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Abstract

Purpose—To present a novel registration approach called LATIS (Local Affine Transformation 

assisted by Internal Structures) for co-registering post prostatectomy pseudo-whole mount (PWM) 

pathological sections with in vivo MRI (Magnetic Resonance Imaging) images.

Materials and Methods—Thirty-five patients with biopsy-proven prostate cancer were imaged 

at 3T with an endorectal coil. Excised prostate specimens underwent quarter mount step-section 

pathologic processing, digitization, annotation and assembly into a PWM. Manually annotated 

macro-structures on both pathology and MRI were used to assist registration using a relaxed local 

affine transformation approximation. Registration accuracy was assessed by calculation of the dice 

similarity coefficient (DSC) between transformed and target capsule masks and least square 

distance between transformed and target landmark positions.

Results—LATIS registration resulted in a DSC value of 0.991±0.004 and registration accuracy 

of 1.54±0.64 mm based on identified landmarks common to both datasets. Image registration 

performed without the use of internal structures led to an 87% increase in landmark based 

registration error. Derived transformation matrices were used to map regions of pathologically 

defined disease to MRI.

Conclusion—LATIS was used to successfully co-register digital pathology with in vivo MRI to 

facilitate improved correlative studies between pathologically identified features of prostate cancer 

and multi-parametric MRI.
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INTRODUCTION

Prostate cancer is the second leading cause of cancer-related deaths among men in the 

United States (1) and is the sixth leading cause of cancer-related deaths among men globally 

(2). Multi-parametric maps of anatomic, vascular and metabolic data of the prostate acquired 

using multi-parametric MRI can yield improved discrimination of the extent and 

aggressiveness of prostate disease (3–5). An important step in developing and validating 

multi-parametric MRI biomarkers to detect the extent and aggressiveness of prostate cancer 

is the registration of in vivo MR images with histopathological sections obtained from 

prostatectomy. This multi-modal registration would enable correlation of MRI with 

postoperative histopathological determination of extent and tumor grade, and ultimately the 

molecular assessment of aggressiveness.

There has been much interest in the multi-modal co-registration of prostate MRI with other 

imaging modalities such as CT for treatment planning (6–9), ultrasound for guiding 

biopsies(10), and pathology for validation of cancer detection (11). With each combination 

of source and target data come unique challenges for the registration procedure. In this 

work, the goal was to register in vivo MRI data obtained with a balloon-type endorectal coil 

(ERC-inMR) with images of pseudo-whole mounts (PWM) constructed from quarter mount 

histologic sections. The prostate images from in vivo MRI and pathology possess different 

amounts of deformation/distortion with respect to each other. For example, after digitally 

assembling quarter mount histological sections into a PWM, the resulting PWM is different 

from a true whole mount image in multiple ways, including: (a) the boundary shape of the 

prostate, (b) the unfilled space or gaps between the quarter mount histological sections, and 

(c) deformation/distortion of each individual quarter. Additionally, the difference between 

the ERC-inMR and the tissue observed on pathology is a result of multiple factors, 

including: (a) physical distortion of the prostate due to the presence of the inflated 

endorectal coil, (b) deformation of the tissue after excision and (c) shrinking of the tissue 

due to fixation. Without completely characterizing all the intermediate deformations, the 

registration procedure described in this work focuses on directly registering ERC-inMR with 

PWM images due to the fact that both data sets are readily available, and characterization of 

the intermediate deformations are not easily obtainable.

We have developed a technique using a relaxed Local Affine Transformation approximation 

assisted by the identification of large Internal Structures (LATIS). In LATIS, the prostate 

capsule and large internal anatomic structures are used as constraints for registration. This 

technique does not require the accurate definition of a set of multiple paired landmarks 

between the source and target data which are difficult to obtain in general and the basis for 

leading registration methods tackling similar problems. The large structures are, arguably, 

easier to manually identify on both pathology and MRI and provide a larger continuum of 

spatial information to guide the registration procedure. In this manuscript, the ability of 

LATIS to co-register PWM and ERC-inMR images is evaluated, and the use of this 

registration to map regions of pathologically identified cancer onto the in vivo MRI is 

demonstrated.
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MATERIALS AND METHODS

Data used in this manuscript was obtained from patients with biopsy-proven prostate cancer 

(35 men, age range 50–73 years, mean age 62 years) after obtaining written signed consent 

for a study reviewed and approved by the local Institutional Review Board.

