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Abstract

Non-protective immune responses to highly virulent Cryptococcus neoformans strains, such as

H99, are associated with Th2-type cytokine production, alternatively activated macrophages and

inability of the host to clear the fungus. In contrast, experimental studies show that protective

immune responses against cryptococcosis are associated with Th1-type cytokine production and

classical macrophage activation. The protective response induced during C. neoformans strain

H99γ (C. neoformans strain H99 engineered to produce murine interferon-γ) infection correlates

with enhanced phosphorylation of the transcription factor STAT1 in macrophages; however, the

role of STAT1 in protective immunity to C. neoformans is unknown. The current studies
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examined the effect of STAT1-deletion in murine models of protective immunity to C.

neoformans. Survival and fungal burden were evaluated in WT and STAT1 KO mice infected with

either strain H99γ or C. neoformans strain 52D (unmodified clinical isolate). Both strains H99γ

and 52D were rapidly cleared from the lungs, did not disseminate to the CNS, or cause mortality

in the WT mice. Conversely, STAT1 KO mice infected with H99γ or 52D had significantly

increased pulmonary fungal burden, CNS dissemination, and 90-100% mortality. STAT1-deletion

resulted in a shift from Th1 to Th2 cytokine bias, pronounced lung inflammation and defective

classical macrophage activation. Pulmonary macrophages from STAT1 KO mice exhibited defects

in nitric oxide production correlating with inefficient inhibition of fungal proliferation. These

studies demonstrate that STAT1 signaling is essential not only for regulation of immune

polarization but for the classical activation of macrophages that occurs during protective anti-

cryptococcal immune responses.

Introduction

Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an

opportunistic fungal pathogen and frequent cause of life-threatening infection in individuals

with impaired T cell function (i.e., persons with AIDS, lymphoid malignancies, and

recipients of immunosuppressive therapies) (1-13). Cryptococcosis is considered an AIDS-

defining illness and the most common mycological cause of morbidity and mortality among

AIDS patients (14). Global estimates show that one million cases of cryptococcal meningitis

occur in AIDS patients each year resulting in approximately 625,000 deaths (14). C.

neoformans also remains the third most common invasive fungal infection among organ

transplant recipients (13, 15, 16). Current anti-fungal drug therapies are oftentimes rendered

ineffective due to the development of drug resistance or an inability of the host’s immune

system to participate in eradicating the pathogen (17-19), necessitating new therapeutic

strategies that consider the immune status of the host population commonly impacted by

cryptococcal disease.

C. neoformans is ubiquitous in the environment and exposure via inhalation of desiccated

basidiospores or yeast into the lung alveoli often occurs in early childhood (20-22). The

overwhelming majority of exposures result in asymptomatic disease and possible latency in

immunocompetent individuals. However, in immunocompromised individuals, C.

neoformans can spread from the lungs to the central nervous system (CNS) resulting in life

threatening meningoencephalitis (23). Since inhalation is the principle route of entry, the

host is dependent on resident pulmonary phagocytes, such as macrophages, to contain the

pathogen and prevent dissemination from the lungs. Studies using various experimental

models of pulmonary cryptococcosis indicate that protection against C. neoformans

infection is associated with the induction of Th1-type cytokine responses (IL-2, IL-12, IFN-

γ, TNF-α), increased lymphocyte infiltration, and classical macrophage (M1) activation

(24-30). In contrast, Th2-type cytokine responses (IL-4, IL-5, and IL-13) are detrimental to

the host and are associated with alternative macrophage (M2) activation (31-33). M1

macrophages are known for their capacity to efficiently kill phagocytized organisms through

the production of reactive oxygen and nitrogen species (25, 31, 34-36). M2 macrophages,

however, are associated with wound healing and are not efficiently microbicidal against C.
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neoformans (25, 31, 34-36). M1 macrophages produce nitric oxide (NO) and L-citrulline via

inducible NO synthase (iNOS) by acting on the substrate L-arginine. Arginase-1 (Arg1) in

M2 macrophages competes with iNOS for L-arginine to produce L-ornithine and urea (37),

which is not fungicidal against C. neoformans (38, 39). Therefore, macrophage polarization

towards an M2 phenotype, which occurs during infection with wild type (WT) C.

neoformans strain H99, results in uncontrolled fungal growth, dissemination, and

exacerbation of disease (31, 35, 40, 41).

