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Abstract

Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases.

Although many intracellular signaling pathways influence cardiac physiology and pathology, the

mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its

vast implications in signaling and cross-talk with other signaling networks. The extensively

studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling

mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of

cardiac development, metabolism, performance, and pathogenesis. Definitive relationships

between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive

clinical studies and basic research of various animal/cell models, severities of stress, and types of

stimuli. Still, several studies have proven the importance of MAPK cross-talk with mitochondria,

powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and

play a crucial role in cell death. Although many questions remain unanswered, there exists enough

evidence to consider the possibility of targeting MAPK-mitochondria interactions in the

prevention and treatment of heart disease. The goal of this review is to integrate previous studies

into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as

myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding

of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the

development of new pharmacological agents and genetic manipulations for therapy of

cardiovascular diseases.
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1. Introduction

Cardiovascular diseases cause more mortality and morbidity worldwide than any other class

of diseases, accounting for 31.9% of the 2.47 million deaths in the United States in 2010 (Go

et al., 2014). The pathogenesis of cardiac decompensation, or heart failure (HF), can be

chronic or acute in nature and is of major clinical concern. Coronary artery disease,

myocardial infarction (MI), hypertension, cardiomyopathy, myocarditis, arrhythmia,

hyperlipidemia, and diabetes, among other diseases, can promote the onset or progression of

HF by increasing blood pressure or blood volume or reducing contractility. Indeed,

myocardial ischemia is the most common cause of HF. Insufficient blood supply due to

partial or complete occlusion of coronary arteries deprives the myocardium of the oxygen

and substrates needed for cardiac metabolism, leading to MI and localized necrosis. The

remaining cardiomyocytes must compensate for the lack of function from necrotic

myocytes, so the ventricles adaptively remodel immediately after MI to maintain cardiac

output (Sutton and Sharpe, 2000, Dorn, 2009). Remodeling is a complex process involving

multiple signaling pathways associated with ionic regulation, reactive oxygen species (ROS)

generation, substrate utilization and energy synthesis in response to cellular remodeling.

Initially, cardiomyocytes can overcome the increase in workload by undergoing

hypertrophic remodeling; cardiomyocytes increase heart contractility by increasing protein

synthesis and adding sarcomeres. However, if the heart is too stressed, hypertrophy can

become deleterious due to functional decompensation, and cause heart HF, characterized by

a decreased ejection fraction, progressive chamber dilation, pro-inflammatory cytokines

release, apoptosis, and fibrogenesis (Frey and Olson, 2003, Ertl and Frantz, 2005).

The heart is regulated by various intracellular signaling pathways. In particular, mitogen-

activated protein kinase (MAPK) signaling has been widely implicated in cardiac pathology

for several reasons. First, in vitro and in vivo stimulation of MAPK signaling promotes or

suppresses cardiac pathology. Second, cardiac diseases are associated with changes in the

expression and activity of MAPKs in the heart. Third, pharmacological or genetic inhibition

of MAPKs affects cardiac diseases. Four classic MAPKs, including extracellular signal-

regulated kinases 1/2 (ERK1/2), p38, c-Jun N-terminal kinases (JNK), and ERK5, distinctly

mediate heart development, metabolism, function, and pathology. Notably, ERK1/2 and

ERK5 are activated by hypertrophic stimuli, whereas JNK and p38 responded mostly to

stressors, such as oxidative stress, hyperosmosis and radiation (Sugden and Clerk, 1998).

MAPKs are significantly integrated in intracellular signaling and the regulation of gene

expression; they target an array of cytosolic and nuclear proteins, including proteins from

other signaling pathways and transcription factors (Yang et al., 2003). In addition, MAPKs

directly and indirectly target mitochondria, which synthesize 80% of the ATP needed for

cardiomyocyte function. Furthermore, mitochondria are the nexus of various stressors, and

they initiate cell death through apoptosis, necrosis and autophagy. Previous studies revealed

that MAPKs directly interact with the outer mitochondrial membrane and even translocate

into mitochondria (Kharbanda et al., 2000, Baines et al., 2002, Ballard-Croft et al., 2005).

Other studies demonstrated indirect effects between MAPKs and mitochondria; MAPKs

affected mitochondria-mediated cell survival and cell death through their effects on ROS
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and calcium signaling (Bogoyevitch et al., 2000, Zhao et al., 2001, Yue et al., 2002, Kaiser

et al., 2004, Kong et al., 2005, Wall et al., 2006).

Although the precise mechanisms underlying MAPK-mitochondria signaling in cardiac

diseases have not yet been established, a significant amount of evidence confirms that

MAPKs profoundly influence cellular signaling underlying cardiac compensation and

decompensation, in part, through interactions with the mitochondria. Since MI is the most

common cause of HF, pharmacological and conditional interventions must be developed to

prevent MI or otherwise delay its progression. This review integrates lessons from previous

studies into a comprehensive discussion of the implications of MAPK signaling in the

physiological and pathological heart. An understanding of the molecular mechanisms

underlying canonical MAPK signaling and MAPK-mitochondria signaling in the heart will

promote the development of new therapeutic approaches for the treatment of cardiac

diseases.

2. The MAPK family in the healthy heart

To elucidate the potential therapeutic implications of targeting MAPK signaling,

understanding the MAPK family in the context of a healthy heart, including genealogy,

three-tiered activation cascades, the unique physiological functions of subfamilies and

isoforms, and signaling regulation is important. Currently, studies on the role of MAPKs in

the heart are mainly based on the following approaches: (i) analysis of the activity of

MAPKs in the myocardium under physiological and pathological conditions; (ii) elucidating

the effects of pharmacological inhibition/activation of MAPKs on cardiac diseases; (iii)

assess the effects of gene targeted modulation of MAPKs expression on the healthy or

diseased heart (Ravingerova et al., 2003). Four classical subfamilies represent the majority

of the MAPK family in humans: ERK1/2, (also known as MAPK 3/1), p38 (also known as

MAPKs 11-14), JNK (also known as MAPKs 8-10), and ERK5 (also known as Big MAPK

1 or MAPK 7). Atypical MAPKs, in contrast to their classical counterparts, are evolutionary

primitive and apparently less implicated in cardiac physiology (Feijoo et al., 2005). MAPK

enzymes are so conserved among eukaryotes that the genealogy of classical human MAPKs

was traced back to evolutionary divergences in primitive eukaryotes. Indeed, studies of the

yeast species Saccharomyces cerevisiae have directed and supplemented studies of MAPKs

in mammalians including humans. ERK1/2 and ERK5 are considered pheromone response

pathway-type MAPKs, or Fus3/Kss1-type MAPKs, because they are commonly activated by

peptide mitogens. p38 and JNK are considered high-osmolarity growth pathway-type

MAPKs, or Hog1-type MAPKs, because they respond strongly to cellular stress and

inflammatory cytokines; they are appropriately dubbed stress-activated protein kinases

(SAPKs) (Gustin et al., 1998, Doczi et al., 2012). Nonetheless, human MAPKs respond to

an array of stimuli. ERK1/2 and ERK5 can also respond to stressors, like ROS, G-protein-

coupled receptor (GPCR) agonists, and cytokines (McKay and Morrison, 2007, Raman et

al., 2007). p38 and JNK can also respond to growth factors and GPCRs (Ono and Han, 2000,

Raman et al., 2007).

Although some overlap exists with regard to molecular structure, substrate specificity, and

signaling functions, MAPKs and their isoforms can uniquely influence cardiac physiology
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based on cell type and stimulus characteristics (Gerits et al., 2007). This is, in part, due to

the co-evolution of regulatory mechanisms, which impart specificity and preserve

physiological signaling. Facilitated by these regulatory mechanisms, the MAPK family of

serine/threonine-specific protein kinases targets a remarkable assortment of transcription

factors, protein kinases, and other proteins, both in the cytosol and the nucleus, to mediate

cellular adaption, growth, cellular survival, apoptosis, proliferation, differentiation,

metabolism, and motility (Davis, 2000, Pearson et al., 2001, Ramos, 2008, Rincon and

Davis, 2009, Wang and Tournier, 2006). MAPK signaling is like a potent molecular switch;

after it prompts an appropriate cellular response, it must be deactivated by regulatory

mechanisms (Ferrell, 1996). This compensatory downregulation may be illustrated in the

context of physical exercise, a normal yet acute stress. Transient hypoxia and mechanical

overload stimulate the MAPK signaling during exercise. Within minutes, MAPKs rectify

cardiac output by increasing contractility via cardiomyocyte hypertrophy without

inflammation or fibrosis (Hunter et al., 1995). If a stressor is only temporary, as in the case

of normal exercise, regulatory mechanisms, such as MAPK phosphatases (MKPs) and

tyrosine phosphatases, properly downregulate MAPK signaling.

Each MAPK subfamily is activated by a unique cascade; cascade intermediates exhibit

exceeding substrate specificity for their associated MAPKs (Feijoo et al., 2005, Doczi et al.,

2012). Yet, even before a stimulus reaches a MAPK kinase kinase (MAP3K), the first tier of

a MAPK cascade, it can be influenced by an array of upstream activities (Pearson et al.,

2001). Indeed, intracellular macromolecular complexes, which include docking and scaffold

proteins, alter the timing and location of intracellular signaling (Whiteside and Goodbourn,

1993). Highly conserved three-tiered serial phosphorylation cascades begin when MAP3Ks

phosphorylate and activate second tier MAPK kinases (MAP2Ks). MAP2Ks dually

phosphorylate the activation loop of their corresponding MAPKs on a characteristic

threonine-X-tyrosine motif, where X is a variable amino acid residue (glutamic acid in

ERK1/2, glycine in p38, proline in JNK, aspartic acid in ERK5). This precise, highly

conserved mechanism stimulates changes in MAPK global conformation and facilitates

access to substrates (Pearson et al., 2001, Doczi et al., 2012). Since, removal of either

phosphate from the activation loop of a cascade kinase essentially abolishes signaling,

MKPs and tyrosine phosphatases, which hydrolyze two or one activating phosphate,

respectively, can significantly downregulate MAPK signaling (Ferrell, 1996). Many

intracellular signaling pathways, including mitochondrial signaling pathways and other

MAPK signaling pathways, manipulate upstream and downstream proteins of MAPK

signaling to influence dynamic myocardial growth or adaptation (Junttila et al., 2008).

2.1. ERK1/2

The ERK1/2 activation cascade, also known as the Ras-ERK pathway, has been investigated

extensively. Calcium channels, RTKs, and GPCRs can internalize a stimulus. In a well-

studied example, growth factor receptor-bound protein 2, a docking protein, binds to

activated RTKs and, then, complexes with and activates the guanine nucleotide exchange

factor, son of sevenless (SOS). Activated SOS promotes removal of GDP from Ras, which

then binds GTP (McKay and Morrison, 2007). Ras is a GTPase with an extensive reach in

intracellular signaling. Among its prominent signaling mechanisms, Ras phosphorylates and
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activates Raf proto-oncogene serine/threonine-protein kinase (Raf-1 or c-RAF), a MAP3K.

In turn, Raf activates MAPK/ERK kinase 1/2 (MEK1/2, also known as dual specificity

MAPK kinase 1), a MAP2K, which activates ERK. Interestingly, ERK1/2 also is

autophosphorylated via a GPCR-dependent mechanism (Lorenz et al., 2009). Within the

cascade, scaffold proteins, like β-arrestin, kinase suppressor of Ras (KSR), MAPK organizer

1 (MORG1), and MEK partner 1 (MP1), interact with ERK1/2 to facilitate and modulate

signaling (Dhanasekaran et al., 2007). MKPs, protein serine/threonine phosphatases and

protein tyrosine phosphatases downregulate ERK1/2 signaling (Junttila et al., 2008, Owens

and Keyse, 2007). Once activated, ERK1/2 can activate the proto-oncogene c-Myc and

SMAD1-4, transcriptional activators implicated in heart development (MacLellan and

Schneider, 2000). It also activates c-Jun and activating protein 1 (AP-1); the AP-1

transcription factor complex, which is involved in cellular proliferation and survival, can be

formed by the transcription factors Fos, jun, and activating transcription factor (ATF), each

of which is targeted by MAPKs (Hai and Curran, 1991, Pearson et al., 2001). Furthermore,

during neonatal heart development, ERK activates transcription factor GATA4, which

inhibits apoptosis and is important in the formation of the septum arteriosum (Davidson and

Morange, 2000, Liang et al., 2001, Eriksson and Leppa, 2002, Naito et al., 2003).

Ubiquitous expression of ERK1/2 also implicates it in signaling that influences cell death,

migration, immune function, insulin signaling, cardiac hypertrophy, and cell structure

including cytoskeletal properties and cell adhesion (Pearson et al., 2001, Ramos, 2008).

MEK1-restricted transgenic (TG) mice demonstrated concentric hypertrophy, a phenotype

similar to that observed in a weight lifter. In fact, in response to an increase in pressure from

resistance training, MAPK signaling promotes parallel sarcomere addition and thickening of

the left ventricular wall. This physiological phenomenon, referred to as “athlete’s heart,”

improves the ability of the heart to maintain cardiac output during exercise-induced acute

stress (Mihl et al., 2008). Finally, with regard to isoforms, ERK2 appears to be more

important than its counterpart, ERK1, because only ERK2 null mice are nonviable. ERK2

seems to compensate for a lack of ERK1, so it is thought to be capable of fulfilling most

ERK1 functions (Gerits et al., 2007).