In vivo MR Acquisition

Patients were imaged on a 3T scanner (Siemens Healthcare, Erlangen Germany). A surface 

array combined with an ERC was used for all imaging. The ERC was inflated with 60 ml of 

perfluorocarbon to reduce air induced susceptibility artifacts. T2-weighted (T2w) axial MR 

images were generated using a multi-slice Turbo Spin Echo acquisition with 4m 42s scan 

duration, TR/TE 6860/107 ms; ETL 23, NEX 2, BW 190 Hz/Px, 3 mm slice thickness, 140° 

flip angle, 2562 matrix, 19 slices and 140 mm2 FOV. The axial images were positioned such 

that the slice plane passed perpendicular to the posterior surface of the prostate.

Pathology Processing

Excised prostates were formalin fixed and then gross sectioned to match, as close as 

possible, the MR imaging planes. For this purpose, a special sectioning box (Figure 1) was 

constructed and a sectioning protocol established (Figures 2a and 2b). After amputation of 

the seminal vesicles and vasa deferentia at the base and shaving off 1mm of the proximal 

urethral margin, the prostate was placed in the sectioning box so that the posterior surface of 

the prostate was approximately parallel to the bottom and the long axis of the box. Vertical 

slits in the box, 3 mm apart, allowed the consistent parallel sections to be cut perpendicular 

to the posterior surface of the prostate with a thickness of 3 mm to match the orientation and 

thickness of the axial ERC-inMR slices. Gross sectioned prostates were subjected to quarter 

mount histological section (QMHS) pathologic processing. Sections were paraffin 

embedded, Hematoxylin and Eosin (H&E) stained, and cut at 4 μm thickness. H&E stained 

slides were digitized using a whole slide scanner (ScanScope CS, Aperio, Vista, CA). The 

prostate pseudo-capsule and tumor regions within the digitized sections were annotated by a 

board certified pathologist with 15 years’ experience (SCS), at 20X magnification 

(resolution 0.58μm per pixel) using a pen tablet screen (Cintiq 21UX, Wacom, Kazo-shi, 

Saitama, Japan). Digitally annotated QMHS slides were then manually assembled into PWM 

by aligning the capsule annotations of the quartered pathology sections to form a continuous 

capsule while minimizing overlap of tissues between the combined sections. Anatomic 

features in the pathology sections being assembled also aided in aligning the QMHS images 

(Figures 2c and 2d). From the assembled PWM, binary masks of both annotated tumor 

regions and the prostate capsule were generated (Figure 3). For each patient, a single PWM 

at the center of the index lesion was chosen for registration.

Image Registration

In order to register the PWM (source image) to the ERC-inMR (target image) (Figure 3), a 

transformation that can map the source image to the target image must be found. Since the 

source and target image belong to two completely different imaging modalities, a direct 

mapping relationship between these two images cannot be readily established without 

additional inputs or modifications. The first step in the process involved manually 
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converting the source and target into tri-intensity grayscale images (Figure 3) such that the 

internal structures had a grayscale value of 128 and the rest of the prostate has a value of 

255. This created the potential for developing a direct mapping between the two datasets. To 

register the two tri-intensity grayscale images, some assumptions are introduced:

1. The 2-dimensional source and target images correspond to the same cross-section 

of the prostate in terms of the position and the outward normal direction.

2. There exists a path-independent, unique mapping between the source and the target 

image.

3. The image intensity between the source and target image is conserved.

These three assumptions are reasonable and can be easily satisfied in most cases. The first 

assumption is met by the standard data collection and sectioning protocols employed in this 

study. This condition is of the upmost importance because, as the source and target images 

diverge in terms of their spatial correspondence, there is decreasing benefit to perform the 

registration since the cancer region annotated in the source image cannot be guaranteed to 

exist in the target image.

