structural, morphological, and biomechanical measures as functional

imaging biomarkers, and c) improved diagnostic specificity through the combination of multiple

imaging biomarkers with unique contrasts, including elastography and quantitative assessments of

tissue biochemistry. In comparison to other modalities, magnetic resonance imaging provides an

extensive range of functional measures at the tissue level, with conventional and emerging

techniques available to potentially to assess the spectrum of preclinical to advance OA.
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INTRODUCTION

Medical imaging provides a noninvasive means to probe the function of the body. Beyond

structural and morphological information commonly derived from imaging modalities,

functional imaging further allows two- and three-dimensional visualization of physiological

measures, including blood flow [1], tissue motion and deformation [2], neurological activity

[3], diffusion and perfusion [4], and metabolism [5]. A well-known example is functional
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magnetic resonance imaging (fMRI), which indirectly determines brain activity through

blood-oxygen-level dependent contrast [3, 6]. Measures of physiology are important, in

particular when acquired by noninvasive imaging methods, because the function of organs

and tissues is known to change during disease, aging, development, regeneration, and repair

(e.g. [7, 8]).

Osteoarthritis (OA), a disease that affects over 20 million people in the United States alone

[9], is characterized by pain and functional changes in the joint, including weakening and

loss of articular cartilage. OA is often triggered by injury, involving reciprocal actions of

joint biomechanics and biochemistry, and advancing through a cascade of degenerative

events following inflammation and increased expression of catabolic cytokines and enzymes

[10–12]. Advanced OA has been assessed by multiple non-imaging methods, including

scoring of pain [13–15], retrieved biopsies [16], and combined (e.g. WOMAC) assessments

of pain, joint stiffness and physical function [17–24]. Ideally, the early onset of OA would

be identified in pre-clinical (i.e. asymptomatic) individuals, prior to pain and other

symptoms that may indicate severe disease progression.

Imaging represents a potentially ideal way to assess early OA by noninvasively probing

specific features or functional characteristics of the joint that indicate damage or disease.

Joint structures and morphology are commonly assessed in OA using imaging modalities

including radiography [25], MRI [26, 27], and ultrasound [28]. Emerging possible imaging

biomarkers of early OA include biomechanical measures of strain, stress, and material

properties, key measures of mechanical function at the tissue level. Strain measures the

normalized deformation of a tissue, and can be readily quantified from image data by

visualizing a tissue that is changing shape or size due to mechanical loading over time.

Stress, which describes the internal forces of a tissue, and material properties, which relate

stress and strain through constitutive equations, can often be determined through the

combined use of image data and numerical modeling. Historically, a large number of ex vivo

biomechanical studies have clearly identified changes in strain, stress, and material

properties associated with degeneration of the joint and cartilage extracellular matrix (ECM)

during OA progression [8, 29–33]. An ideal functional imaging modality would therefore

provide maximum sensitivity of biomechanical parameters to OA in the earliest stages of the

disease, prior to severe cartilage and joint damage, when disease-rectifying therapies would

likely be most effective.

This review discusses biomechanical measures of the joint and cartilage as imaging

biomarkers in the evaluation of OA. Particular attention is placed on functional imaging of

cartilage, in part because wear and loss of this tissue is a hallmark of advanced OA.

However, the important role of functional imaging is also discussed for joint kinematics and

the study of non-cartilage tissues. Conventional and emerging functional imaging modalities

that make use of unique or combined contrasts will be discussed in the context of their

potential for diagnosing early disease stages.
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TISSUE MECHANICS IN EARLY OA

The potential of functional imaging to diagnose pre-clinical OA depends on the ability to

detect disease-associated joint and tissue changes that manifest as aberrant biomechanics.