2.2. p38

The p38 cascade exhibits more variability than the ERK1/2 cascade; unlike ERK1/2, the p38

cascade can begin with MEK kinase 1-4 (MEKK1-4), mixed lineage kinase 2/3 (MLK2/3,

also known as MAPK kinase kinase 10/11), apoptosis signal-regulating kinase 1/2 (ASK1/2,

also known as MAPK kinase kinase 5/6), transforming growth factor-β-activated kinase 1

(TAK1, also known as MAPK kinase kinase 7), and one amino acid protein kinases 1-3

(TAO1-3, also known as serine/threonine-protein kinases) (Raman et al., 2007). With the

exception of TAO1-3, all p38 MAP3Ks activate the MAP2Ks MEK3/6 and MEK4. Finally,

MEK3/6 and MEK4 activate p38 (Gerits et al., 2007). TAK1 also mediates noncanonical

p38 autophosphorylation via TAB-1 (transforming growth factor-β-activated protein 1-

binding protein 1), a MEK3/6-independent mechanism (Ge et al., 2002). Osmosensing

scaffold for MEKK1 (OSM), JNK-interacting protein 2 (JIP2), and JNK-associated leucine-

zipper protein can alter p38 signaling (Dhanasekaran et al., 2007). p38 phosphatases include

MKPs 1, 2, 5, and 7, and protein serine/threonine phosphatases (PP2C) (Junttila et al., 2008,

Owens and Keyse, 2007).
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p38 signaling most prominently influences immune responses by affecting proinflammatory

cytokine production in the cytosol and regulating immune cell proliferation, differentiation,

and function. It activates c-Myc, c-Fos, GATA4, AP-1, and ATF-2 (Liang and Molkentin,

2003, Petrich et al., 2004, Rose et al., 2010). ATF-2, in particular, is activated by SAPKs,

binds to cAMP response element (CRE), and, at the transcriptional level, functions as a

histone acetyltransferase, activating transcription of genes important in cardiac development

and cell survival (Hai and Curran, 1991, Sano et al., 1999). Moreover, p38 activates

myocyte-specific enhancer factor 2A/C (MEF2A/C) and serum response factor (SRF), both

of which influence cardiac differentiation and development (Sano et al., 1999). Activated

p38 may also remain in the cytosol to inhibit nuclear factor of activated T-cells (NFAT), a

family of calcium-regulated transcription factors, that influences immune response and

cardiac development (Zarubin and Han, 2005, Macian, 2005). One study implied that p38

might be physiologically anti-hypertrophic in response to swimming (Taniike et al., 2008),

but the majority of studies implies that p38 activation is associated mostly with pathological

hypertrophy (Nishida et al., 2004, Watanabe et al., 2007). p38 may be negatively inotropic

by modifying cardiac sarcomeric proteins and decreasing phosphorylation of α-tropomyosin

(Zechner et al., 1997, Liao et al., 2001, Chen et al., 2003, Vahebi et al., 2007). The p38

MAPK subfamily has four isoforms: p38α and p38β are ubiquitously expressed, p38γ is

expressed primarily in the heart and skeletal muscle, and p38δ is found in the small intestine,

kidney, pancreas, and testis (Ono and Han, 2000). Knock-out of p38α in mice, but not other

isoforms, caused embryonic lethal defects in erythropoiesis (Tamura et al., 2000). The p38α

isoform appears to promote apoptosis via ROS production, and calcium overload (Dhingra

et al., 2007). On the other hand, p38β seems to inhibit apoptosis by activating heat shock

protein 27 (Hsp27), which prevents proteolysis of myofilament proteins (Li et al., 2008).

2.3. JNK

The JNK cascade mostly overlaps with the p38 cascade. It begins with the same MAP3Ks as

p38, with the exception of TAO1-3 (Raman et al., 2007). After the first tier, these two

signaling cascades diverge. All of the mentioned MAP3Ks can activate MEK4/7, which

activates JNK. JNK can also be activated noncanonically via Wnt signaling, which involves

Rac and RhoA intermediates (Zhang et al., 2009). JNK scaffold proteins include JIP1, JIP2,

JNK/stress-activated protein kinase-associated protein 1 (JSAP1), JNK-associated leucine-

zipper protein, and SH3 (POSH) (Dhanasekaran et al., 2007), and JNK phosphatases are

MKPs 1, 2, 5, and 7 (Owens and Keyse, 2007)...

JNK, like p38, is strongly implicated in cardiac response to stress. Like other MAPKs, JNK

signaling influences cell survival, apoptosis, proliferation, and differentiation, as observed

from its phosphorylation of c-Myc, c-Jun, and ATF2. JNK1 and JNK2 each has four

isoforms and are ubiquitously expressed. JNK3 has two isoforms and is found in the heart,

brain, and testis (Davis, 2000). Confounding results reported enhanced myocyte survival as

a result of both JNK activation and inhibition (Aoki et al., 2002, Dougherty et al., 2002,

Engelbrecht et al., 2004). In vivo studies suggest that JNK impedes physiological

hypertrophic growth by activating transcription factor jun-D, which mediates anti-

hypertrophic and anti-apoptotic effects as part of the AP-1 transcription factor complex

(Hilfiker-Kleiner et al., 2005). Lastly, JNK1 and JNK2 are connected to T cell development
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and cytokine release (Gerits et al., 2007) inhibition of NFAT translocation into the nucleus

(Liang et al., 2003), which blocks its regulation of thymocyte development and T cell

differentiation (Macian, 2005). JNK signaling also influences heart development,

metabolism, insulin signaling, cell mobility, and actin reorganization (Davis, 2000, Pearson

et al., 2001, Raman et al., 2007).

2.4. ERK5

As mentioned, ERK5 is more similar to ERK1/2 than p38 and JNK. While p38 and JNK can

each be activated by several MAP3Ks, ERK5, like ERK1/2, has only been shown to be

activated by one MAP3K, which is MEKK2/3. MEKK2/3 activates MEK5, which activates

ERK5. ERK5 scaffold proteins include Lck-associated adaptor (LAD), Grb-2-associated

binder 1 (Gab1), and muscle specific A-kinase anchoring protein (Wang and Tournier,

2006). ERK5 phosphatases include MKPs 1 and 3 and the phosphotyrosine specific

phosphatases PTP-SL (Buschbeck et al., 2002). ERK5 is unusual because a large COOH-

terminal extension makes it more than twice the size of other MAPKs. It promotes postnatal,

eccentric hypertrophic heart growth, cell survival, differentiation, growth, and proliferation

by activating immediate-early response genes fos, myc, jun, and MEF2 (MacLellan and

Schneider, 2000, Wang and Tournier, 2006). Ventricular volume overload promotes

eccentric hypertrophy, which is characterized by serial sarcomere addition, cardiomyocyte

elongation, and dilation and thinning of the left ventricle (Mihl et al., 2008). This phenotype

is often observed in athletes who engage in endurance training, such as marathon runners.

Unlike other MAPKs, ERK5 functions directly as a transcriptional activator, binding

directly to DNA (Kasler et al., 2000, Akaike et al., 2004). Besides, numerous studies have

implicated ERK5 in the inhibition of apoptosis and maintenance of vascular integrity by

discovering its pro-survival role in endothelial cells and smooth muscle cells, both of which

are found significantly in blood vessels (Hayashi and Lee, 2004). In fact, ERK5 is essential

in the formation of a vascular system; global ERK5 deletion caused defects in vascular

formation that resulted in an embryonic lethal phenotype (Regan et al., 2002, Hayashi and

Lee, 2004, Hayashi et al., 2004). ERK5a is the most ubiquitously expressed isoform of the

only known erk5 gene. Other isoforms, ERK5b, ERK5c, and ERK-T appear to downregulate

ERK5a (Yan et al., 2001).

Thus, despite extensive studies, the precise mechanisms of the MAPKs network in the

regulation of cell differentiation, cell growth and death are not yet fully understood.

Elucidating the cross-talk between the MAPKs family and other signaling pathways in the

regulation of cell metabolism require further studies that can be helpful for understanding

the contribution of MAPKs to myocardial damages induced by various exogenous stressors.

3. MAPKs in chronic cardiac stress (hypertrophy and heart failure)

3.1. ERK1/2

As mentioned previously, growth factors stimulate ERK1/2 signaling through RTKs and

GPCRs to promote cardiac hypertrophy. Stimulation of GPCRs, such as α- and β-adrenergic,

angiotensin II (AngII) and endothelin 1 (ET-1) receptors induce hypertrophy through

activation of Ras-ERK cascade through Gq/G11 (reviewed in Liang and Molkentin, 2003,
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Petrich et al., 2004, Rose et al., 2010). Interestingly, β-adrenergic ligands can activate

ERK1/2 in a G protein-independent, β-arrestin-dependent manner through RTKs. The β-

blockers alprenolol and carvedilol induced β1-adrenergic receptor-mediated transactivation

of epidermal growth factor receptor by arrestin, and ERK activation (Kim et al., 2008).

Stimulation of both receptor complexes can mediate hypertrophic signaling through the Ras-

ERK pathway. Upregulation of individual signaling molecules from the Ras-ERK pathway

was associated with cardiac hypertrophy. Increased Ras expression (Kai et al., 1998) and

Ras-ERK pathway activity (Eisenberg and Eisenberg, 2006) positively correlated with

severity of cardiac hypertrophy in patients with hypertrophic cardiomyopathy. In animal

models, TG mice with cardiac-specific expression of constitutively active (CA)-Ras (Hunter

et al., 1995, Zheng et al., 2004) or CA-MEK1 (Bueno et al., 2000) developed cardiac

hypertrophy, including changes in gene expression and myofibers. Targeted overexpression

of RAS transgenic mice was associated with extracellular matrix remodeling, cardiac

dysfunction, hypertrophic cardiomyopathy and HF (Hunter et al., 1995, Mitchell et al.,

2006). Gene expression of the key regulators for energy metabolism, such as PPARα,

GLUT4, and fatty acids oxidation enzymes were remarkably suppressed in these hearts.

Potential downstream targets of ERK1/2 activation in response to growth stimuli and

oxidative stress are shown in Fig. 2. Numerous studies reported that the Ras-ERK pathway

regulates Ca2+ through modulation of the activity of ion channels/exchangers and pumps.

Cardiac dysfunction in Ras TG mice can occur due to changes in regulation of Ca2+

homeostasis in the cytoplasm. Ras upregulation in intact hearts (Zheng et al., 2004) and

cultured cardiomyocytes (Ho et al., 1998) resulted in reduced expression of SERCA2

associated with low Ca2+ uptake by the sarcoplasmic reticulum. In addition, alterations in

Ca2+ homeostasis can result from reduced L-type Ca2+-channel (LTCC) activity and

defective excitation-calcium release coupling with Ras activation in cardiomyocytes (Ho et

al., 2001). Yet, recent studies revealed ET-1-induced stimulation of the LTCC via activation

of ERK1/2 (Yu et al., 2013). In addition, ERK1/2 can phosphorylate and modulate the

activity of Na+/H+ exchanger 1 (NHE-1), which is indirectly involved in Ca2+ regulation in

the heart (Moor and Fliegel, 1999). Inhibition of ERK1/2 also significantly reduced the K+

channels (IK and IK1) activity in hypertrophied adult cardiomyocytes (Teos et al., 2008).

Although most of studies show that the Ras-ERK cascade plays an important role in the

signaling pathway leading to cardiac hypertrophy, ERK-independent mechanisms can also

play a significant role in the pathogenesis of hypertrophy. In favor of the latter, genetic

ablation of cardiac ERK1/2 promoted stress-induced apoptosis and HF without effect on

hypertrophy in mice, suggesting that ERK1/2 signaling is not a requirement in the mediation

of cardiac hypertrophy, though it does play a protective role in response to pathologic

stimuli (Purcell et al., 2007). Activation of Raf-1 was not sufficient to induce cytoskeletal

changes similar to those seen in hypertrophy (Thorburn et al., 1994). Notably, dominant

negative (DN) mutants and pharmacological inhibitors of Raf-ERK1/2 signaling attenuated

hypertrophy and increased cell death in isolated cardiomyocytes and intact hearts (Purcell et

al., 2007, Lorenz et al., 2009, Cheng et al., 2011). A recent study suggested a scenario in

which selective blocking of ERK-mediated hypertrophy occurs without an increase in

apoptotic cardiomyocyte death. Autophosphorylation of ERK on Thr188 (ERK2Thr188) due
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to direct protein-protein interaction between ERK and Gβγ subunits was observed in mice

upon stimulation of Gq-coupled receptors or after aortic banding and in failing human hearts

(Lorenz et al., 2009). Notably, ERK autophosphorylation, which requires the activation and

assembly of the entire Ras-ERK cascade and dimerization of ERK is a critical event in the

induction of ERK-mediated cardiac hypertrophy in response to various stimuli (Lorenz et

al., 2009). ERK2T188A, which is DN for ERKThr188 signaling, attenuated cardiomyocyte

hypertrophic responses to phenylephrine (PE) and to chronic pressure overload in isolated

cells and intact hearts without any effect on anti-apoptotic ERK1/2 signaling and

physiological cardiac function (Ruppert et al., 2013). Interestingly, despite inhibition of

pathological hypertrophy, ERK2T188A did not affect physiological cardiac growth associated

with age or exercise, therefore, suggesting that interference with ERKThr188 phosphorylation

may be a selective therapeutic strategy in pathological ERK1/2-mediated cardiac

hypertrophy.