The second assumption establishes that the problem is well-posed. Supposing assumption 

No.1 holds, there exists a mapping relation between the source and target images as they 

both represent different realizations of the same cross-section of the prostate. Employing a 

linear approximation for the mapping will guarantee a unique and path-independent 

solution. The existence of a solution and its uniqueness establish that the problem is well-

posed (12), hence the solution is guaranteed.

The third assumption forms the basis for the image registration procedure. With assumption 

No. 1, both the source and the target images are referring to the same cross-section of the 

prostate but differ due to in-plane deformation. After converting the source and target 

images to the tri-grayscale-images, the intensity conservation principle (13) is readily 

applicable and a relationship can be established between the source and target images. With 

this established relationship, the mapping relation between the source and target image can 

subsequently be derived with the help of assumption No. 2. The derivation is shown in next 

section. In summary, although three assumptions were introduced, assumption No. 1 is the 

most fundamental. If assumption No. 1 is achievable, assumptions No. 2 and 3 are imposed, 

both of which serve as a foundation for the following registration derivation.

Theory

Let I(x, y, t) be the intensity of an image, which is a function of space and time. When the 

source and the target tri-grayscale-images are treated as the images of a deforming prostate 

at two different time points, time is involved. Therefore, one can assign the source image at 

t1 and assign the target image at t2. Following assumption No.1, assumption No. 3 imposes 

the intensity conservation principle which implies that the total derivative of the intensity is 

invariant, i.e.
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[1]

Expanding the left hand side (LHS) of the equation, it becomes

[2]

According to assumption No. 2, there exists a transformation such that the above equation 

(Eq. 2) is satisfied. Since this exact transformation is unknown, the assumption of a local 

affine transformation is made between the source and target image, which is,

[3]

where (x, y) represents the source image at t1, (x̃, ỹ) represents the target image at t2, (Lx, Ly) 

is the translation, and θ is the rotational angle. And since the local affine transformation is a 

proposed approximation, a more relaxed linear approximation can be adopted, namely,

[4]

which relaxes the θ constraint between the transformation parameters {α1, α2, α4, α5, α6}. 

This linear approximation satisfies assumption No. 2. With respect to the approximation, 

there is no qualitative difference between Eq. 3 and Eq. 4 since they are both linear 

functions but, as shown in a later part of this section, it is desirable to select Eq. 4 over Eq. 3 

to reduce the correlation between the transformation parameters resulting in a simpler 

solution procedure. Substituting Eq. 4 into Eq. 2 leads to the LHS not being equal to zero 

because Eq. 4 is an approximation and an approximations result in errors. Therefore, locally, 

we have an error function in terms of (x̃, ỹ) where Ĩx, Ĩy, and Ĩt are functions of (x̃, ỹ), which 

states that

[5]

Now the objective of the registration process is to find a set of transformation parameters α⃗ 

= (α1, α2, α3, α4, α5, α6)T such that error function e is equal to or is minimal with respect to 

zero. In order to seek the solution for the transformation parameters, a quadric error 

functional is constructed as

[6]
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Further taking the variation of the quadratic functional, yields,

[7]

Since the transformation parameters are constants, the higher order terms vanish after taking 

the first variation of the quadratic functional, i.e. α⃗
i = 0, for all i > 1. And according to the 

Ekeland’s variational principle (14), there exist a solution for α⃗ such that δΠ = 0 which 

corresponding to the minimization of the error function e. Since δα⃗ is arbitrary and is not 

always equal to zero, the only possibility to yield δΠ = 0 is that the following equation is 

always satisfied,

[8]

where

[9]

[10]

Therefore, the transformation parameters can be solved from the following equation

[11]

where the resulting transformation parameters are the optimal solution satisfying Eq. 2 and 

subsequently, provides the transformation satisfying Eq. 4.