Cartilage defects, ACL tears and reconstruction, and meniscus injuries can all lead to

cartilage OA in the long term [34–36], suggesting that local tissue damage and downstream

degenerative changes may be useful functional markers to assess a broad range of

musculoskeletal joint problems and treatments. Injury often activates the onset of

osteoarthritis [37, 38], resulting in direct collagen damage [39], cell death [40], and joint

instability following defects or tearing in cartilage, ligaments or menisci [41, 42]. Injury also

initiates a cascade of structural (Figure 1) and biochemical changes, exacerbated by

mechanical loading, that include inflammation, increased cellular expression of cytokines

and enzymes (e.g. IL-1β, aggrecanases, matrix metalloproteinases) [43, 44], degradation of

the aggrecan core protein, and increased susceptibility of hyaluronic acid and type II

collagen to enzymes through HA oligosaccharides and type II collagen fragments [45, 46].

The pathomechanics of OA provides multiple possible targets that may be evaluated using

functional imaging biomarkers (Figure 1). In the short-term, mechanically-induced damage

and tissue tearing may be directly visualized as structural defects or indirectly observed by

quantification of strain during passive mechanical loading to the joint. Longer-term changes

in the degenerating cartilage ECM and surrounding joint structures may likewise be detected

by gross structural changes, including increasing defect size or volume, or indirectly through

measures of decreased cartilage stiffness. To detect subtle changes in the cartilage ECM

structure and biomechanics, it is critical to develop and use techniques with sufficient

precision and accuracy to identify local changes in the internal tissue biomechanics that

deviate from normal [47].

Beyond the evaluation of pathomechanics, functional imaging is also needed to

noninvasively characterize the biomechanics of damaged musculoskeletal tissues following

treatment and therapeutic interventions. Therapies of regenerative medicine (e.g. cell

implantation, gene therapy) are emerging as viable repair and management strategies for OA

[48–53]. Evaluation of the success of treatments and interventions ultimately depends on the

development of imaging tools that can noninvasively assess tissue function in vivo following

repair. Quantification of cartilage strain or stiffness using functional imaging represent

promising imaging biomarkers considering the important load-bearing function of the tissue

[54], which changes following joint injury and disease [7, 8]. Direct evaluation of cartilage

by procedures like arthroscopy may be considered a gold standard of assessment, but is

highly invasive [55]. Reliable noninvasive methods to probe cartilage and joint function

allow for the definition of target properties for engineered tissues, and enable direct

evaluation of the tissue and joint following repair.

FUNCTIONAL IMAGING OF BIOMECHANICS IN OA

A basic question emerges when considering the rationale for functional imaging in OA:

what is the role of imaging in the evaluation of tissue biomechanics? Because imaging is

noninvasive and nondestructive, there is an immediate potential to evaluate pre-clinical OA
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before the disease manifests as pain or loss of function in patients. Numerous imaging

studies directly compare asymptomatic patients with those who display symptomatic OA

[26, 28, 41, 49, 56, 57], with asymptomatic patients typically serving as a control group. It is

not yet clear whether functional imaging will in the near-term achieve sufficient sensitivity

to diagnose pre-clinical OA, or whether routine patient scans will be appropriately justified

(with low cost and high specificity) to probe the asymptomatic joint. For example, it is

largely unknown how mechanical parameters (e.g. stiffness) of joint tissues vary among

people in vivo, and so definitions of population-level baseline values may simply exhibit

excessive variability to preclude interpretation of deviations from baseline at the level of the

individual patient. However, it may be possible in the near-term to routinely apply

functional imaging in animal and clinical trials of therapeutic interventions [22, 58–61], or

in cases of (e.g. ACL) injury in patients, where defined steps of disease progression can be

known, accelerated, and possibly prevented. While application of functional imaging in the

long-term may benefit the asymptomatic patient, short-term applications may better suit

efforts in the pharmaceutical industry and researchers working in the fields of regenerative

medicine and tissue engineering.