In addition to hypertrophy, activation of the ERK cascade promotes resistance to apoptosis

(Bueno et al., 2000, Yamaguchi et al., 2004), although the anti-apoptotic effects of

individual components such as Raf likely do not associate with hypertrophy and can occur

through a MEK-ERK- independent mechanism (Chen et al., 2001). Conversely, inhibition of

Ras-ERK signaling attenuates hypertrophic response of the heart and cardiomyocytes. Anti-

remodeling and anti-hypertrophic effects of mechanical unloading caused by a left

ventricular assist device in patients with HF were associated with reduced cardiac ERK1/2

activity in the myocardium (Flesch et al., 2001). Likewise, hearts with DN-Raf

demonstrated reduced hypertrophy in response to pressure overload (Harris et al., 2004), and

DN-MEK1 inhibited ET-1- and PE-induced hypertrophy in cardiomyocytes (Ueyama et al.,

2000).

Thus, activation of ERK due to stimulation of both RTKs and GPCRs promotes hypertrophy

indicating a key role it plays in the pathogenesis of cardiac hypertrophy and HF.

Development of hypertrophy and its progression from compensated to pathological

(decompensated) state and HF is a complex process which along with Ras-ERK includes

other signaling pathways and depends on exposure time, severity and nature of hypertrophic

stimuli. Discrepancies between different studies are also due to variability of animal/cell

models and specificity of cell metabolism in neonatal and adult cardiomyocytes used in

these studies.

3.2. p38

p38, a stress-activated MAPK, is stimulated in response to various extracellular stresses

including inflammatory cytokines, oxidative stress, radiation, growth factors,

hyperosmolarity and others. Substantial variabilities within studies on the role of p38 in

cardiac hypertrophy, ventricular remodeling and HF are due to the use of a) neonatal and

adult cardiomyocytes which are metabolically different, b) various animal models or

hypertrophic agonists, c) pan-p38 inhibitors or genetic upregulation/downregulation of total

p38 that affect both p38α and p38β, and d) measurements of p38 activity at different time

points after stimulation.
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Similar to other MAPKs, p38 is rapidly activated within a few minutes of exposure to

stretch, increased aortic pressure, or volume overload, although this activation is not

consistent (Hoshijima and Chien, 2002). Analysis of tissue samples from the hearts with

post-MI ventricular remodeling demonstrated substantial variability in p38 activity although

it was higher in patients with end-stage HF compared to healthy hearts (Ng et al., 2003,

Denise Martin et al., 2012). In most cases, a double-peak, transitional activation of MAPKs,

including p38, suggests that MAPKs may play discrete roles throughout progression of

hypertrophy, from early activation to the late hypertrophic phase (Chien, 1999, Molkentin

and Dorn, 2001). Studies on isolated cardiomyocytes, predominantly, neonatal

cardiomyocytes, demonstrated that stimulation of p38 promoted hypertrophy (Nemoto et al.,

1998, Wang et al., 1998a, Liang and Molkentin, 2003), while pharmacological inhibition or

genetic ablation of p38 prevented cell growth in response to hypertrophic stimuli (Liang and

Molkentin, 2003, Nemoto et al., 1998), suggesting that p38 plays a causative role in the

development of cardiac hypertrophy. Furthermore, overexpression of the upstream activators

for the p38, MKK3 and MKK6 elicited pro-hypertrophic responses, including an increase in

cell size, enhanced sarcomeric organization, and elevated atrial natriuretic factor expression

in neonatal cardiomyocytes (Wang et al., 1998a). However, in vivo studies provided

contradictory data on the role of p38 in the development of cardiac hypertrophy. Targeted

activation of p38 in intact hearts by transgenic expression of MKK3 and MKK6 resulted in

interstitial fibrosis and expression of fetal marker genes characteristic of HF, but no

significant cardiac hypertrophy (Liao et al., 2001). Likewise, mice lacking PKCε exhibited

enhanced activation of p38 associated with increased collagen deposition and diastolic

dysfunction but preserved pressure overload-induced myocardial hypertrophy (Klein et al.,

2005). Conversely, TG mice with cardiac-specific expression of DN-p38 developed cardiac

hypertrophy but were resistant to cardiac fibrosis in response to pressure overload (Zhang et

al., 2003). Inhibition of p38 protected post-infarction remodeling and HF in mice (Liu et al,

2005) and rats (See et al, 2004). Studies of cardiac-specific p38 knock-out mice

demonstrated that p38 plays a significant role in the regulation of survival mechanisms in

response to pressure overload through modulation of apoptosis and fibrosis, while cardiac

hypertrophic growth is unaffected despite a dramatic down-regulation of the kinase (Nishida

et al., 2004). These studies provide strong evidence that p38 activation is not the only

causative factor in cardiac hypertrophy.

Notably, stimulation of different isoforms of p38 can exert distinct, even, opposite effects.

Upregulation of p38α enhanced apoptosis, whereas p38β overexpression promoted

hypertrophy in cultured isolated cardiomyocytes (Wang et al., 1998b). In vivo studies on

intact hearts provided results different from those seen during in vitro studies, although they

confirm diverse downstream targets and functional roles of p38α and p38β in the regulation

of hypertrophy-associated signaling pathways. Direct injections of adenoviruses expressing

p38α or p38β into the left ventricular wall of adult rats demonstrated that p38α stimulates

fibrosis-related factors whereas p38β attenuated the ET-1-induced expression of the B-type

natriuretic peptide. These findings indicate that p38α participates in the regulation of fibrotic

remodeling process, and p38β stimulates the agonist-induced activation of the B-type

natriuretic peptide and, thereby, elicits inhibitory effects on growth factors (Koivisto et al.,

2011). DN-p38α transgenic mice exhibited cardiac hypertrophy despite the reduced p38α
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activity (Braz et al., 2003, Zhang et al., 2003). Interestingly, a negative feedback mechanism

exists between p38 and calcineurin in which upregulation of the latter enhances the activity

of MAPK phosphatase-1, negatively regulating the hypertrophic response in cardiomyocytes

by downregulating p38 (Lim et al., 2001). Cardiac-specific DN-p38α, and MKK3 and

MKK6 TG mice exhibited enhanced cardiac hypertrophy in response to pressure overload or

infusion of hypertrophic agonists, and this was associated with augmented activity and

nuclear translocation of NFAT (Braz et al., 2003). These observations indicate that reduced

p38 signaling promotes cardiomyocyte growth through a mechanism involving enhanced

calcineurin-NFAT signaling (Molkentin, 2004, Yang et al., 2002). It should be noted that

p38 exerts a negative inotropic effect on isolated cardiomyocytes by decreasing myofilament

response to Ca2+ (Liao et al., 2002), and p38α activation directly suppresses sarcomeric

function in the heart associated with decreased phosphorylation of α-tropomyosin (Vahebi et

al., 2007). In contrast to downregulation of the calcineurin-NFAT pathway, activation of the

MKK6-p38 MAPK signaling in neonatal cardiomyocytes prolonged the contractile Ca2+

transient by downregulating SERCA2 and increasing diastolic [Ca2+]i and NFAT activity

(Andrews et al., 2003). Downstream targets of p38 activation during cardiac and oxidative

stress are summarized in Fig. 3.

Although in vivo studies revealed no consistent activation of p38 in cardiac hypertrophy and

ventricular remodeling following MI, inhibition of p38 mostly exerted anti-remodeling

effects and improved cardiac function (reviewed in Marber et al., 2011). DN-p38 mice had

reduced infarct size which was associated with improved ventricular systolic function after

MI (Ren et al., 2005). In addition to the anti-remodeling action, inhibition of p38 activity

decreased tumor necrosis factor alpha (TNFα) expression and reduced inflammation-

induced fibrosis in post-MI myocardium (Yin et al., 2008). There exists a feed-back

mechanism, in which TNFα activated p38 in the intact heart and isolated cardiomyocytes

through MKK3 (Bellahcene et al., 2006). Activation of p38 promoted apoptosis via the

regulation of apoptotic protein activity. In response to TNFα, p38 induced phosphorylation

(inactivation) and downregulation of the anti-apoptotic protein Bcl-xL, eventually leading to

apoptosis in endothelial cells (Grethe et al., 2004). In addition, p38 stimulated

cardiomyocyte apoptosis through Bcl-xL deamidation (Ren et al., 2005), attenuated

phosphorylation of the pro-apoptotic protein Bad, and stimulated TNFα-induced apoptosis

in endothelial cells (Grethe and Porn-Ares, 2006). Likewise, p38 inhibition up-regulated

Bcl-2, whereas its activation down-regulated Bcl-2 in p38 transgenic mice hearts and

neonatal cardiomyocytes, thereby, indicating that p38 functions as a pro-apoptotic signaling

effector (Kaiser et al., 2004).

A diversity of basic science and preclinical studies obscures understanding of the precise

role of p38 MAPK in cardiac diseases. Still, collectively, both in vitro and in vivo studies of

various cells, animals, and human heart models show that p38, concurrently with other

signaling pathways, plays a significant role in the pathogenesis of hypertrophy and its

progression to HF. Acute activation of p38 signaling in early phases of hypertrophy may

serve as an adaptive response to extracellular stresses while chronic activation of the kinase

apparently exerts detrimental effects, including adverse cardiac remodeling and HF.
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3.3. JNK

Studies using both animal models and cultured cells provide strong evidence that JNK is

involved in pathogenesis of hypertrophy and HF. This conclusion comes from studies that

demonstrated that i) cardiac hypertrophy and HF change JNK activity and ii) upregulation or

inhibition of JNK using gain- and loss-of-function approaches influences cardiac

hypertrophy and HF. However many questions on the cause-and-effect relationship between

JNK activation and cardiac dysfunction induced by hypertrophy and HF still remain

unanswered. Similar to p38, activation of JNK is transient, cyclic, and it varies depending on

timing, models, severity of stress, and types of stimuli. Early studies demonstrated that

hypertrophic agents, such as α1-adrenergic receptor agonists (Ramirez et al., 1997), AngII

(Kudoh et al., 1997), and ET-1 (Bogoyevitch et al., 1995) cause transient activation of JNK

in cultured cardiomyocytes isolated from neonatal rats.

In vivo studies demonstrated that pressure-overload hypertrophy induced by transverse

aortic constriction in rats resulted in rapid activation of JNK and its target transcription

factors c-Jun and ATF-2 (Fischer et al., 2001, Nadruz et al., 2004). However, there was no

difference between control hearts and hearts with pressure- or volume-overload hypertrophy

induced by aortic banding for 24h (Miyamoto et al., 2004). Mechanical stress induced by

hemodynamic overload plays an important role in the development of cardiac hypertrophy

and ventricular remodeling associated with early activation of the hypertrophic genetic

program. Mechanical stress induced by cyclic stretch in neonatal cardiomyocytes activated

the JNK/c-Jun pathway (Nadruz et al., 2005). Specific activation of the MKK7/JNK

pathway by CA-MKK7 induced hypertrophy in cultured cardiomyocytes (Wang et al.,

1998b). Resistin promoted cardiac hypertrophy via activation of the JNK/insulin receptor

substrate pathway in neonatal cardiomyocytes and adult rat hearts in vivo (Kang et al.,

2011). Conversely, targeted inhibition of JNK using DN-MKK4, an upstream kinase of

JNK, prevented JNK activation and ET-1-induced hypertrophy in cardiomyocytes

(Choukroun et al., 1998) and pressure-overload in intact hearts (Choukroun et al., 1999).

Importantly, studies using cultured cardiomyocytes, particularly from neonatal hearts,

revealed pro-hypertrophic action of JNK activation, however, the majority of in vivo studies

demonstrated no positive correlation between JNK activation and hypertrophy.

Transgenic animals with targeted expression of MKK7 developed congestive HF with

extracellular matrix remodeling in the absence of ventricular hypertrophy, although the

hearts exhibited increased levels of the hypertrophy marker genes α-skeletal actin and atrial

natriuretic factor (Petrich et al., 2004). Inhibition of MEKK1-JNK signaling attenuated

cardiac hypertrophy induced by heart-restricted overexpression of Gαq in mice (Miyamoto et

al., 2004) whereas it had no effect on pressure overload hypertrophy (Sadoshima et al.,

2002). Genetic ablation of three JNK isoforms (JNK1, JNK2 and JNK3) individually in the

heart did not promote greater cardiac hypertrophy compared to wild type mice, although

hearts with JNK1 deletion exhibited increased fibrosis in response to pressure overload

(Tachibana et al., 2006). On the other hand, downregulation of the ASK1-JNK pathway was

associated with reduced fibrosis and myocardial remodeling during AngII-induced cardiac

hypertrophy (Izumiya et al., 2003). These studies support implications of JNK signaling in

specific aspects of myocardial remodeling associated with cardiac pathology, while they
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exclude a causative role of JNK in hypertrophy. Furthermore, TG mice expressing DN-

JNK1/2 showed enhanced cardiac hypertrophy following transverse aortic constriction and

spontaneous cardiac hypertrophy with aging, suggesting an anti-hypertrophic role, rather

than pro-hypertrophic role, for this signaling pathway in the heart (Liang et al., 2003). Mice

lacking JunD, a downstream target of JNK, exhibited enhanced pressure overload-induced

hypertrophy, increased mortality, and enhanced cardiomyocyte apoptosis and fibrosis

compared to wild type animals (Hilfiker-Kleiner et al., 2005, Ricci et al., 2005), suggesting

that JunD limits cardiomyocyte hypertrophy. Moreover, JunD KO mice developed low

adaptive pressure overload cardiac hypertrophy, while cardiac-specific overexpression of

JunD resulted in spontaneous ventricular dilation and decreased contractility (Ricci et al.,

2005). These data indicate that JunD, promotes both adaptive-protective and maladaptive

hypertrophy in the heart depending on its expression levels.