A pixel by pixel solution of the transformation parameters is computationally expensive and 

may be ill-posed in the sense of Hadamard (12). For reducing the computational cost, the 

transformation parameters can be solved weakly, i.e., for a neighborhood of n by n pixels,

[12]

where Ω represents the domain of the image and i and j are referring to the index of the 

pixels in the x and y directions, respectively. The image is broken up into a grid of these 

neighborhoods such that the larger the neighborhood, the coarser the grid. However, due to 

Kalavagunta et al. Page 6

J Magn Reson Imaging. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the properties of the tri-intensity grayscale images, Eq. 12 is ill-posed (non-invertible). This 

is because for the entire neighborhood of n by n pixels located within the same intensity 

grayscale region, we have

[13]

and,

[14]

In order to achieve a solution for Eq. 12, the matrix of the left hand side needs to be 

diagonally dominant. Thus, the following modifications can be made in Eq. 11 to add a 

diagonal matrix on both the left hand side and right hand side:

[15]

where η is a diagonal constant matrix with a reasonably large positive number for the 

diagonal elements and zeroes for the off-diagonals. Based on our experience, a ηkk=1010 is 

chosen. Since the same quantities are added equally on both side of the equation, it does not 

change or affect the solution of the original equation but makes it always solvable. Thus Eq. 

11 becomes

[16]

The fixed-point iteration method can now be readily employed for solving Eq. 16. 

Employing the fixed-point iteration method (49), α⃗ can be solved iteratively from

[17]

with an initial guess of α⃗(0) = 0 when m=0 for the initial step.

Multi-Resolution Optimization

Two principle causes of potentially large deformations in local regions of the prostate 

between the PWM and ERC-inMR images result from the sectioning and reassembly of the 

pathology specimens and the use of an ERC. The optimal neighborhood size, n x n, over 

which α⃗ needs to be solved is unknown. For neighborhoods too large, the accuracy of the 

registration would be insufficient, and for neighborhoods to small, the registration method 

would be ill-posed in the sense of Hadamard (12). Therefore, instead of choosing a fixed 

neighborhood size, a multi-resolution optimization strategy is employed.

The idea behind the method of multi-resolution optimization for registration is that the 

starting grid of neighborhoods covering the image is small (low resolution) while as the 

optimization progresses the resolution of the grid increases (i.e. decreasing neighborhood 

size). The solution in each step in the progression of the grid refinement provides an 
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improved initial guess for the subsequent higher resolution grid. In the course of registering 

PWM to the ERC-inMR image, a sequence of 2n grids are used, where n is equal to 0, 1, 2 

… etc. The final transformation is the accumulated transformation of the multiple steps with 

the criteria to stop the refinement of the grid mesh being when the L2-norm of the 

displacement between step n and step n+1 is less than 0.1 pixels.

Registration Procedure

The image registration workflow for a sample case is shown in the Figure 3. After choosing 

the assembled pathology PWM slice, the corresponding target T2w ERC-inMR slice was 

identified by choosing a slice at the same approximate position from the apex and verifying 

the existence of similar anatomic features. The source (PWM) is shown in Figure 3.1a. The 

target (ERC-inMR, T2w) is shown in Figure 3.1b. The prostate region in the ERC-inMR 

image was extracted masking with capsule contours drawn in a semi-automated 

segmentation program (Segasist, Ontario, Canada) by an experienced prostate MRI 

researcher (GJM). The PWM images were also masked by the combined capsule annotations 

defined by the study pathologist (SCS). The masked ERC-inMR image was upsampled to 

512×512, to match the matrix size of the PWM, and translated to achieve a greater than 50% 

overlap with the masked PWM. New annotation regions defining the easily identifiable large 

internal structures for the PWM data were generated while simultaneously annotating 

similar structures on the ERC-inMR. These internal structures were defined by a number of 

identifiable features including the central gland-peripheral zone boundary, transition zone, 

apex-semicircular sphincter and bilateral nodules of benign prostatic hypertrophy. These 

images were converted into tri-intensity (White = 255, Black = 0, Gray = 128) grayscale 

source and target images (Figures 3.2a and 3.2b) where the white regions delineate the 

internal structures. Using the pre-defined controls (large internal structures and prostate 

boundary) found in the source and target, LATIS was used to register the two images. The 

local affine transformation component of the registration procedure was adapted from 

methods originally published by Periaswamy and Farid (15–17). The application of the final 

transformation matrix to the masked grayscale PWM image (Figure 3.3a) and the resulting 

warped source image (Figure 3.3b) is shown. The application of the final transformation 

matrix warping the tumor region masks from the PWM to the ERC-inMR can be seen in 

Figures 3.4a and 3.4b. Other than where specifically stated, the registration steps and the 

visualization of results were performed in Matlab (MathWorks, MA, USA) running on a 

Windows 2.80 GHz Intel i5 CPU machine with 12 GB RAM.