Functional imaging is commonly assessed in OA using radiography [25], MRI [26, 27], and

ultrasound [28] (Figure 2, Table 1). Functional imaging data is typically acquired at the

tissue-scale, given that the maximum spatial resolution for many common imaging

modalities (e.g. MRI, radiography) is on the order of hundreds of microns, or an order of

magnitude larger than the typical diameter of single chondrocytes [62]. At the tissue-scale,

the knee, hip, and ankle [63] are easily visualized by noninvasive imaging in vivo, as are

tissue in the finger joints [64, 65]. For knee OA, imaging can visualize several tissues that

are known to exhibit altered biomechanics in disease, including cartilage [66], bone [67–69],

and ligament and meniscus [26, 70]. While future imaging studies may better address OA-

associated early changes in cell death [40] or molecular targets [71], current functional

imaging of biomechanics in OA is focused largely on the analysis of joint kinematics, and

the quantification of tissue structure, morphology, and biomechanics.

Functional Imaging and Joint Kinematics

Gross differences in gait patterns due to OA severity are well documented [57, 72–74].

While the analysis of gait is not strictly a functional imaging method focused on a specific

tissue, is reasonable to expect that imaging-assessed gait in patients with moderate or severe

OA would differ from asymptomatic individuals due to the likely increase in pain or joint

structural alterations that would manifest in macroscopic, whole-body changes.

Symptomatic individuals with mild knee OA (Kellegren-Lawrence grade of 2; described

subsequently) showed increased medial compartment loading on average compared to

asymptomatic individuals with the same radiograph-assessed OA grade [75], suggesting a

role of biomechanics to distinguish between symptomatic and asymptomatic OA. Significant

improvements in the detail of joint kinematic parameters can be seen in a number of imaging

methods based on radiography [76, 77], computed tomography [65, 78, 79], and MRI

assessed kinematics [80, 81] and joint alignment [82, 83] (Table 1). Interestingly,

multimodal imaging and modeling analyses that integrate real-time acquisition capabilities

of biplanar fluoroscopy with high-resolution and three-dimensional MRI allow for the
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careful in vivo evaluation of joint instability following ligament reconstruction [84, 85] and

cartilage contact deformation under body weight [86]. Additionally, dual fluoroscopy alone

has successfully differentiated between magnitudes of anterior tibial translation in the

healthy knee following functional activities of increasing demand on the quadriceps [87].

Functional Imaging of Tissue Structure and Morphology

Imaging of the structure and morphology of joint tissues is a primary means to assess OA

severity, with many of the same challenges apparent today that existed decades ago [88].

Quantifying the structure and morphology of cartilage in particular is a reasonable approach

to assess OA in light of excessive wear observed in advanced stages of the disease [89].

However, it is doubtful whether pre-clinical OA in cartilage can be directly visualized, since

the gross structure (i.e. thickness) remains relatively unchanged from normal (Figure 1), and

findings of altered joint structure do not always inevitably lead to degeneration [90].

Alternatively, structural alterations can be visualized in numerous other joint tissues that

may lead to degeneration, including meniscal tearing or extrusion [91, 92], ligament tearing

[93], calcified cartilage and the osteochondral interface [94], and bone marrow edema [95].

Structure and morphology may therefore directly inform surgical planning and benefit

patient-specific models [96], and are commonly assessed by radiography, MRI, and

ultrasound.

Radiography—Radiography has been used for many decades to assess joint OA [25, 97].

Because cartilage is radiolucent compared to bone, radiography is best suited to quantify

advanced OA as cartilage is lost giving way to excessive joint space narrowing [98]. The

scale proposed by Kellgren and Lawrence [25] is a standard for radiological assessment of

OA, finding use in multiple studies [75, 99]. Radiographic OA is assessed by evidence of

osteophytes and possible joint space narrowing on a (0–4) graded scale, with: 0 (=no

evidence), 1 (=questionable, but no direct evidence), 2 (=definite osteophytes, with or

without joint space narrowing, or definite joint space narrowing with or without

osteophytes), 3 (=at least 50% joint space narrowing), and 4 (=severe joint space narrowing

and osteocytes). Modern techniques provide additional functional information that extend

the capability of radiography for joint cartilage [100], and additionally focus on non-

cartilage tissues such as subchondral bone that is visualized by computed tomography [101].