JNK-induced activation of downstream targets in response to growth stimuli and oxidative

stress are given in Fig. 4. The anti-hypertrophic action of JNK is mediated, at least partially,

through inhibition of calcineurin-NFAT signaling, which plays a critical role in regulating

cardiac hypertrophic growth (Molkentin et al., 1998). JNK was originally shown to

phosphorylate NFATc2 (Porter et al., 2000) and NFATc3 (Chow et al., 1997) but not

NFATc4 (Yang et al., 2002). In cultured cardiomyocytes, DN-JNK1/2 significantly

enhanced activity of NFATc1, NFATc2 and NFATc3, indicating that JNK signaling can

inhibit calcineurin-mediated translocation of NFAT isoforms to the nucleus (Liang et al.,

2003), (Ricci et al., 2005). Conversely, activation of NFAT during HF may be due to

downregulation of JNK, as well as Ca2+ overload. Activation of JNK can result in cardiac

dysfunction through modulation of gap junctions. TG hearts with chronic JNK activation

exhibited impaired intercellular communication associated with significant downregulation

of connexin-43 expression and loss of gap junctions in myocardium (Petrich et al., 2002).

The extent of reduction in Cx43 mRNA expression (40% of normal) in JNK-activated

cardiomyocytes shown in these studies was similar to that found in end-stage human HF

(Dupont et al., 2001). Another mechanism underlying JNK-mediated detrimental, cardiac

remodeling is JNK association with extracellular matrix proteins, such as matrix

metalloproteinase-2. Upregulation of matrix metalloproteinase-2 was associated with its

activation in both cultured cardiomyocytes (Shimizu et al., 1998) and intact hearts

(Krishnamurthy et al., 2007). Finally, as will be discussed below (see 6.3), adverse effects of

JNK are mediated, at least partially, through mitochondria.

Thus, JNK plays play an important role in cardiac hypertrophy, remodeling and HF.

Contradictory data obtained in vitro and in vivo studies show that the activation of JNK

contributes differently to cardiac hypertrophy depending on the duration and severity of

stimuli. During early-stage hypertrophy, JNK apparently involves in compensatory

mechanisms in response to extracellular stimuli, however, sustained JNK activation

concurrently with other signaling pathways promotes pathological hypertrophy. However, it

still remains unclear why JNK activation has a dual nature, when Dr. Jekyll becomes Mr.

Hyde, and vice versa.
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3.4. ERK5

The ERK5 kinase cascade begins with activation of MEKK2/3, which activates MEK5.

MEK5, then, activates ERK5 (Pearson et al., 2001). As discussed earlier, ERK5 is highly

specific, and its overexpression in cultured cells does not activate other MAPKs (English et

al., 1995). Many studies demonstrated that MEK5-ERK5 signaling is activated by growth

stimuli via RTKs and GPCRs (Kato et al., 1997, Kamakura et al., 1999, Garcia-Hoz et al.,

2012), as well as by oxidative and osmotic stresses (Abe et al., 1996). Epidermal growth

factor receptors have been shown to mediate hypertrophic signaling through an MEK5-

ERK5-MEF2A pathway in H9c2 cardiomyocytes (Lee et al., 2011). ERK5 signaling may be

regulated differently from ERK1/2 in cardiac cells (Takeishi et al., 1999), although MEK1

inhibitors were able to inhibit ERK5, suggesting that the growth stimuli previously

attributed to ERK1/2 may also be mediated via ERK5 (Kamakura et al., 1999). Gain- and

loss-of-function studies demonstrated that ERK5 regulated many transcription factors

responsible for postnatal cardiac growth and hypertrophy, suggesting an essential role for

ERK5 signaling during cardiac development and pathogenesis (MacLellan and Schneider,

2000). Similar to other MAPKs, in vivo and in vitro studies demonstrated that various

hypertrophic stimuli and growth factors rapidly and transiently enhanced ERK5 activity in

cultured cardiomyocytes (Ikeda et al., 2005, Nicol et al., 2001) and intact hearts (Takeishi et

al., 2001, Kacimi and Gerdes, 2003). Recent studies in dogs demonstrated that volume

overload-induced eccentric hypertrophy increased the localization of p-ERK5 in caveolae

and selectively activated ERK5 signaling (Liu et al., 2013). However, the progression of

hypertrophy to HF reduced ERK5 activity to normal levels (Kacimi and Gerdes, 2003), or

even lower levels (Takeishi et al., 2002).

ERK5 has been shown to play an essential role in the regulation of the cardiovascular

network, including vascular metabolism, heart contractility and cell growth (Deng et al.,

2007, Roberts et al., 2010, Wang et al., 2005). Targeted deletion of ERK5 in adult mice was

associated with altered vascular integrity and endothelial failure (Hayashi et al., 2004).

Deletion of the erk5 gene in mice caused defects in the development of the heart and its

blood vessels, which were severe enough to result in embryonic lethality (Regan et al.,

2002). Likewise, inhibition of ERK5 activity by the overexpression of DN-ERK5 stimulated

apoptosis in microvascular endothelial cells of the lung (Pi et al., 2004). In contrast, CA-

MEK5 overexpression inhibited growth factor deprivation-induced apoptosis in these cells.

The anti-apoptotic effects were associated with the ability of ERK5 to phosphorylate Bad,

independent of Akt, PKA, or p90RSK kinase activity (Pi et al., 2004). The MEK5-ERK5

pathway can also modulate cardiac metabolism and hypertrophy by regulating cAMP, an

important second messenger in physiological and pathological hearts. In cardiomyocytes,

the muscle-specific A-kinase anchoring protein has been shown to maintain the cAMP-

responsive signaling complex, which includes PKA, phosphodiesterase 4D3 (PDE4D3) and

Epac1. The muscle-specific A-kinase anchoring protein-ERK5 complex suppresses PDE4D3

and facilitates cytokine-induced cardiomyocyte hypertrophy (Dodge-Kafka et al., 2005).

Cardiac specific expression of CA-MEK5α reduced pressure overload-induced apoptosis

and cardiac dysfunction by inhibiting a PDE3A/inducible cAMP early repressor (ICER)

feedback loop (Yan et al., 2007). In addition, ERK5 interacts with the C terminus of Hsc70-

interacting protein (CHIP); the ERK5-CHIP complex plays an obligatory role in the
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inhibition of ICER expression, cardiac apoptosis, and pressure overload-induced dysfunction

(Woo et al., 2010). Collectively, these data suggest that ERK5-induced regulation of cAMP-

dependent feedback loops prevents myocardial remodeling and HF (Fig. 5).

The MEK5-ERK5 pathway also regulates myofibril contractility by influencing sarcomeric

assembly and organization. Activation of MEK5 signaling in cultured cardiomyocytes

resulted in serial sarcomere assembly, a process also induced by the interleukin-6 family

cytokines leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1) (Nicol et al., 2001).

Expression of DN-MEK5 specifically abrogated elongation of cardiomyocytes without

blocking parallel assembly of sarcomeres and reduced expression of a subset of fetal genes

induced by LIF (Nicol et al., 2001, Nakaoka et al., 2003). Furthermore, activated MEK5

induced rapidly decompensating eccentric cardiac hypertrophy in TG mice, indicating a key

role for MEK5 in the regulation of in vivo serial sarcomere assembly (Nicol et al., 2001).

Likewise, eccentric cardiac hypertrophy induced by long-term, intermittent hypoxia in rats

was associated with activation of the MEK5-ERK5 pathway (Chen et al., 2007). It is known

that PE or ET-1 induces hypertrophy increasing cell size in all dimensions whereas LIF or

CT-1 increases cell length by adding sarcomere units in a serial rather than parallel fashion

in cultured myocytes (Wollert et al., 1996). Targeted inactivation of gp130 in ventricular

myocytes resulted in rapid chamber dilation and myocyte apoptosis upon pressure overload

(Hirota et al., 1999). These studies suggested that gp130 signaling may have a specific role

in eccentric hypertrophy, which is mostly associated with volume overload. Accordingly,

cell hypertrophy induced by CT-1, an activator of several signaling pathways via gp130, was

suppressed by overexpression of DN-MEK5 (Takahashi et al., 2005), indicating that the

MEK5-ERK5 pathway is a major pathway responsible for the hypertrophic responses to

CT-1. Furthermore, activation of gp130 in cardiomyocytes mediated hypertrophic signaling

through the scaffolding/docking protein Gab1-tyrosine phosphatase SHP2 complex,

indicating that Gab1-SHP2 interaction plays a crucial role in gp130-dependent longitudinal

elongation of cardiomyocytes through activation of ERK5 (Nakaoka et al., 2003).

It should be noted that, like other MAPKs, isoforms of MEK5, MEK5α and MEK5β,

differently contribute to cardiac hypertrophy. As mentioned previously, transgenic mice

with CA-MEK5β developed eccentric cardiac hypertrophy (Nicol et al., 2001) whereas mice

with MEK5α overexpression demonstrated no significant difference in response to

hypertrophic stimuli (Cameron et al., 2004). This difference may be due to distinct tissue-

wide distribution and cellular localization of MEK5α and MEK5β. Interestingly, MEK5α,

but not MEK5β, activates BMK1 (Kobayashi et al., 1997).

In conclusion, MEK5-ERK5 signaling possesses specific features, such as regulation of

vascular metabolism, and assembly of sarcomeres, which significantly distinguish these

kinases from other MAPKs. However, many questions related to the role of the MEK5-

ERK5 axis in the pathogenesis of cardiac hypertrophy and HF still remain unclear. Lack of

specific inhibitors hampers an understanding of the contribution of MEK5/ERK5 to cell

metabolism.
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4. MAPKs in acute cardiac stress (myocardial infarction and ischemia/

reperfusion)

4.1. ERK1/2

Both in vivo and in vitro studies have yielded conflicting results on the effect of acute

cardiac ischemia (infarction) on ERK1/2 activity. Global 10-min or 20-min ischemia did not

activate ERK1/2 in the Langendorff-perfused rat heart (Bogoyevitch et al., 1996). Likewise,

IR failed to activate cytosolic ERK1/2, however, it markedly increased phosphorylation of

nuclear ERK1/2 in rabbit hearts (Ping et al., 1999). The authors suggested that the IR-

induced activation of ERK1/2 occurred in the cytoplasm and was followed by translocation

to the nucleus. As mentioned earlier, activation of the Ras-ERK pathway exerts anti-

apoptotic effects. Genetic inhibition of cardiac ERK1/2 (Purcell et al., 2007) and Raf

(Yamaguchi et al., 2004) promoted stress-induced apoptosis and HF, which suggests that the

activation of ERK signaling can provide cardioprotection against oxidative stress. Notably,

Raf may exert anti-apoptotic effects by downregulating the apoptotic proteins Ask1 and

Mst2, independent of MEK-ERK activity (Chen and Sytkowski, 2005). TG mice hearts with

activated MEK1-ERK signaling were protected from apoptosis and were resistant to

ischemia-reperfusion injury (Bueno et al., 2000, Lips et al., 2004). Anti-apoptotic effects of

ERK1/2 may be explained by its activation of multiple downstream effectors that diminish

apoptotic pathways and stimulate pro-survival mechanisms. For example, ERK1/2 can

phosphorylate p90RSK, which in turn induces phosphorylation and inactivation of multiple

pro-apoptotic proteins, including the Bcl-2 family member Bad, eventually resulting in

cellular protection (Bonni et al., 1999) (Fig. 2). Activation of ERK1/2 increased expression

of iNOS and eNOS, and enhanced the Bcl-2/Bax ratio associated with cardioprotection

against IR (Das et al., 2008). NOS-derived NO may trigger pro-survival mechanisms

through the activation of guanylate cyclase leading to cGMP production, PKG activation,

and opening of mitochondrial ATP-sensitive potassium (mitoKATP) channels. ERK1/2 can

interact with PKCε in the mitochondria to facilitate cardioprotection (Baines et al., 2002)

(see 5.1.). ERK1/2 can phosphorylate GATA4, a transcription factor that promotes the

expression of anti-apoptotic Bcl-2 proteins (Liang et al., 2001, Kobayashi et al., 2006).

Thus, there is growing evidence that activation of the Ras-ERK pathway exerts

cardioprotective effects against MI and IR through a number of downstream targets.

Cardioprotective effects of ERK signaling involve a complex interplay of various regulatory

mechanisms which are still being unraveled.

4.2. p38

Studies of both isolated cell cultures and intact hearts reported early transient activation of

p38 in response to oxidative stress induced by ischemia or reperfusion (Bogoyevitch et al.,

1996, Ma et al., 1999, Abe et al., 2000, Ping and Murphy, 2000). Activation of p38 does not

always correlate with its detrimental or beneficial actions due to cyclicity of p38 activation

and variability of oxidative stress. Using different p38 inhibitors, a large number of studies

demonstrated that activation of p38 promotes cardiac dysfunction (Nagarkatti and Sha’afi,

1998, Ma et al., 1999, Mackay and Mochly-Rosen, 1999, Barancik et al., 2000, Clark et al.,

2007, Martin et al., 2001), whereas others revealed cardioprotective effects of p38 activation
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(Weinbrenner et al., 1997, Maulik et al., 1998, Mocanu et al., 2000, Bell et al., 2008).