Analysis

Two metrics were used to evaluate the accuracy of the registration methods. The first 

method was the Dice similarity coefficient (DSC) which measures the overlap between the 

target and registered source. The DSC for two images A and B is defined as the intersection 

of the two images divided by the mean sum of the images

[18]
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The second validation method involved identifying identical landmarks by visual inspection 

on both the native PWM and ERC-inMR images. The process of identifying landmarks was 

independently performed by two experienced prostate researchers with four (CK) and eleven 

years (GJM) experience. The landmarks selected were also done so independently from the 

large internal structures used for registration. Landmark positions on the PWM were masked 

using circular ROIs (radius, 8 pixels, pixel size = 0.54 mm) to give a feature marked PWM 

(fmPWM) image. A circular area of this magnitude was chosen to easily identify the feature 

in the downscaled registered source. The transformation matrix, obtained earlier for this 

case, was applied to the fmPWM image and transformed pixel positions were obtained from 

the registered fmPWM image. Target registration error (TRE) in mm was calculated using 

the root mean squared distance between the transformed pixel positions from the fmPWM 

and the target pixel position on the ERC-inMR. For the thirty five cases, landmarks for the 

registration accuracy calculation were drawn and a total of 103 such landmarks were 

identified by the two observers for error analysis. To ascertain the impact of the internal 

structures as a guide for image registration, these thirty five cases were again registered 

without using internal structures and the registration accuracy assessed. The source and 

target images in this case were the masked PWM and ERC-inMR capsule masks.

Statistical Analysis

The average TRE and DSC are reported as the mean ± standard deviation and were 

calculated using Matlab (MathWorks, MA, USA). A p-value <0.005 was considered 

statistically significant when evaluating the difference in registration accuracy with and 

without the use of internal structures. The p-value analysis was performed in OriginLab 9.0 

(Origin Lab Corporation, USA).

RESULTS

Five representative cases are provided in Figure 4. The assembled PWM images are shown 

with the annotated tumor regions and cropped to the capsule borders by using the combined 

capsule annotations created by the study pathologist. LATIS was used to register the PWM 

data to the ERC-inMR. The transformation was then used to warp all annotated cancer 

regions from the assembled pathology to MRI (Figure 4 Column b). The registration 

calculation per case took on the order of 11 minutes.

The mean DSC after registration was 0.991±0.004 which represents nearly total 

correspondence by this metric after registration. The mean, minimum, maximum and 

standard deviation of the registration error based on the landmark method are given in Table 

1. The average overall registration error was 1.54±0.64 mm when using internal structures 

and 2.92±1.76 mm without internal structures, a statistically significant increase in 

registration error of 87% in the absence of additional information to guide registration (p < 

0.0001). An example of the landmark registration accuracy assessment is shown in Figure 5.

DISCUSSION

A registration approach using a relaxed local affine transformation approximation, assisted 

by large internal structures as constraints to improve registration accuracy, has been 
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presented for co-registering post prostatectomy pseudo-whole mount pathological sections 

with T2-weighted in vivo MRI images obtained with an ERC. In this study, slides made from 

quarter mount histologic sections were used to generate the PWM images as the ability to 

section, store and digitize whole mount data does not exist at our institution. Many 

institutions find themselves with similar limitations in terms of processing the excised 

prostate, therefore the methods presented here are very relevant for MRI studies wanting to 

use correlative pathology for identifying and validating MRI biomarkers for prostate cancer 

detection and grading.

Registration Methods

The registration between prostate histopathology and MRI images belongs to the category of 

multi-modal registration. Previous work in this area has investigated registering whole 

mount pathology (WM) to in vivo MRI (inMR) acquired without an ERC (11), in vivo MRI 

acquired with an ERC (ERC-inMR) (18–23) and ex vivo MRI (exMR, paraformaldehyde 

fixed prostatectomy specimen) (23–25). While less prevalent in the literature, registration 

with PWM pathology has also been performed with exMR (18,26–28), inMR acquired 

without an ERC and inMR (22) acquired with an ERC (29).