MRI—Cartilage is easily visualized by standard spin or gradient echo MRI techniques, with

excellent soft tissue contrast compared to surrounding joint tissues, including (short T2)

ligament and menisci. With the appropriate design of MRI pulse sequences, such as the use

of fat-suppression pre-pulses, contrast can be enhanced to facilitate visualization and

segmentation of the tissue. Cartilage and joint structure and morphology have been assessed

using numerous quantities, including contact area [102–104], thickness and volume [99,

105–109], and diffusion-associated structural changes [4, 110]. For example, in a multi-

center MRI study of 145 women, cartilage thickness changes approaching −4% were

observed 6 months following baseline analysis in the central medial femorotibial joint of

subjects showing Kellegren-Lawrence grades of 3, but not 2, suggesting sensitivity of

thickness and joint space narrowing to OA progression [99]. These quantities, especially
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thickness and volume, can often be determined from standard MRI, making them especially

attractive for use in multi-site studies with large patient populations.

The numerous other tissues in the joint are visualized by MRI to provide critical assessment

of injury- and osteoarthritis-related structure and morphology. Meniscal tearing and

extrusion have been visualized using T2- and intermediate-weighted fast spin echo (FSE)

imaging, often with fat-suppression of the marrow space [91]. Tears in double-banded

anterior talofibular ligaments were identified as the most common injury in subjects with

sprained ankles using proton density-weighted FSE MRI [93]. Morphology of fibrocartilage

and the osteochondral interface [94, 111] has been described by ultrashort echo time (UTE)

MRI, a powerful method that takes advantage of TEs on the order of microseconds to

visualize short T2 tissues. Preparation pulses prior to the UTE acquisition further selectively

enable the quantitative analysis of relaxation times T2*, T1, and T1ρ in the zone of calcified

cartilage [112], a subchondral mineralized tissue region beneath the tidemark whose mineral

content, thickness, and stiffness likely play a role in the pathogenesis of OA [113]. Bone

marrow edema-like lesions have been identified in donor tissue from patients scheduled for

total knee arthroplasty using T2-weighted FSE images as focal subchondral areas of high

intensity, which were associated with overlying cartilage regions of higher T1ρ and T2 [95].

Taken together, the structure, morphology, and relaxation times (discussed subsequently) of

non-cartilage tissues can be visualized and quantified by MRI, and support the idea of the

role of focal changes among joint tissues in the progression of OA [92]. Mechanical tearing,

minearlization, and edema would all be expected to impact joint loading and function,

leading to and further compounding cartilage and joint degeneration.

Ultrasound—Compared to the wide-spread use of MRI, fewer studies have quantified

cartilage structure and morphology by ultrasound. Joint structures have been characterized

in vivo in both the hip [28] and knee [114], and recent studies indicate potential indirect

measures of the joint in OA, including meniscal subluxation [115].

FUNCTIONAL IMAGING OF CARTILAGE MECHANICS

While studies of cartilage mechanics using imaging have noninvasively quantified surface

deformation (thickness) and volume changes during loading in patient populations [116–

119], results from these studies provide limited information on the three-dimensional

deformation occurring in the cartilage interior. Surface shape and volume alone does not

account for complex internal mechanical behavior, such as deformation between arbitrary

tissue locations, which is known to vary over the thickness of the tissue [47] and locally in

the progression of OA [66].