Interestingly, cardioprotective effects of p38 activation are mostly induced by ischemic

preconditioning (IPC); brief repeated periods of IR prior to sustained ischemia protected

hearts against oxidative stress, in part, by rapidly activating p38 (Weinbrenner et al., 1997,

Maulik et al., 1998, Mocanu et al., 2000, Steenbergen, 2002, Bell et al., 2008).

The use of non-specific inhibitors along with variability in models, timing, and severity of

stresses complicates understanding downstream targets of p38 signaling and its contribution

to cardiac IR injury. Genetic studies discovered differential contributions of p38 isoforms,

predominantly p38α and p38β, to cardiac dysfunction during ischemia. The use of the

chemical-genetic approach and p38 inhibitors revealed that p38α is the dominant-active p38

isoform (Kumphune et al., 2010). It is activated by autophosphorylation and contributes to

infarction, which is prevented by the direct binding of SB203580, a p38 inhibitor. Neonatal

rat cardiomyocytes infected with adenoviruses encoding p38α or p38β showed isoform-

selective activation during sustained, simulated ischemia; p38α remained activated but p38β

did not. Moreover, cells expressing DN-p38α were resistant to lethal simulated ischemia,

which suggests that inhibition of p38α reduces ischemic injury in this model (Saurin et al.,

2000). Likewise, both cultured cardiomyocytes and intact hearts with inactive p38α were

resistant against IR injury (Kaiser et al., 2004). Selective inhibition of p38α improved

cardiac function and reduced myocardial apoptosis in a rat model of myocardial injury (Li et

al, 2006). Ischemic injury was increased in hearts with DN-p38β but not DN-p38α (Cross et

al., 2009), which demonstrates that loss of p38β promotes cardiac dysfunction during

ischemia. It is important to note that many previous studies used pharmacological inhibitors

of p38 that were not isoform-specific. Concurrent inhibition of p38α or p38β complicates

the interpretation of results because activation of these isoforms in cardiac cells has different

consequences. Furthermore, ATP-competitive inhibitors including the p38 type I inhibitor,

SB203580, are not always specific, since they compete for the ATP binding site of all

kinases (Clerk and Sugden, 1998, Hall-Jackson et al., 1999, Lali et al., 2000). For p38, this

issue was partially solved by developing type II inhibitors that bind to the lower edge of the

ATP-binding pocket in the C-terminal lobe. Type II inhibitors of p38 (e.g. BIRB796)

selectively interact with and stabilize an inactive, ATP-binding transit pocket, thus,

preventing its further activation (Pargellis et al., 2002, Kuma et al., 2005, Denise Martin et

al., 2012).

Many gain- and loss-of-function studies revealed that p38 participates in induction of pro-

apoptotic signals in cardiac IR (Fig. 3). p38 activation during cardiac IR was associated with

TNFα-induced apoptosis, ROS generation, Ca2+ overload and mitochondrial dysfunction,

and inhibition of p38 exerted cardioprotective effects and abrogated metabolic alterations

(Dhingra et al., 2007, Schwertz et al., 2007, Sucher et al., 2009b). In addition, p38

participates in the regulation of glycogen synthesis and glycolysis in ischemic hearts (Jaswal

et al., 2007).

Hearts of the MAPK activated protein kinase (MAPKAP) kinase 2 (MK2) knock-out mice

were resistant to myocardial IR injury as evidenced by enhanced post-ischemic recovery of

ventricular performance, reduced myocardial infarct size and apoptosis confirming that

MK2, a downstream target of p38, is also involved in transmitting the death signal to the
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ischemic myocardium (Shiroto et al, 2005). Activation of p38 in response to cellular stresses

was associated with increased cellular resistance through enhanced actin cytoskeleton

reorganization via the p38-MK2-Hsp27 pathway (Guay et al, 1997, Huot et al, 1997).

Activation of the p38α-MK2 pathway stimulated phosphorylation of αB-crystallin, a heat

shock protein family member, and protected cardiomyocytes against stress-induced

apoptosis (Hoover et al, 2000) or myocardial infarction (Shu et al, 2005). Likewise,

cardioprotective effects of MKK6 over-expression against IR and myocardial infarction was

associated with increased αB-crystallin levels in the TG mice further supporting the

protective role for this pathway (Degousee et al., 2003, Martindale et al, 2005).

Activation of p38 mediated cardioprotective effects of insulin against IR in rat hearts

through phosphorylation of Hsp27 (Li et al., 2008). However, p38-induced phosphorylation

may not be required for the cardioprotective effects of Hsp27 since overexpression of wild-

type Hsp27 or a non-phosphorylatable Hsp27 mutant protein was equally capable of

protecting the mouse heart from global IR. This indicates that the protection may be caused

by different mechanisms or loci of action (Hollander et al., 2004). In this study,

nonphosphorylatable Hsp27 mutants even reduced oxidative stress with greater efficacy than

wild-type Hsp27 TG mice. Notably, inhibition of p38 with SB203580 stimulated cell

necrosis but blocked contractility during reperfusion and offered cardioprotection against IR

indicating a dual role of p38 activation (Sumida et al, 2005). Diminished contractility was

observed in hearts of MKK3 or MK2 knock-out mice in response to TNFα (Bellahcene et al,

2006). Differential role of p38 activation was also supported by a study in which p38-

mediated F-actin reorganization may stimulate apoptotic cell death and, at the same time,

conversely protect against osmotic stress-induced necrosis in neonatal cardiomyocytes

(Okada et al, 2005).

In conclusion, existing in vivo and in vitro studies demonstrate that oxidative stress induced

by acute MI or IR causes activation of p38 in isolated cultured cardiomyocytes and hearts.

Short activation of p38 in the heart, for instance, in IPC, may be cardioprotective whereas

chronic activation within sustained ischemia (infarction) and reperfusion may have

detrimental effects on heart function. Activation of p38 is cyclic and may have different

consequences depending on models, and timing and severity of oxidative stress. Although

inhibition of p38α on various animal and cell models leads to cardioprotection confirming

the role of p38α in cardiac dysfunction, greater basic and preclinical research is still needed

to identify appropriate targets of p38 for clinical conditions.

4.3. JNK

Similar to p38, JNK plays a dual role in IR, mediating both protective and detrimental

effects depending on the timing and severity of oxidative stress. Interestingly, both genetic

inhibition and activation of JNK1/2 protected the heart from IR-induced apoptosis in vivo

(Kaiser et al., 2005). These studies suggest that cellular protection induced by sustained

inhibition or activation of JNK is likely mediated through different mechanisms. Many

studies using various in vitro and in vivo models revealed robust activation of JNK upon

reperfusion following ischemia (Laderoute and Webster, 1997, Yin et al., 1997, Fryer et al.,

2001). Conversely, pharmacological inhibition of JNK reduced IR-induced infarct size and
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apoptosis in hearts (Ferrandi et al., 2004, Milano et al., 2007). Inhibition of JNK in H9c2

cardiomyocytes blocked stress-induced apoptosis (Gabai et al., 2000), and DN-JNK mutants

antagonized H2O2-induced apoptosis in adult cardiomyocytes (Kwon et al., 2003). Mutated

JNK attenuated β-adrenergic-stimulated apoptosis in cardiomyocytes through a

mitochondria-dependent mechanism (Aoki et al., 2002, Remondino et al., 2003).

Interestingly, inhibition of JNK1 protected cardiomyocytes from ischemia-induced

apoptosis, whereas JNK2 inhibition had no effect (Hreniuk et al., 2001). On the other hand,

deletion of MEKK1, a direct upstream activator of MKK4 and MKK7, induced more cardiac

apoptosis in mouse hearts following pressure overload stimulation (Sadoshima et al., 2002).

This is consistent with the observation that JNK inhibitory mutants increased the rates of

apoptosis in cultured neonatal cardiomyocytes subjected to hypoxia and reoxygenation by

almost 2-fold compared with control cultures (Dougherty et al., 2002). Likewise, cultured

cardiomyocytes with DN-JNK1 or DN-MKK4 exhibited enhanced nitric oxide-induced

apoptosis (Andreka et al., 2001). In conclusion, confounding experimental results suggest

that JNK may simultaneously and distinctly modulate both pro-and anti-apoptotic signaling

pathways in the heart. The effects of JNK on apoptosis are mediated, at least in part, by

stimulation of caspase-dependent (Aoki et al., 2002) and caspase-independent pathways

(Song et al., 2008, Zhang et al., 2009) in the mitochondria (see 6.3). Thus, in response to

oxidative stress in cardiomyocytes, complex JNK signaling may be simultaneously

protective and detrimental. Ultimate effects apparently depend on crosstalk between JNK

and other signaling pathways.

4.4. ERK5

Few studies discuss the role of ERK5 in cardiac IR. Initial studies in perfused guinea pig

hearts revealed maximal activation of BMK1 within 30 min of ischemia (Takeishi et al.,

1999). Reperfusion of the hearts reduced ERK5 activity to normal values, but, interestingly,

activated ERK1/2. These results suggest that ERK5 and ERK1/2 mediate different signaling

during reperfusion. Furthermore, maximal ERK5 activation by ischemia was significantly

enhanced by IPC (Takeishi et al., 2001). Cardiac-specific CA-MEK5α TG mice exhibited a

3–4-fold increase in ERK5 activation and were highly resistant to IR, as evidenced by their

greater cardiac recovery after IR compared to wild-type mice (Cameron et al., 2004).

However, cardiac function did not improve after MI induced by permanent ligation in CA-

MEK5α TG mice (Shishido et al., 2008). Cardioprotection from MI was enhanced in

hyperglycemic CA-MEK5α TG mice. These data suggest that ERK5 activation does not

have a significant cardioprotective role in the permanent ligation-induced MI model per se,

although it has a significant role in diabetes after MI, at least during the acute (1-week)

phase of post-ligation (Shishido et al., 2008). We have previously discussed the role of

ERK5 to prevent pressure overload-induced apoptosis and cardiac dysfunction via

interaction with ICER and CHIP (see 3.4)(Yan et al., 2007, Woo et al., 2010). ICER and

CHIP influence apoptosis by regulating cAMP levels. Interestingly, diabetic mice after MI

demonstrated significantly high levels of ICER, which was blunted in CA-MEK5α TG

mice. This suggests that ERK5 exerts cardioprotective effects against MI in diabetic mice

via downregulation of ICER (Shishido et al., 2008). ERK5 can protect diabetic hearts

against MI by receiving posttranslational SUMOylation. SUMOylation of ERK5 was found

to inhibit its transcriptional activity in cardiomyocytes (Woo et al., 2008). Diabetes
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complicated by MI, but not MI alone, increased ERK5-SUMOylation. Furthermore, CA-

MEK5α TG mice inhibited ERK5-SUMOylation, thereby preventing cardiac dysfunction

and apoptosis (Shishido et al., 2008). This study demonstrates that ERK5 activity can be

downregulated by diabetes-dependent SUMOylation leading to post-MI cardiac dysfunction.

Furthermore, the ERK5-CHIP complex is targeted by p90RSK in diabetic hearts, and p90RSK

prevents ERK5-mediated CHIP activation and promotes apoptosis and cardiac dysfunction

in post-MI diabetic mice. Activation of p90RSK disrupts ERK5-CHIP interaction by

phosphorylation of ERK5 at S496 and binding of p90RSK to ERK5, causing dislocation of

CHIP from ERK5 (Le et al., 2012). In conclusion, many questions with regard to the cause-

and-effect relationship between ERK5 activation and attenuation of cardiac dysfunction and

cell death remain unanswered. ERK5 participates in MI- and IR-induced cardiac response to

oxidative stress. However, the precise mechanisms underlying ERK5 regulation of IR and

permanent (non-reperfused) MI signaling are still unknown.

5. Mitochondrial localization of MAPKs

Mitochondria are subcellular organelles that serve as the targets and end-effectors for a

myriad of cellular metabolic pathways, including cell signaling, redox control, ion

homeostasis, lipid metabolism, cell growth, and cell death. Indeed, they provide

approximately 90% of the ATP required for cell metabolism in the heart and represent the

major source of cellular physiological and pathological ROS. In response to various extra-

and intracellular stimuli, the dynamic mitochondria exhibit bidirectional motility and

undergo extensive shape changes via fission-fusion (Hom and Sheu, 2009). Furthermore,

mitochondria have their own genome which involves over 1,000 genes. Mitochondrial DNA

encodes for 13 proteins of the electron transport chain (ETC) and oxidative phosphorylation,

and the RNA genes for their translation in mitochondria. Mitochondrial DNA is not

protected by histones and, therefore, has a very high (~1000 times) mutation rate compared

to nuclear DNA (Wallace, 2010).

Adult cardiomyocytes contain about 5000 mitochondria, which occupy 30–35% of the cell

volume. Moreover, cardiomyocytes contain two functionally distinct mitochondrial

subpopulations, which differ with regard to oxygen consumption rates, Ca2+ sensitivity and

ROS production; subsarcolemmal mitochondria (SSM) reside beneath the plasma

membrane, and interfibrillar mitochondria (IFM) are located between myofibrils (Lesnefsky

and Hoppel, 2003, Marzetti et al., 2013). Structurally, mitochondria consist of two

membranes, the outer mitochondrial membrane (OMM) and the inner mitochondrial

membrane (IMM), and the intermembrane space (IMS) between them. The OMM is

permeable to molecules with a molecular mass less than 6 kDa, which pass through the

membrane using voltage-dependent anion channel pores. The IMS contains over 100

proteins, including apoptotic proteins such as cytochrome c, apoptosis-inducing factor, the

second mitochondrial activator of caspases (Smac)/direct IAP-binding protein with low pI

(DIABLO), mammalian serine protease Omi/high-temperature requirement protein A2

(Omi/HtrA2), and endonuclease G. The release of such proteins from mitochondria into the

cytoplasm stimulates both caspase-dependent and caspase-independent apoptosis. In

contrast, the IMM is impermeable and uses distinct channels, exchangers and pumps to

transport ions and other compounds to and from the matrix. A major part of ~500 proteins
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localized in the matrix are encoded by nuclear genome and transported into the matrix

through the transporter outer membrane and transporter inner membrane (TOM/TIM)

protein translocation machinery (Muro et al., 2003).