Two dominant approaches exist in published literature addressing the registration of 

pathology to MRI; the thin plate spline (TPS)-based (11,18,20–23,26,27,30) and B-spline 

(BSp)-based (24,31,32) methods. The TPS approach utilizes pre-defined control point pairs 

identified from different images to warp the source image to the target image using a 

multidimensional interpolation method (30). The result of the TPS-based methods is highly 

dependent on the manual selection of the control point pairs, which requires knowledge of 

the control point locations and distributions in both images. Such information may not be 

readily available in all the cases within the ERC-inMR and PWM images. Also, since each 

pair of control points in the TPS method influences the entire image, this method assumes 

continuous source and target images, smooth deformation and distribution of control points 

over the entire image. Such assumptions are not valid for the PWM images used in this 

study.

In contrast to the TPS-based approach, the influence of the control points for the BSp-based 

approach is localized especially when it is combined with free form deformation (FFD) (31). 

With the FFD BSp approach, each control point is predominately influenced by the 

neighboring grid tiles. This feature makes it suitable for registering the WM to both exMR 

and inMR images as well as the WM to the ERC-inMR images. The BSp approach however, 

provides a smooth and continuous deformation field and thus is far from ideal for directly 

registering PWM to ERC-inMR.

Some studies have used mutual information (MI) as an alignment measure (19,28,29,33–37). 

MI has been specifically designed to address registration of multi-modal data (37) and is 

based on information theory (36). The robustness of the MI approach for dissimilar 

modalities can be enhanced via the combined feature ensemble mutual information 

(COFEMI) technique which incorporates additional information for one of the modalities in 

the form of image features (28). The robustness and the results of this technique are highly 

dependent on the selection of the image features. The MI-based approach incorporated by 
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the COFEMI technique has been used for registering WM to both exMR and inMR images 

(28) while the Spatial Weighting Mutual Information (SWMI) technique has been used for 

registering PWM to ERC-inMR images (29), addressing the same problem focused on in the 

current manuscript. While the SWMI work addressed the same challenging problem of 

registering in vivo MRI with PWM data presented in this work, only a limited number of 

cases were demonstrated. While the SWMI method doesn’t require the identification of the 

capsule border it also demonstrated lower registration accuracy compared to LATIS with a 

DSC of 0.83 on average.

Given the scope of registration problems best handled by the previously described methods, 

we desired a new approach which was more appropriate to register PWM and ERC-inMR 

and required a minimum amount of a priori information. First of all, the existing methods 

available in the literature required an investigator, or sometimes feature recognition 

software, to identify sufficient numbers and distributions of control points to guide the 

registration between the histopathological and MRI images. Recognizing the fact that 

registration between two images requires some pre-defined controls, we observed that there 

were clearly some features that could be defined with reasonable precision. One feature was 

the prostate boundary and the others were larger internal structures like the central gland-

peripheral zone boundary, transition zone, apex-semicircular sphincter and bilateral nodules 

of benign prostatic hypertrophy. This addressed the challenge of identifying numerous 

control points with exact spatial correspondence between the source and target images as 

required by the BSp and TPS methods. Identification of landmarks was often difficult and 

the number of points would have been insufficient for guiding registration. The difficulty of 

selecting spatially corresponding control points is evidenced by the large discrepancy 

between the number of points the two researchers selected for determination of registration 

accuracy. However, the identification of larger anatomic structures was always possible in 

our test cases.

The second issue with the aforementioned methods was the underlying assumption of a 

continuous deformation field which is less appropriate when registration involves PWM 

data. Therefore, we developed a method based on the invariance of the image intensity 

function, which does not require the assumption of continuous deformation fields. This 

feature makes the resulting method suitable to handle the local distortions that lie within the 

PWM images such as the unfilled space or gaps between the QMHS.

To address the discontinuous nature of the reassembled PWM images and to overcome the 

overall challenge of multi-modal registration, tri-intensity masks of both datasets taking into 

account the prostate border and large internal structures were used as the source and target 

images for registration. While not the focus of this work, it could easily be envisioned that 

BSp and TPS could be used for registering the tri-intensity images in place of the local 

affine transformation chosen here however, the identification and selection of control points 

would still be necessary and a limiting factor to their successful implementation.