Moreover, it is still unclear whether small structural changes in cartilage during the very

earliest stages of OA can be detected by medical imaging. For example, the practical spatial

resolution limit of clinical MRI for cartilage applications approaches pixel dimensions of

~200–300 μm. Not considering interpolation schemes [118], the change in the cartilage

nominal (surface-to-bone) thickness by only 300 μm (i.e. a single pixel) may indicate

complete loss of the superficial zone, a thin layer critical for low friction and normal joint

sliding [71, 120]. It is further very challenging to reliably measure small changes in cartilage
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thickness of large patient populations, noting that the viscoelastic nature of the tissue can

mean small deviations in tissue thickness develop even as the patient walks from waiting

room to MRI scanner. Care must therefore be placed on the development of rigorous

protocols that account for the history of loading in individual patients [119]. These

challenges also suggest the importance of looking beyond structural and morphological

measures alone to consider functional imaging methods that enhance sensitivity and

specificity to disease severity (e.g. [64, 66, 121]).

An important consideration in the functional imaging of cartilage is whether measures of

strain, stress, or material properties provide the best diagnostic utility for OA. A large

number of MRI- and ultrasound-based techniques are available to map displacements and

strain at high resolution, which are then coupled to material models to estimate stress [122]

or material properties [123–126], most often classified as elastography [127]. Because the

material properties of cartilage change in OA [8], controlled magnitudes of ex vivo or in vivo

mechanical loading would likely result in aberrant deformation for progressively diseased

tissue, suggesting that displacement or strain alone may be a sufficiently unique functional

measure. On the other hand, calculation of stress and material properties potentially includes

more information (e.g. boundary conditions, tissue morphology), revealing more subtle

changes in the tissue. Unfortunately, conventional MR elastography for cartilage [125] is not

yet easily adapted for in vivo imaging because of challenges in visualizing small, high

frequency loading in thin (<3 mm thick) cartilage that is deeply embedded within the joint.

As a result, high resolution measures of strain have instead been coupled to materials models

for joint imaging [122].

Direct, high-resolution measures of cartilage deformation have been accomplished using two

MRI-based displacement-encoding methods: 1) tag line registration, termed Cartilage

Deformation by Tag Registration (CDTR) [47, 128–132], and 2) phase contrast, termed

displacements under applied loading by MRI (dualMRI) [2, 133] (Figure 3). CDTR used

preparatory pulses to generate a high-density grid pattern of thin tag lines that deform with

the cartilage during mechanical loading, enabling the tracking of individual material points.

Using CDTR, depth-dependent and three-dimensional strains were noninvasively

documented and shown to be finite (i.e. large), especially in directions transverse to the

loading direction, during physiologically-relevant compressive loading to articular cartilage

explants [47]. However, one limitation to CDTR, especially considering its potential for

translation to clinical imaging in vivo, is the difficulty in locating a large number of tag lines

that are needed to track local tissue changes in the thin cartilage. A natural consequence of

this limitation was the need to extrapolate deformation near the tissue boundaries, a problem

that would be exacerbated using fewer tag lines or clinical MRI systems that typically

acquire images with lower spatial resolution compared to dedicated animal systems [128,

134].

dualMRI is a phase contrast method that integrates actions of an MRI-compatible

mechanical loading device with specialized MRI code (i.e. pulse sequences) and post-

processing algorithms to reveal internal cartilage deformation [2]. dualMRI can acquire

strain data at each three-dimensional pixel location depicting the image, a distinct advantage

over CDTR, in either ramp-and-hold configurations or with high spatiotemporal resolution,
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approaching 100 μm pixel dimensions with a temporal resolution better than 3 ms [2].

Mechanical loading is typically applied to mimic the walking cycle (i.e. ~0.1–0.5 Hz) with

physiologically-relevant load magnitudes (~0.5–1× body weight) resulting in large

deformation in the cartilage [2, 133]. The high displacement and strain precision of dualMRI

(on the order of 11 μm and 0.1%, respectively [2]) suggests that the technique is highly

sensitive to measure small local changes in cartilage strain during OA that indicate altered

stiffness and degenerative changes. The deformation data has permitted the description of

cartilage strain in OA [66], repair models [135], intact joints [136], and in relation to stress

and material properties [122]. Moreover, the fast acquisition of the dualMRI data has

permitted direct measurement of cartilage strain in vivo on clinical MRI systems for the first

time [137], hinting at the future possibility for human studies of joint disease and repair.