Mitochondrial regulation of MAPK cascades, in particular, is especially intriguing because

mitochondria-MAPK interactions are, perhaps, potent regulators in the pathogenesis of

cardiac diseases. Several studies revealed direct interactions between MAPKs and

mitochondria. Major lines of evidence are derived from studies using isolated mitochondria

and/or morphological observations. However, the claim of translocation of MAPKs to the

mitochondrial matrix was questioned by studies that reported interactions between MAPKs

and OMM, as well as MAPK translocation to the IMS, but did not observe translocation to

the matrix. Growing evidence suggests that not only MAPKs, but also their interacting

kinases interact with mitochondria (Aoki et al., 2002, Ferreira et al., 2014). In the following

sections, mitochondrial localization of MAPKs, as well as the role of MAPKs in the

modulation of mitochondrial metabolism and, vice versa, the impact of mitochondria on

MAPK signaling, will be discussed.

5.1. ERK1/2

In addition to the cytoplasm and the nucleus, ERK1/2 is also found in mitochondria of the

heart (Baines et al., 2002), brain (Alonso et al., 2004, Rumora et al., 2007), renal cells

(Nowak et al., 2006, Zhuang et al., 2008), human alveolar macrophages (Monick et al.,

2008) and different cell lines, such as B65 cells (Kulich et al., 2007) and SHSY5Y cells

(Dagda et al., 2008). Active (phosphorylated) ERK1/2 was found mostly at the OMM and in

the IMS of brain mitochondria. ERK1/2 translocation to brain mitochondria followed a brain

developmental pattern in rats (Alonso et al., 2004). In the same study, MEK1/2 was detected

in brain mitochondria. Severe oxidative stress induced by H2O2 or antimycin decreased

ERK1/2 activity significantly in mitochondria. Initial studies using double label confocal

microscopy and immuno-electron microscopy reported localization of phospho-ERK1/2 at

high labeling densities in mitochondria and autophagosomes of brain tissue in subjects with

Parkinson’s disease and Lewy body dementia (Zhu et al., 2003). Phospho-ERK1/2

immunoreactivity in these studies was often associated with mitochondrial proteins,

mitochondrial superoxide dismutase and mitochondrial antigens. Transmission electron

microscopy of immunolabeled LP07 cells detected ERK1/2 in mitochondria. In these cells,

increased ERK1/2 activity in mitochondria and nuclei was observed within 1h of oxidative

stress, after which the activity returned to basal levels in mitochondria but remained elevated

in nuclei (Galli et al., 2008). Cardiac mitochondria of exercised rats exhibited elevated

levels of RAF, an upstream mediator of ERK1/2 (Ferreira et al., 2014). Cardiac-targeted

PKCε TG mice demonstrated that transgenic activation of PKCε greatly increased

mitochondrial PKCε and its interaction with mitochondrial ERK1/2. Interestingly, both

active and inactive PKCε bound to ERK1/2, however, increased phosphorylation of

mitochondrial ERK1/2 was observed only in mice expressing active PKCε (Baines et al.,

2002). Pre-ischemic increases in phospho-ERK1/2 induced by the adenosine A1/A2a

receptor agonist AMP-579 were blunted by the ERK1/2 inhibitor U-0126, though only in

cardiac mitochondrial and membrane fractions (Reid et al., 2005).
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5.2. p38

Few studies demonstrated direct interactions between p38 and mitochondria in the heart in

response to oxidative stress (Ballard-Croft et al., 2005, Sharma et al., 2010). In one study,

p38 bound to and stimulated carnitine palmitoyltransferase-1 in mitochondria isolated from

rat hearts, thus suggesting a novel regulatory mechanism of mitochondrial fatty acid

metabolism (Sharma et al., 2010). Ischemia only induced activation of p38 in the

mitochondria, whereas reperfusion increased p38 activity in cytosolic, mitochondrial and

membrane fractions. Treatment with the adenosine receptor agonist AMP-579 before

ischemia significantly increased p38 activity in the nuclear/myofilament fraction, whereas

no activation occurred during ischemia or reperfusion (Ballard-Croft et al., 2005).

5.3. JNK

Previous in vitro and in vivo studies demonstrated the existence of mitochondrial JNK

signaling in different cell types (Kharbanda et al., 2000, Ito et al., 2001, Hanawa et al., 2008,

Zhou et al., 2008, Zhou et al., 2009, Zhao and Herdegen, 2009), including adult

cardiomyocytes (Aoki et al., 2002). Active recombinant JNK1 was found in isolated

mitochondria, but its presence was proteinase-sensitive, implying that JNK interacted with

mitochondria and did not cross OMM (Zhou et al., 2008). Activation of JNK by upstream

MAP2Ks stimulated translocation of a small population of JNKs to mitochondria (Weston

and Davis, 2007), and inhibition of JNK activation by N-acetylcysteine, an antioxidant that

prevents JNK activation during stress, blocked JNK translocation to the mitochondria in

HeLa cells. Active JNK can bind to mitochondria via the mitochondria-related JNK

interacting protein, Sab (Wiltshire et al., 2002, Wiltshire et al., 2004). Two kinase

interaction motifs (KIMs), KIM1 and KIM2, have been shown to facilitate the interaction

between JNK and Sab, although, only KIM1 was necessary for JNK binding and JNK-

mediated Sab phosphorylation (Wiltshire et al., 2002). Interestingly, Sab is associated with

the mitochondria and co-localizes with activated JNK in response to oxidative stress

(Wiltshire et al., 2004). Furthermore, inhibition not only of JNK, but also of Sab reduced

infarct size in rat hearts after heart IR (Chambers et al., 2013). Inhibition of Sab also

prevented 6-hydroxydopamine (6-OHDA)-induced oxidative stress, mitochondrial

dysfunction, and neurotoxicity in vitro and in vivo (Chambers et al., 2013). Apparently,

inhibition of JNK-Sab interactions prevents cell death by inhibiting the detrimental

mitochondrial ROS amplification loop. Currently, a peptide form of the JNK-Sab inhibitor is

used as a specific inhibitor (Chambers et al., 2011). Interestingly, only JNK2 translocated to

mitochondria in response to 6-OHDA-induced stress in PC12 cells (Eminel et al., 2004),

indicating that JNK1 and JNK2 may play different roles in cardiomyocytes. In addition,

upstream kinases of JNK also can interact with mitochondria. Oxidative stress induced

translocation of activated JNK and its upstream kinase SEK1 (MKK4) to mitochondria in

adult rat cardiomyocytes. The subcellular distribution of total JNK1 and SEK1 (MKK4) did

not change significantly upon oxidative stress, however, mitochondrial JNK was

phosphorylated, whereas cytosolic JNK remained non-phosphorylated in response to

oxidative stress (Aoki et al., 2002). Notably, inhibition of mitochondrial JNK signaling also

blocked activation of MKK4, an upstream activator of JNK (Win et al., 2011).
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6. MAPKs regulate mitochondrial metabolism

Many studies report that the pro-survival and pro-death effects of MAPKs converge on

mitochondria. MAPKs can modulate mitochondrial metabolism directly, through the

interaction of individual MAPK members with mitochondria, or indirectly, by activation/

inhibition of MAPK-dependent downstream signaling molecules that modulate metabolism

and function of mitochondria. The roles of mitochondria in the mediation of MAPK

signaling are summarized in Table 1 and shown in Fig. 6. An analysis of existing studies on

MAPKs revealed little information with regard to the role of ERK5 in the regulation of

mitochondrial metabolism and function. Therefore, bidirectional interactions between ERK5

and mitochondria will not be discussed in following sections.

6.1. ERK1/2

ERK1/2 MAPK participates in regulating processes like cell differentiation, proliferation,

growth, adaptation, survival, and death. The role of the Ras-Raf-MEK-ERK1/2 pathway in

the regulation of metabolism and function of mitochondria still remains unclear. Individual

members of this pathway can mediate pro- and anti-apoptotic signals depending on their

intracellular localization and types of stimuli (Majewski M et al., 1999, Alavi et al.,

2003,Chu et al., 2004 Hetman et al., 2004). Activation of ERK1/2 can improve

mitochondrial function, and inhibition of the Ras-ERK1/2 pathway is associated with cell

death. Both MEK1 and ERK1/2 inhibitors diminished F1F0-ATPase activity and induced

necrosis in glucose-deprived astrocytes (Yung et al., 2004). In response to toxic stress,

inhibition of ERK1/2 with PD98059 induced collapse of ΔΨmit and promoted cytochrome c

release from mitochondria into the cytosol that was associated with enhanced neuronal cell

death (Lee et al., 2004). Blocking of CB2 receptors exerted cardioprotective effects against

IR and increased ERK1/2 phosphorylation associated with reduced cytochrome c release,

high ΔΨmit and low PTP opening (Li et al., 2014). In alveolar macrophages, ERK1/2 has

been shown to regulate mitochondrial integrity and ATP production. DN-MEK cells treated

with U0126 exhibited ATP depletion in a time-dependent manner. Also, ERK inhibition

resulted in a rapid loss of ΔΨmit and induced cell death (Monick et al., 2008). PKCα and

ERK1/2 mediated cisplatin-induced mitochondrial dysfunction and apoptosis through

cytochrome c release from mitochondria in renal cells.

Mitochondrial dysfunction and depolarization of IMM was associated with increased

activation and protein expression of ERK1/2 in mitochondria. Inhibition of PKCα did not

prevent cisplatin-induced ERK1/2 activation, indicating that activation of ERK1/2 by

cisplatin was independent of the PKCα pathway (Nowak, 2002). Oxidant-induced activation

of ERK1/2, but not p38 or JNK, attenuated mitochondrial respiration and ATP production,

which was associated with decreased complex I activity and substrate oxidation (Nowak et

al., 2006). ERK1/2 and PKCε mediated oxidant-induced mitochondrial dysfunction through

independent pathways, and protective effects of ERK1/2 inhibition were independent of Akt

activation. Interestingly, the ERK1/2 pathway had no effect on the activity of Krebs cycle

dehydrogenases in renal proximal tubular cells (Nowak et al., 2006).

Activated ERK1/2 colocalized with mitochondria and phosphorylated Bcl-2 (Deng et al.,

2000) and Bad (Kang et al., 2003) through direct interactions with Bcl-2 family members,
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thereby confirming the contribution of ERK1/2 to the stimulation of anti-apoptotic

signaling. Inhibition of the MEK1/2-ERK1/2 pathway reduced phospho-inactivation of the

proapoptotic protein Bad in hypoxic cultures of neurons, suggesting that a cell-survival

program involving activation of MEK1/2-ERK1/2 signaling is involved in cell survival via

inactivation of Bad (Jin et al., 2002). Active Raf-1, fused with OMM targeting sequences,

protected cells from apoptosis, a phenomenon associated with phosphorylation of pro-

apoptotic Bad, whereas plasma membrane-targeted Raf-1 had no effect on apoptosis and

resulted in phosphorylation of ERK1/2 (Wang et al., 1996). These data suggest that Bcl-2

can target Raf-1 to mitochondria to induce phosphorylation of Bad or possibly other protein

substrates involved in apoptosis regulation. Also, this study demonstrates divergent

signaling roles of plasma membrane-targeted and mitochondria-targeted Raf proteins in

apoptosis.

The adapter protein Grb10 interacted with both Raf-1 and MEK1 and regulated signal

transduction between plasma membrane receptors and the apoptosis-inducing complex on

OMM by modulating the anti-apoptotic activity of mitochondrial Raf-1 (Nantel et al., 1999).