Registration and Pathology Limitations

Both LATIS, and the other referenced registration studies, have addressed a two-

dimensional registration problem. Therefore, an important requirement (i.e. the first 
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assumption in LATIS) is that the source and target images originate from the same plane 

through the prostate. Even with careful attention to the sectioning protocol multiple factors 

can lead to axial planes which do not match between the MRI and pathology, including non-

linear shrinking of the tissue during fixation. This lack of correspondence would further 

complicate, if not eliminate, the possibility to find features for guiding registration. The 

selection of control points used by TPS and BSp based on small structural features would 

arguably be the most affected. However, LATIS may be less sensitive to the same offsets 

due to the persistence of larger structural features through plane. The influence of both 

through-plane offsets and in-plane registration errors must be considered when evaluating 

the registration accuracy of annotated cancer regions from pathology to imaging. The 

relative impact of any error would be greater for smaller areas of disease.

Additional limitations exist in the most apical and basal regions. As described in the 

sectioning protocol, the most apical section of the prostate is removed and cut in the sagittal 

orientation. Using LATIS in this orientation has not been explored to date. One obvious 

limitation is the absence of a complete capsule contour. In the base, several aspects of the 

sectioning protocol and the anatomy make identification of the prostatic capsule and 

assembly of the PWM difficult including, the ambiguous prostate-bladder border, 

amputation of the seminal vesicles and vasa deferentia at the base and shaving of the 

proximal urethral margin to a thickness prior to placement in the sectioning box. The end 

result is the absence of a well-defined capsule in the most basal slices which makes them 

difficult to handle with the proposed methods.

Despite the previously described limitations, the sectioning protocol and registration 

methods have proven to be relatively robust in the cases studied to date. In general, less than 

15% of cases handled in our lab needed to be excluded from registration due to mismatches 

in slice orientation (i.e. an obvious violation of assumption No. 1) and less than 3% of cases 

had to be excluded due to index lesions too for inferior or superior in the prostate.

Assessment of Registration Error

The assessment of image registration accuracy in literature has been has been accomplished 

using a variety of error metrics. In the present study registration accuracy was calculated 

using 1) the dice similarity as a “global” metric for characterizing the registration of the tri-

intensity images (i.e. capsule and large internal structures) and 2) corresponding landmarks 

identified manually in both source and target images to characterize registration accuracy of 

internal features of the prostate. Similar methods have been used in the literature to assess 

registration accuracy (38–46).

The need to perform accurate registration between PWM and ERC-inMR stems from the 

desire to use pathological results as the ground truth for interpreting the MRI results for 

determining the extent and aggressiveness of disease. A “perfect” registration would permit 

a reliable pixel–wise analysis of MRI with respect to histopathology however, the ability to 

approach this ideal correspondence is difficult due to the complexity of the distortions and 

the limited information available to correct for them. To improve our registration method, 

future implementations could incorporate other MRI visible structures like the urethra. The 

LATIS approach could also serve as a baseline method in a cascaded registration procedure, 
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where additional registration steps incorporating other previously proposed strategies and 

information may be used to further improve the correspondence of salient features between 

the datasets. Using LATIS would be a valuable first step for the reasons stated above, 

including that 1) it relies on the selection of large structures rather than specific points which 

makes it more robust in cases where the prostate slicing and MRI imaging plane are not 

exactly the same, 2) it does not rely on image intensity from the multi-modal data and 3) it 

does not assume a smooth continuous deformation field, an assumption, which is violated in 

the case of the PWM data.

In the future improved error metrics for assessing registration accuracy would also be 

desired in order to compare LATIS with other registration methods and potentially cascaded 

approaches. Potentially this is possible by acquiring additional information in the process of 

generating the PWM and acquiring the ERC-inMR data such as images of the gross 

pathology sections cut into quarters prior to paraffin embedding and imaging of the prostate 

after excision and before sectioning. This information may help elucidate the deformations 

present between the source PWM data and the target ERC-inMR and provide a more 

complete characterization of the deformations to better evaluate other strategies which do 

not require the labor and time to acquire the additional data.