BIOMECHANICS AND MULTICONTRAST IMAGING

There are a growing number of imaging biomarkers that show great potential and promise

for the diagnosis of early OA. Within the last decade alone, data from a number of

longitudinal (e.g. Osteoarthritis Initiative) studies in large patient populations is emerging

[138, 139], which incorporate new and advanced pulse sequences and techniques [140].

Biomarkers that provide information beyond cartilage structure and morphology alone [141,

142], to now include quantitative measures of the extracellular matrix (e.g. relaxivity

mapping of T1ρ, T1 and T2), indicate an increasing promise for the reliable diagnosis of early

OA. For a more complete review of the relative potential of individual quantitative MRI

methods, please refer to [143].

Quantitative MRI techniques have been correlated to cartilage biomechanics, and used to

complement structural and morphological information in studies of patient populations. The

cartilage ECM is generally associated with measures of gadolinium-enhanced T1

(proteoglycan [144]), T1ρ (water, proteoglycan, collagen [145]), and T2 (collagen [146]).

Glycosaminoglycan content, assessed by gadolinium-enhanced imaging (i.e. dGEMRIC),

has been correlated to surface indentation measures of cartilage mechanical properties [147],

suggesting the possibility that cartilage function can be indirectly determined by imaging the

spatial location of ECM molecules (e.g. proteoglycans) that contribute to compressive

stiffness. T1ρ has assessed symptomatic osteoarthritis in subjects [148] and biphasic material

properties (aggregate modulus and hydraulic permeability) of cartilage in a cytokine-

induced model of degeneration [149]. T2 and cartilage thickness decreased in superficial

zone cartilage following running [106], and T2 correlated with body mass index in patients

[150], demonstrating complementary combinations of relaxivity and structural measures.

Importantly, conventional quantitative MRI techniques detect mid-stage to advanced OA

where large changes in the cartilage ECM occur during degeneration. It is not clear whether

quantitative MRI can be sufficiently sensitive and specific to detect early OA, especially at

the level of individual patients, though tremendous promise still remains for early OA

diagnosis for a wide range of techniques [143].

Recent exciting approaches that combine complementary biomarkers, often termed as

‘multicontrast’ or ‘multiparametric’ methods, show increased sensitivity and specificity for

cartilage function and OA. Interestingly, the use of multiple independent assessment of
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disease severity is not unlike the development of WOMAC and related scoring systems [18,

19, 22, 49]. In one study, authors combined dualMRI, relaxivity measures (e.g. T1ρ, T1 and

T2; Figure 3), and standard MRI (e.g. thickness) in a statistical model to quantify the ability

to detect OA severity in human cartilage explants from donors undergoing total knee

replacement surgery [151]. From this study, two-dimensional finite and Von Mises strains

from dualMRI were strong predictors of histologically-assessed OA severity compared to

relaxivity or standard MRI, but the combine approach of multicontrast MRI, inclusive of all

markers, was the strongest predictor overall. In another study [152], authors combined the

apparent diffusion coefficient, T1, T2, and magnetization transfer rate in a multiparametric

analysis to evaluate control and degraded bovine nasal cartilage. Sensitivity was improved

through the multiparametric analysis, with potential to expand to other biomaterials and the

analysis of human tissues. These studies, along with contrast-enhanced MRI that identifies

specific chemical targets [153], show exciting potential and promise for future functional

imaging approaches aimed as diagnosing early OA.