Interestingly, the addition of cytochrome c to the cytosol of cells overexpressing B-Raf in

fibroblasts failed to induce caspase activation, which indicates that the B-Raf/MEK/ERK

pathway apparently confers protection against apoptosis at the level of cytosolic caspase

activation, downstream of the release of cytochrome c from mitochondria (Erhardt et al.,

1999). On the other hand, mitochondrial Raf-1 in myeloid cells exerted anti-apoptotic

effects independent of ERK1/2 activity (Majewski et al., 1999). In endothelial cells, p21-

activated protein kinase-1 (PAK-1)-induced phosphorylation of Raf1 at Ser338 and Ser339,

promoted mitochondrial translocation of the protein kinase and protected the cells from the

intrinsic pathway of apoptosis, independent of MEK1. However, VEGF induced activation

of Raf-1 via Src kinase, leading to phosphorylation of Tyr340 and Tyr341 and MEK1-

dependent protection from extrinsic-mediated apoptosis (Alavi et al., 2003). These findings

demonstrate that Raf-1 regulates both cell survival and death through the modulation of

mitochondrial signaling and death receptors

In addition to initiating survival signaling, the MEK-ERK pathway also stimulates cell

death, as demonstrated by several studies. In rat astrocytes, toxic stress induced

mitochondrial swelling and vacuolation, though this phenomenon was attenuated by ERK1/2

inhibition, indicating that the ERK signaling cascade is involved in the induction of

mitochondrial vacuolation (Isobe et al., 2003). Treatment of B65 cells with 6-OHDA

resulted in significant phosphorylation of ERK1/2 within mitochondrial fractions and

mitochondrial ROS generation. Antioxidants inhibited ERK1/2 activation and protected the

cells (Kulich et al., 2007). Insulin-like growth factor I receptor (IGFIR)-induced paraptosis,

nonapoptotic cell death, was abrogated by inhibition of MEK2. Although mitochondria were

not investigated in this study, the results implicate MEK activation in the induction of

paraptosis (Sperandio et al., 2004). Doxorubicin-induced apoptosis in H9c2 cells and

neonatal cardiomyocytes was associated with ΔΨmit collapse and activation of ERK1/2 and

p53 with no significant changes in p38 and JNK phosphorylation. Specific inhibitors of

ERK1/2 and p53 attenuated the increased phosphorylation of ERK1/2 and p53 and

prevented the toxic effects of doxorubicin (Liu et al., 2008). The ERK1/2 inhibitor U0126

effectively abrogated the anti-apoptotic effects of lovastatin, a cholesterol-lowering drug, on
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the mitochondrial apoptotic pathway during hypoxia in mesenchymal stem cells, confirming

that ERK1/2 activation can initiate pro-death signaling (Xu et al., 2008). Since activation of

mitochondrial ERK1/2 was sufficient to induce autophagy and mitophagy, ERK1/2 could

act as a downstream target for different stressors and promote cell death (Dagda et al.,

2008). Notably, detrimental effects of ERK1/2 activation are dependent on subcellular

compartmentalization of the MAPK (Reviewed in Chu et al., 2004, Dagda et al., 2009). In

various models of toxicity in neuronal cells, a major fraction of activated ERK1/2 was found

in the cytoplasm and mitochondria, but only a small amount translocated to the nucleus (Zhu

et al., 2002, Dagda et al., 2008). Pro-death effects of ERK1/2 can also be mediated through

different downstream targets, independent of direct mitochondrial targeting.

Thus, subcellular distribution/activation of ERK1/2 could decisively disrupt the balance

between pro-survival and pro-death signals in the cell. Translocation and activation of

ERK1/2 within the individual compartments of the cell, including the cytoplasm, nucleus

and mitochondria, as well as the temporal and spatial coincidence with other signaling

pathways, can distinctly direct survival and death pathways.

6.2. p38

Ischemia induced Bax translocation from the cytoplasm to mitochondria in neonatal

cardiomyocytes, and inhibition of p38 with SB203580 blocked the translocation completely.

These data link ischemia-induced p38 activation to mitochondria-mediated cell death,

indicating that Bax translocation to mitochondria, a hallmark of apoptosis, occurs in

response to activation of p38 (Capano, Crompton, 2006). Likewise, activation of p38

attenuated phosphorylation of Bad, another pro-apoptotic protein, and stimulated its

mitochondrial translocation, inducing apoptosis in endothelial cells (Grethe, Porn-Ares,

2006). In addition, the pro-apoptotic effects of p38 may be due to its capacity to

downregulate expression of Bcl-2, an anti-apoptotic protein that antagonizes interactions of

Bax and Bad with mitochondria. In neonatal cardiomyocytes, genetic inhibition of p38 up-

regulated Bcl-2, whereas overexpression of the active p38 mutant reduced Bcl-2 protein

levels (Kaiser et al., 2004). These studies are consistent with in vivo observations, in which

the hearts of mice expressing DN-p38 and MKK6 were protected from IR injury, and

inhibition of p38 signaling resulted in up-regulation of Bcl-2 (Kaiser et al., 2004). MKK6

TG mice exhibited reduced expression of oxidative phosphorylation and fatty acid oxidation

proteins, along with reductions in several proteins involved in apoptosis (Wall et al., 2006).

p38 inhibition reduced IR-induced apoptosis in perfused rabbit hearts (Ma et al., 1999), and

expression of DN-p38α reduced deamidation (inactivation) of the antiapoptotic protein Bcl-

xL and prevented apoptosis in the mouse heart (Ren et al., 2005). Conversely, in response to

TNFα, p38 phosphorylated Bcl-xL and reduced its expression due to its degradation,

inducing apoptosis in endothelial cells. Inhibition of p38 by SB203580 significantly

attenuated TNFα-induced apoptosis and prevented Bcl-xL phosphorylation and degradation

in proteasomes, suggesting that p38 is essential for apoptosis. Interestingly, a time-

dependent increase of active p38 was observed in mitochondria of cells exposed to TNFα

(Grethe et al., 2004).

Javadov et al. Page 25

Pharmacol Ther. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



6.3. JNK

In addition to phosphorylating several transcriptional growth factors in the nucleus and

cytoskeletal proteins in the cytoplasm, activation of JNK signaling affects many aspects of

mitochondrial function related to apoptosis and bioenergetics. The spatiotemporal activation

of JNK is differently regulated in distinct intracellular compartments, including the

cytoplasm, the nucleus and mitochondria (Bonny et al., 2005). Many studies using a variety

of animal and cell models of stress demonstrated that activated JNK can be translocated to

mitochondria or otherwise activated in mitochondria (Baines et al., 2002, Chauhan et al.,

2003, Brichese et al., 2004, Rumora et al., 2007, Hanawa et al., 2008, Zhou et al., 2008).

Apoptosis in multiple myeloma cells was associated with translocation of activated JNK to

mitochondria and the mitochondrial release of Smac into the cytosol. DN-JNK, or blocking

of JNK with a specific JNK inhibitor SP600125, abrogated stress-induced release of Smac

and induction of apoptosis, indicating that JNK activation is a requirement for the release of

Smac during stress-induced apoptosis in multiple myeloma cells (Chauhan et al., 2003).

Likewise, DN-JNK2, but not DN-JNK1, protected PC12 cells against 6-OHDA-induced cell

death, which is associated with reduced translocation of JNK2 to the mitochondria, release

of cytochrome c and cleavage of caspase-3 (Eminel et al., 2004). Mitochondrial JNK

inactivated Bcl-2 and Bcl-xL through phosphorylation, thereby promoting apoptosis

(Kharbanda et al., 2000, Lei et al., 2002, Brichese et al., 2004 Dhanasekaran and Reddy,

2008). Furthermore, translocation of JNK to mitochondria and subsequent interaction with

anti-apoptotic Bcl-xL indicates that the JNK-Bcl-xL complex is a functionally important

event in the initiation of apoptosis in response to gamma radiation-induced genotoxic stress

of myeloid lymphoma cells (Kharbanda et al., 2000). Likewise, β-adrenergic receptor-

stimulated apoptosis in cardiomyocytes was mediated through ROS/JNK-dependent

activation of the mitochondrial death pathway (Remondino et al., 2003). Activation of

mitochondrial JNK in MI was associated with release of cytochrome c from heart

mitochondria (Aoki et al., 2002). The molecular mechanisms underlying JNK translocation

to mitochondria and JNK-induced mitochondrial dysfunction remain to be fully determined.

It seems that mitochondrial JNK signaling leads to ROS generation. JNK, but not p38 or

NADPH oxidase, was responsible for mitochondrial ROS generation in response to

anisomycin-induced stress in HeLa cells (Chambers and LoGrasso, 2011). JNK activation,

associated with increased mitochondrial ROS generation, has been found to be involved in

myocardial cell death induced by hypoxia-reoxygenation (Cicconi et al., 2003, Sucher et al.,

2009a). Mitochondrial ROS, in addition to Ca2+ overload and ATP depletion, is a main

factor leading to the mitochondrial permeability transition. Therefore, mechanisms involved

in permeability transition pore (PTP) opening may also link JNK activation to mitochondrial

dysfunction.

Mitochondrial PTP are non-specific channels that allow ions, water and solutes with a

molecular mass of 1.5 kDa to enter the matrix, leading to amplification of ROS production,

mitochondrial swelling and cell death. The molecular identity of the mitochondrial PTP

remains unknown. Although initial studies implicated VDAC and ANT as essential

components of the PTP complex, subsequent genetic loss- and gain-of-function studies have
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questioned this conclusion (reviewed in Javadov et al., 2009, Bernardi, 2013). The

regulatory roles of cyclophilin D, ANT and phosphate carrier, in addition to the peripheral

benzodiazepine receptor, creatine kinase, hexokinase, and Bcl-2 proteins, in the promotion

of PTP opening have been established. Nonetheless, the precise mechanisms underlying the

permeability transition still need to be elucidated. Most recently, F1F0-ATPase (complex V)

has shown promise as a potential structural protein of the PTP complex (Giorgio et al.,

2013). The role of mitochondrial PTP opening in cardiac diseases, especially in IR, has been

well reviewed elsewhere (Weiss et al., 2003, Halestrap et al., 2004, Di Lisa and Bernardi,

2006). The mitochondrial PTP has been proposed to be a promising target in the treatment

of cardiac diseases, such as IR and HF (Javadov et al., 2009). Direct interaction of activated

JNK with proteins of the PTP complex may stimulate pore formation and promote

mitochondria-mediated cell dysfunction in response to oxidative stress. However, the lack of

knowledge with regard to the molecular composition of the PTP complex limits examination

of the possible interactions between JNK and PTP components under pathological

conditions.

In addition, mitochondrial JNK also appears to have a role in the regulation of mitochondrial

bioenergetics. Mitochondrial JNK decreased respiration rates and ATP production during

acetaminophen-induced liver injury (Hanawa et al., 2008). Oxidative stress induced by

H2O2 in primary cortical neurons increased phosphorylation of JNK at OMM which was

associated with the reduced activity of pyruvate dehydrogenase (PDH) due to its

phosphorylation (Zhou et al., 2008). Similar observations were reported using anisomycin in

aging brain mitochondria in which activation of JNK attenuated PDH activity (Zhou et al.,

2009). PDH is a matrix-localized enzyme complex that is vital to energy metabolism,

linking glycolysis in the cytoplasm to the Krebs cycle in mitochondria. Inhibition of PDH by

JNK enhances a shift from aerobic toward anaerobic metabolism. As a result, JNK-induced

mitochondrial dysfunction and reduced ATP production can initiate cell death. These studies

confirm a key role of JNK in the regulation of mitochondrial energy metabolism.

Although most studies implicate JNK in stimulating cell death signaling, activation, rather

than inhibition of JNK, has been shown to offer protective effects in cultured

cardiomyocytes (Dougherty et al., 2002, Dougherty et al., 2004). Transfection/infection with

JNK inhibitory mutants increased apoptosis in cardiomyocytes subjected to hypoxia/

reoxygenation. The p38 inhibitor SB203580 provided only partial protection against

apoptosis in neonatal rat cardiomyocytes, suggesting that JNK activation is protective and

that the pathway is largely independent of p38 (Dougherty et al., 2002). However, our

studies using the isolated Langendorff-perfused heart model revealed that inhibition of JNK

leads to further compensatory activation of p38. SU3327, a JNK inhibitor, decreased IR-

induced JNK phosphorylation and, interestingly, seemed to indirectly activate p38. IR

greatly increased mitochondrial p38, while treatment with the JNK inhibitor increased the

accumulation of both activated p38 and JNK in the mitochondrial fraction. This could, in

part, account for the absence of the expected protective effect of JNK inhibition (Jang and

Javadov, submitted for publication). MEKK1 knock-out mice demonstrated that activation

of the MEKK1-JNK pathway prevented apoptosis and inflammation, thereby protecting the

heart against HF and sudden death following cardiac pressure overload (Sadoshima et al.,
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2002). Oxidative stress induced by IR initiated JNK activation in mitochondria and required

coupled electron transport, ROS generation, and calcium flux. These factors caused the

selective and sequential activation of the calcium-dependent, proline-rich kinase Pyk2 and

the small GTP binding factors Rac-1 and Cdc42. Interruption of these interactions prevented

JNK activation and led to a pro-apoptotic phenotype during IR (Dougherty et al., 2004). In

addition, JNK activation can play a role in preconditioning, which imparts resistance to

sustained oxidative stress by various internal and external factors, such as IR, inflammation,

xenobiotics, and UV radiation, among others.

Collectively, most in vivo and in vitro studies revealed the role of JNK activation in

promoting mitochondria-mediated cell death in response to oxidative stress. Activity of JNK

in subcellular compartments as well as type and severity of stimulus presumably play a

decisive role in initiating pro-death and pro-survival.

7. Mitochondria modulate MAPK signaling

Mitochondria mediate pro-survival and pro-death pathways by modulating MAPK activity.

A widely accepted model of mitochondria-mediated activation of MAPKs involves mild

stress-induced opening of mitoKATP channels during IPC and pharmacological

preconditioning. All three major MAPKs, ERK1/2, p38 and JNK, have been shown to be

activated by IPC, although the precise mechanisms underlying MAPK activation during IPC

still remain elusive (Fryer et al., 2001). mitoKATP channels are located in IMM and widely

accepted as redox sensors and effectors of many survival signaling pathways implicated in

IPC and pharmacological preconditioning (Hide et al., 1996, Gross, Fryer, 1999, Broadhead

et al., 2004). Activation of protein kinases in the cytoplasm induced by short-term stress

triggers the opening of mitoKATP channels, which in turn causes the loss of ΔΨmit and

inhibition of ETC. Depolarization of IMM reduces Ca2+ overload, thereby protecting the

heart from subsequent, sustained IR. One of the key regulators of mitoKATP channels is

PKC, which is activated in response to various cellular stresses, including hypertrophic

stimuli and oxidative stress (Sato et al., 1998). There are no data on the direct stimulation of

mitoKATP channels by MAPKs. Importantly, the opening of mitoKATP channels in response

to various cellular stresses induces a short mitochondrial ROS burst, which activates down-

stream survival signaling molecules, including cytoplasmic MAPKs, to protect the heart.