Experimental pulmonary infection in mice with a C. neoformans strain engineered to

express interferon (IFN)-γ, designated H99γ, results in Th1-type and IL-17A cytokine

responses, M1 macrophage activation, and resolution of the acute infection (26, 42).

Additionally, mice protectively immunized with C. neoformans strain H99γ developed an

M1 macrophage activation phenotype during secondary challenge with a non-IFN-γ

producing WT C. neoformans strain (H99) and displayed enhanced fungistasis and NO

production compared to macrophages from non-protectively immunized mice following

secondary challenge (24). Specifically, resolution of pulmonary C. neoformans infection in

protectively immunized mice was associated with M1 macrophage activation that coincided

with robust signal transducer and activator of transcription 1 (STAT1) phosphorylation (24).

STAT1 signaling via the IFN-γ-JAK1/2-STAT1 pathway leads to the formation of phospho-

STAT1 homodimers that translocate to the nucleus, bind to gamma-activated sequences

(GAS), and promote the transcription of STAT1 target genes (reviewed in (43)). STAT1

signaling and its downstream products have been tied to the generation of Th1-type immune

responses (44-46) that are protective against cryptococcosis and associated with M1

macrophage activation (24-30, 32). Little is known about the role of STAT1 in antifungal

immunity. Specific mutations that alter STAT1 function (loss-of-function or gain-of-

function mutations) have been shown to increase susceptibility/interfere with host defenses

to fungal infections such as chronic mucocutaneous candidiasis (47, 48),

coccidioidomycosis and histoplasmosis (49). The role of STAT1 signaling during

Cryptococcus infections has not previously been studied.

The objective of the studies presented herein was to determine the role of STAT1 in the

generation of protective immunity against C. neoformans, including its role in mediating M1

macrophage activation and anti-fungal activity in mice. Utilizing STAT1 KO mice, we

demonstrated that STAT1 signaling promotes Th1-type immune responses, but most

importantly, is required for M1 macrophage activation and subsequent protection against

experimental pulmonary infection with C. neoformans strain H99γ. These data provide the

first evidence of an effector cell population and the intracellular signaling mechanism by

which the host mounts a protective immune response to C. neoformans.

Methods

Mice

Female STAT1 KO (129S6/SvEv-Stat1tm1Rds) and WT controls mice (129S6/SvEvTac)

from Taconic Farms (Germantown, NY) and female IFN-γ KO (C.129S7(B6)-Ifngtm1Ts/J)

and WT control mice (BALB/cJ) from The Jackson Laboratory (Bar Harbor, ME) were used

throughout these studies. Mice were housed at The University of Texas at San Antonio
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Small Animal Laboratory Vivarium and handled according to guidelines approved by the

Institutional Animal Care and Use Committee.

Strains and media

C. neoformans strain H99γ (derived from H99 serotype A, mating type α) (50) and C.

neoformans strain 52D (serotype D) (a kind gift from Dr. Brian Wickes, University of Texas

Health Science Center at San Antonio, San Antonio, TX) was recovered from a 15%

glycerol stock stored at −80°C prior to use in the experiments described in this study. The

strain was maintained on yeast extract/peptone/dextrose (YPD) medium agar plates (Becton

Dickinson, Sparks, MD). Yeast cells were grown for 16-18 h at 30°C with shaking in liquid

YPD broth, collected by centrifugation, washed three times with sterile phosphate buffered

saline (PBS), and viable yeasts were quantified using trypan blue dye exclusion on a

hemacytometer.

Pulmonary Cryptococcal Infections

Mice were anesthetized with 2% isoflurane using a rodent anesthesia device (Eagle Eye

Anesthesia, Jacksonville, FL) then given an intranasal inoculation with 1 × 104 CFU of C.

neoformans strains H99γ or 52D in 50 μl of sterile PBS. The inocula used for nasal

inhalation were verified by quantitative culture on YPD agar. Mice were euthanized on

predetermined days by CO2 inhalation followed by cervical dislocation, and lung tissues

were excised using aseptic technique. For survival analyses, mice were inoculated as stated

above and monitored twice daily for up to 60 days post-inoculation.