CONCLUSIONS

Functional imaging of cartilage encompasses a growing number of outstanding techniques

that show potential to evaluate biomechanics in early OA. Imaging modalities are available

to researchers to quantify detailed structure, morphology, motion, and material properties of

joint tissues, and MRI-based techniques currently provide the greatest potential to assess

multiple measures of joint function noninvasively compared to techniques based on

radiography or ultrasound. Internal strains, imaged by techniques such as dualMRI, may

represent the most sensitive current measure of OA severity, which is only enhanced when

combined with other independent measures. Given the slow and natural degradation of

cartilage matrix molecules over the time course of the disease, combined imaging modalities

that provide multiple contrasts, reflecting the deterioration of specific cartilage

macromolecules and biomechanical parameters, likely will provide the best sensitivity and

specificity to early OA. Toward this end, researchers should continue to place a premium

effort on 1) the development of functional imaging modalities that provide robust data at the

level of the individual patient, 2) advancement and validation of biomechanics and

multicontrast techniques in human populations, and 3) the appropriate refinement and

optimization of the functional imaging to evaluate asymptomatic versus symptomatic

patients, as well as time-course changes following administered therapeutic agents in

defined animal and human trials.
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Figure 1. Noninvasive imaging can probe the pathomechanics of osteoarthritis (OA)
Structural changes in the progression of OA are characterized by cartilage damage and loss,

following [156]. Radiography indirectly identifies advanced OA through joint space

narrowing. Functional imaging and quantitative MRI show promise to probe early OA, prior

to the expression of gross changes in cartilage structure and morphology [143].
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Figure 2. Imaging commonly evaluates joint and tissue function in OA by radiography, MRI and
ultrasound over a wide range of spatial resolutions
Radiography has historically identified advanced OA through the assessment of joint space

narrowing as the cartilage is worn allowing bony surfaces to contact. MRI is a versatile

method that can acquire data to assess joint space narrowing, directly visualize cartilage

structure and morphology, and reveal internal patterns of strain in tissues active deep within

the joint. Multiple contrasts (e.g. relaxivity, internal strains) are a promising new advance in

MRI assessment of OA [151, 152]. Ultrasound shows promise for real time assessment of

the joint tissues. Various functional measures are depicted over common spatial resolution

ranges for each imaging modality.
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Figure 3. Multicontrast imaging of human joint cartilage is possible through complementary
MRI techniques
Standard MRI (e.g. fast spin echo pulse sequence) depicts morphology of the left knee joint

in the coronal plane (M=medial, L=lateral, S=superior, I=inferior). Spatial maps of relaxivity

(e.g. T2) can be visualized in cartilage, ligament, and meniscus tissues. Compressive loading

to the joint in the inferior to superior direction, determined by dualMRI, results in complex

internal strain patterns that can be related to disease severity, material properties of the

tissues, and contact conditions in the loaded joint. The data is adapted from [2].
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Table 1
Primary imaging methods utilized for functional assessment of the joint tissues

Magnetic resonance imaging is used broadly in numerous configurations to assess kinematics, structure,

morphology, and mechanics, and provide the best means of directly imaging multiple functional measures in

cartilage and related joint tissues. Multicontrast MRI is promising for the early assessment of OA, through the

combined acquisition of independent measures that are sensitive to disease. Key references are included for

each measure, with ‘+’ to ‘+++’ indicating an increasing degree of technique suitability and significance.

Radiography MRI Ultrasound

Joint Kinematics

 Movement +++ [73, 76, 78] ++ [80, 81]

 Alignment +++ [83] +++ [83]

 Multimodal Imaging (combined use of fluoroscopy and MRI) +++ [84–86] +++ [84–86]

Joint Structure and Morphology

 Joint Space Narrowing +++ [25] ++ [108]

 Cartilage Contact Area +++ [102–104]

 Cartilage Thickness and Volume +++ [108]

 Meniscus Tearing and Extrusion +++ [91] + [115]

 Ligament Tearing ++ [93]

 Calcified Cartilage and Subchondral Bone ++ [101] +++ [94, 111]

 Bone Marrow Edema ++ [95]

Cartilage Mechanics

 Intratissue Strain +++ [2, 129, 133] + [154]

 Material Properties and Stress ++ [122, 125] + [155]

Multicontrast Imaging

 Relaxation Times +++ [143]

 Multicontrast Measures (combined use of strain, diffusion, magnetization transfer,
or relaxation times)

+++ [151, 152]
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