In conclusion, the main geometric issues in histopathology-MR image registration are the 

distortions resulting from the use of an endorectal coil when acquiring the inMR data, the 

deformation due to removal, and fixation and distortion of individual QMHS which result in 

discontinuities in the final assembled PWM. In this work, this registration problem is 

addressed by using LATIS which involves identifying large internal structures along with 

the prostate boundary to guide registration. While the method to assess the registration 

accuracy was subjective, it is an important first step in the validation of the technique. 

Future studies will focus on providing a better metric for assessing registration accuracy and 

will investigate cascading LATIS with other deformable strategies to further improve 

registration of local features between histopathology and in vivo MRI results.
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Figure 1. 
Prostate sectioning box made of Acrylic and Teflon. The box is shown with a spherical 

prostate model and the movable walls on the left (WL) right (WR) and base (WB) are pushed 

in to hold the model securely. Each moveable wall is held in place with a locking screws SL, 

SR and SB, respectively. A standard pathology blade is inserted through the milled slits in 

the acrylic pieces that make up the left and right walls. Each successive axial cut through the 

prostate requires passing through the next slit in the side walls. The tolerance is such that the 

blade can only traverse through the corresponding slit on the opposite side.
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Figure 2. 
Diagrams of pathologic sectioning protocol overlaid on a coronal (a) and axial (b) T2w 

image. After placing the prostate in the sectioning box, the first cut made is approximately 

0.6 mm from the apex of the gland to create the apical section, with successive axial cuts 

3mm apart moving towards the base. The axial cross-sections are designated by letters “A”, 

“B”, “C”, etc., depending on the size of the prostate, with “A” being the most apical slice. 

Slices are divided into four quarters (b). Each quarter is labeled based on the letter of the 

slice from which it comes and its position in the slice (e.g. anterior/posterior = A/P and 

right/left = R/L). After removal from the box, the apical portion is sectioned in 2mm 

intervals with parallel cuts emanating from the urethra. The sections near the urethra are 

labeled “RDUMA” (right distal urethral margin A) and “LDUMA” (left distal urethral 

margin A). The next two sections from the center are then labeled “RDUMB” and 

“LDUMB”, etc. This process continues out to the lateral margins of the apical section. Each 

slice section is then embedded in a paraffin block and one 4-micrometer H&E-stained slide 

is prepared from each section and digitized. A pathologist then digitally annotates the 

prostate capsule (red contour) and cancer regions (brown contour) on each slide (c). Slides 

from a complete axial slice are then manually assembled into a PWM by aligning the 

capsule annotations of the quartered pathology sections to form a continuous capsule while 

minimizing the overlap of tissues between the combined sections (d).
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Figure 3. 
A schematic demonstrating the procedure to co-register pathology to T2w MRI using 

LATIS. First, the source (1a) and target (1b) images are segmented, scaled and translated. 

Second, the prostate capsule and internal structure masks are identified to constrain the 

pathology transformation. The source and target masks (2a and 2b) are registered and a 

transformation matrix is obtained. Third, the transformation matrix is applied (red arrow) to 

the pathology (3a) which places it in spatial correspondence to the T2w MRI resulting in 

(3b). Lastly, applying the transformation matrix to each one of the annotated cancer regions 

(4a) places them in the spatial framework of the anatomic T2w images (4b).
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Figure 4. 
Registration results. Column ‘a’ shows the masked PWM with annotated tumor regions. 

Column ‘b’ shows the registered tumor regions overlaid on the ERC-inMR. Column ‘c’ 

shows the original ERC-inMR.
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Figure 5. 
Registration accuracy metric calculation workflow - (a) Feature marked masked PWM. (b) 

Corresponding features on ERC-inMR. (c) Warped feature embedded masked PWM. (d) 

Feature embedded masked ERC-inMR.
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Table 1

Multi–user registration accuracy metric statistics.

Mean/Min/Max (mm) Std. Dev. (mm) # Points

Total 1.54/0.19/3.26 0.64 103

Observer1 1.57/0.43/2.92 0.65 36

Observer 2 1.51/0.19/3.26 0.64 67

J Magn Reson Imaging. Author manuscript; available in PMC 2016 April 01.