Oxidative phosphorylation accounts for ~90% of total cellular oxygen consumption,

indicating that mitochondrial metabolism could significantly affect cellular ROS signaling

(Marchi et al., 2012). Complexes I and III of the mitochondrial ETC generate superoxide

anion (O2
−) in the univalent reduction of O2 (Brand et al., 2004). Although ROS are

frequently thought of as harmful byproducts of cellular metabolism that damage the cell, in

fact, they are important second messengers that modulate cell signaling and can be involved

in cell protection. Indeed, the latter partially explains rather unsuccessful clinical trials with

antioxidants (Becker, 2004).

In addition, mitoKATP channels can also be activated by ROS produced in the cytoplasm

and mitochondria. Non-mitochondrial ROS induced a significant increase in the activity of

reconstituted myocardial mitoKATP channels in vitro, indicating that non-mitochondrial

ROS can affect mitochondria through mitoKATP channels (Zhang et al., 2001). Interestingly,
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mitochondrial permeability transitions induced by exogenous ROS coincide with

mitochondrial ROS generation, which leads to ROS accumulation in individual

mitochondrion of isolated cardiomyocytes, a phenomenon known as “ROS-induced ROS

release” (Zorov et al., 2000). This constitutes a ROS-amplification loop (Hänninen et al.,

2010). If an increase in ROS reaches a threshold, it results in further ROS generation. ROS

can be released into the cytosol and trigger ROS-induced ROS release in the cytoplasm and

neighboring mitochondria. This signaling constitutes a positive feedback mechanism and

can lead to mitochondrial dysfunction and cellular injury (Zorov et al., 2000, Zorov et al.,

2006). In addition, mitochondrial Ca2+ uptake can stimulate ROS emission through the

activation of the membrane permeability transition, implying that calcium could be a part of

the mitochondrial ROS-amplification loop. Notably, ROS-induced ROS release can also

occur through a PTP-independent mechanism in which increased ROS triggers the opening

of the inner mitochondrial membrane anion channel (IMAC), thereby resulting in a brief

increase in ETC-derived ROS (Brady et al., 2006).

The p38/JNK activator anisomycin reduced infarct size, an effect that was abolished by 5-

hydroxydecanoate, an inhibitor of mitoKATP channels (Baines et al., 1999). AngII induced

depolarization of ΔΨm within short-time periods following the increase in O2
− generation in

vascular smooth muscle cells (Kimura et al., 2005). Furthermore, cardioprotective effects of

Ang II preconditioning against cardiac IR injury in vivo were eliminated by pretreatment

with 5-hydroxydecanoate or apocynin, an NAD(P)H oxidase inhibitor. Both inhibitors

suppressed AngII-induced activation of p38 and JNK, suggesting that preconditioning

effects of Ang II against cardiac IR may be mediated through JNK and p38 activation by

NAD(P)H oxidase-derived ROS-induced mitochondrial ROS (Kimura et al., 2005). Thus,

ROS generation due to a short-time activation of NAD(P)H oxidase may serve as a trigger to

induce the opening of mitoKATP channels and the subsequent mitochondrial ROS burst,

which in turn can mediate the preconditioning effects of Ang II (Zhang et al., 2007). p38 and

mitoKATP channels play important roles during adenosine-induced late preconditioning in

mouse hearts. Adenosine A1 receptor-triggered delayed cardioprotection was mediated by

p38 phosphorylation in Langendorff-mode perfused hearts (Zhao et al., 2001), and

mitochondrial ROS initiated phosphorylation of p38 during hypoxia in embryonic chick

cardiomyocytes (Kulisz et al., 2002). Activation of p38α and hypoxia-inducible factor 1 was

dependent on the production of mitochondrial ROS. p38α−/− cells failed to activate hypoxia-

inducible factor 1 under hypoxic conditions. Hypoxic activation of p38α and hypoxia-

inducible factor 1 was abolished by the mitochondrial complex III inhibitor myxothiazol and

the antioxidant protein glutathione peroxidase 1 (Emerling et al., 2005). Interestingly, p38 is

part of a ROS-induced positive-feedback loop during heart development. Sustained

activation of p38 soon after birth may contribute to the loss of cell division and binucleation

in mammalian cardiomyocytes (Matsuyama and Kawahara, 2011).

Inhibition of the MEK-ERK1/2 pathway by PD98059 eliminated the cardioprotective effects

of IPC (da Silva R et al., 2004). Likewise, the p38 antagonist SB203580 abolished IPC-

induced cardioprotection and attenuated IPC when it was administered before the IPC

stimulus (Fryer et al., 2001) or prior to and during the first 15 min of the lethal ischemia

(Mocanu et al., 2000). Both short and prolonged activation of MAPKs in response to

oxidative stress seem to be redox-sensitive. The extent of activation of the stress-regulated
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MAPKs p38 and JNK by hydrogen peroxide was similar to that induced by IR in isolated

perfused hearts (Clerk et al., 1998). IPC stimulated p38 activation through mitochondrial

ROS production (Zhao et al., 2001, Kulisz et al., 2002). ROS scavengers inhibited the

activation of MAPKs, indicating that MAPKs are regulated by their redox states. Moreover,

activation of MAPKs by mitochondrial ROS plays a central role in mediating

cardioprotective signaling of IPC. Short-time increases of ROS generated by ETC act as a

trigger to resist sustained IR injury through the posttranslational modification of redox-

sensitive proteins, including MAPKs. Mitochondria-generated ROS activated p38α in

cultured rat cardiomyocytes that had undergone prolonged hypoxia followed by

reoxygenation (Kim et al., 2006).

In addition to IPC, ERK1/2 activation induced by temperature preconditioning was shown to

be a downstream process of ROS generation. Both inhibition of ERK1/2 and scavenging

ROS abolished the protective effect of temperature preconditioning in adult rat

cardiomyocytes (Bhagatte et al., 2012). Opening of the mitoKATP channel stimulated the

ERK1/2 pathway and exerted cell protection by regulating mitochondrial ROS. mitoKATP

channel openers triggered ERK1/2 activation via mitochondria-derived ROS in THP-1 cells.

Overexpression of manganese superoxide dismutase reduced ROS production and prevented

ERK activation (Samavati et al., 2002). Ang II-induced activation of MAPK in the

myocardium cardiovascular tissues (Zhang et al., 2004) and rat vascular smooth muscle cells

(Kimura et al., 2005a) was sensitive to the ROS scavenger tempol, suggesting that activation

of MAPK was redox-sensitive. In addition, AngII-induced activation of p38 and JNK was

prevented by 5-hydroxydecanoate (Kimura et al., 2005b), indicating the important role of

mitoKATP channels in the activation of p38 and JNK. Mitochondria-generated ROS

stimulated hypoxia-induced activation of p38 in cardiomyocytes (Kulisz A et al., 2002) and

ERK1/2 in endothelial cells (Schafer et al., 2003). Activation of p38 and ERK1/2 induced by

PE in cultured neonatal cardiomyocytes was dependent on mitochondrial ROS (Javadov et

al., 2006). Electron transport-coupled calcium flux and ROS produced in mitochondria

stimulated JNK activation, which enhanced resistance of neonatal cardiomyocytes to

hypoxia/reoxygenation-induced apoptosis (Dougherty et al., 2004).

Acute ROS production can promote low-conductance (reversible) mitochondrial PTP

opening. In contrast to high-conductance (pathological, irreversible) mode pores, the low-

conductance PTP opening has a physiological role in the generation of mitochondrial

depolarization spikes and the conveyance of calcium signals between individual

mitochondria (Ichas et al., 1997). The low-conductance mode PTPs are permeable to small

ions and molecules with a molecular mass less than 300 Da, and pore flickering does not

induce detectable matrix swelling. Alternatively, acute oxidative stress may trigger

irreversible PTP opening in stress-sensitive mitochondria of certain cell compartments, such

as interfibrillar mitochondria, leading to ROS burst and activation of survival protein kinases

in the cell. Cyclophilin D, a major regulator of the mitochondrial PTP was required by IPC

to generate mitochondrial ROS and phosphorylate Akt and Erk1/2 in mouse cardiomyocytes

(Hausenloy et al., 2010). In rat cardiomyocytes, inhibition of PTP by cyclosporine A, an

inhibitor of cyclophilin D, prevented PE-induced activation of p38 and ERK1/2, as well as

mitochondrial dysfunction (Javadov et al., 2006). These studies indicate the existence of a

feedback mechanism in which mitochondrial stimuli initiate MAPK activation. Thus,
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mitochondrial ROS activate MAPK to mediate survival signaling pathways implicated in

IPC and pharmacological preconditioning in the heart. However further studies are needed

to elucidate the role of the mitoKATP-mitochondrial ROS-MAPK pathway in the

pathogenesis of IR, hypertrophy and HF.

Altogether, current studies provide evidence of both direct and indirect interactions between

MAPKs and mitochondria in response to different cellular stresses. However, the

contributions of MAPKs to mitochondria-mediated cell survival and cell death mechanisms

in healthy and diseased hearts remain to be elucidated. Along with extracellular stressors,

mitochondrial dysfunction per se can initiate activation of MAPKs, although precise

mechanisms of the activation loop are not clear. Importantly, spatiotemporal activation and

regulation of MAPK signaling in subcellular compartments, especially in mitochondria, can

stimulate pro-survival and pro-death pathways depending on the severity and type of stimuli.

Considered together, these direct and indirect interactions provide evidence that a thorough

understanding of mitochondria-MAPK interactions may provide novel insights into the

pathogenesis of cardiac diseases. Also, interactions may be exploited to develop

mitochondria-targeted therapy and improve the prognosis of heart disease.

8. Conclusions and perspectives

Many signaling networks, including the MAPKs family are involved in the pathogenesis of

stress-related cardiac diseases such as MI, hypertrophy and HF. MAPKs respond transiently

or permanently during myocardial stresses depending on timing, severity of stress, and types

of stimuli, to mediate some of the most important signaling networks in the heart. Due to the

complex interplay of regulatory mechanisms, current studies suggest multiple roles for

MAPKs; in some cases, individual MAPKs foster cardioprotection, in other cases they

mediate damage to the cell and cause cardiac dysfunction in response to oxidative stress.

Mitochondria are powerhouses and important gate-keepers of cell life and death, and

regulation of mitochondrial metabolism by MAPKs is critical for cardiac cells. Molecular

mechanisms of activation of individual MAPKs and the cause-and-effect relationship

between MAPK activation and cardiac diseases are not entirely clear. Understanding precise

mechanisms of the role of MAPKs in cardiac diseases are obscured due to absence of highly

specific inhibitors. Numerous studies revealed that the effects of MAPKs activation

converge on mitochondria and modulate their metabolism. Though many questions remain

unanswered, there exists enough evidence to consider the possibility of targeting MAPK-

mitochondria interactions in the prevention and treatment of heart disease. A comprehensive

understanding of relevant molecular mechanisms, as well as challenges in this area, will

promote the development of new pharmacological agents and genetic manipulations for the

treatment of cardiovascular diseases by targeting the MAPKs/mitochondria pathway.
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Abbreviations

AngII angiotensin II

CA constitutively active

CHIP C terminus of Hsc70-interacting protein

CT-1 cardiotrophin-1

ΔΨmit mitochondrial membrane potential

DN dominant negative

ERK1/2 extracellular signal-regulated kinases 1 and 2

ET-1 endothelin-1

ETC electron transport chain

GPCR G-protein-coupled receptor

HF heart failure

Hsp27 heat shock protein 27

ICER inducible cAMP early repressor

IMM inner mitochondrial membrane

IMS intermembrane space

IPC ischemic preconditioning

IR ischemia-reperfusion

JIP JNK-interacting protein

JNK c-Jun NH2-terminal kinase

LIF leukemia inhibitory factor

LTCC L-type calcium channel

MAPK mitogen-activated protein kinase

MAPKAP MAPK activated protein kinase

MEF myocyte-specific enhancer factor

MEK MAPK/ERK kinase

MEKK MEK kinase

MI myocardial infarction

mitoKATP channel mitochondrial ATP-sensitive potassium channel

MK2 MAPKAP kinase-2

MKP MAPK phosphatase

NFAT nuclear factor of activated T-cells
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NHE-1 sodium-hydrogen exchanger 1

6-OHDA 6-hydroxydopamine

OMM outer mitochondrial membrane

PDE phosphodiesterase

PDH pyruvate dehydrogenase

PE phenylephrine

PKG protein kinase G

PTP permeability transition pore

ROS reactive oxygen species

RTK receptor tyrosine kinase

SAPK stress-activated protein kinase

Smac second mitochondria-derived activator of caspase

TG transgenic

TNFα tumor necrosis factor alpha
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Figure 1.
Main MAPK signaling pathways in the heart.
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Figure 2.
Major downstream targets of ERK1/2 MAPK in response to oxidative stress and growth

stimuli in the heart.
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Figure 3.
p38-induced stimulation of death signaling pathways in response to oxidative stress and

hypertrophic stimuli.
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Figure 4.
Major downstream targets of JNK MAPK in response to oxidative stress and growth stimuli

in the heart.
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Figure 5.
Proposed role of ERK5 MAPK during oxidative stress and cardiac hypertrophy.
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Figure 6.
Bidirectional interactions between MAPKs and mitochondria.
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