Fungal Burden

For fungal burden analysis, the left lobe of the lung was removed and homogenized in 1ml

sterile PBS. A 50 μl aliquot was removed, serially diluted in sterile PBS, and plated on YPD

agar supplemented with chloramphenicol. Plates were incubated for 48 hours at 30°C and

fungal colonies recorded.

Cytokine Analysis

Cytokine production in lung tissues was analyzed using the Bio-Plex protein array system

(Luminex-based technology; Bio-Rad Laboratories, Hercules, CA). Briefly, the left lobe of

the lung was excised and homogenized in ice-cold sterile PBS (1 ml). An aliquot (50 μl) was

taken to quantify the pulmonary fungal burden and an anti-protease buffer solution

containing PBS, protease inhibitors (inhibiting cysteine, serine, and other

metalloproteinases), and 0.05% Triton X-100 was added to the homogenate and then

clarified by centrifugation (800 × g) for 10 min. Supernatants from pulmonary homogenates

were assayed for the presence of IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10,

IL-12(p40), IL-12(p70), IL-13, IL-17A, CCL5/RANTES, Eotaxin, CXCL1/KC, CCL3/

MIP-1α, CCL4/MIP-1β, CCL2/MCP-1, G-CSF, GM-CSF, TNF-α, and IFN-γ.

Pulmonary leukocyte isolation

Lungs were excised on days 7 and 10 post-inoculation and digested enzymatically at 37°C

for 30 min in 10 ml digestion buffer (RPMI 1640 and 1 mg/ml collagenase type IV (Sigma-
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Aldrich, St. Louis, MO) with intermittent (every 10 min) stomacher homogenizations. The

digested tissues were then successively filtered through sterile 70- and 40-μm nylon filters

(BD Biosciences, San Diego, CA) to enrich for leukocytes, and then cells were washed with

sterile HBSS. Erythrocytes were lysed by incubation in NH4Cl buffer (0.859% NH4Cl, 0.1%

KHCO3, 0.0372% Na2EDTA [pH 7.4]; Sigma-Aldrich) for 3 min on ice followed by a 2-

fold excess of PBS. The resulting leukocyte population was then enriched for macrophages

by positive selection using magnetic beads labeled with F4/80 antibody (Miltenyi Biotec,

Auburn, CA) according to the manufacturer’s recommendations.

Real-time PCR Analysis

Total RNA was isolated from purified F4/80+ cells using TRIzol reagent (Invitrogen,

Carlsbad, CA) and then DNase (Qiagen, Germantown, MD) treated to remove possible

traces of contaminating DNA according to the manufacturer’s instructions. Total RNA was

subsequently recovered using the Qiagen RNeasy kit. cDNA was synthesized from 1 μg

total RNA using the oligo(dT) primer and reagents supplied in the SuperScript III RT kit

(Invitrogen) according to the manufacturer’s instructions. The cDNA was used as a template

for real-time PCR analysis using the TaqMan gene expression assay (Applied Biosystems,

Foster City, CA) according to the manufacturer’s instructions. All real-time PCR reactions

were performed using the 7300 real-time PCR system (Applied Biosystems). For each real-

time PCR reaction, a master mix was prepared on ice with TaqMan gene expression assays

specific for iNOS, IFN-γ, TNF-α, CXCL9, CXCL10, IRF-1, SOCS-1, IL-17A, Ym1, FIZZ1,

Arg1, IL-4, IL-13, and CD206 (Applied Biosystems). TaqMan rodent GAPDH (Applied

Biosystems) was used as an internal control. The thermal cycling parameters contained an

initial denaturing cycle of 95°C for 10 min followed by 40 cycles of 95°C for 15s and 60°C

for 60s. Results of the real-time PCR data were derived using the comparative Ct method to

detect relative gene expression as described previously (26).

Immunohistochemistry and Histology

Mice were sacrificed according to approved protocols, and the lungs were immediately

perfused with sterile PBS by transcardial perfusion through the right ventricle. The

pericardium and trachea were exposed by dissection, and an incision was made in the

trachea for the insertion of a sterile flexible cannula attached to a 3-ml syringe. The lungs

were slowly inflated with 0.5-0.7 ml 10% ultrapure formaldehyde (Polysciences, Inc.,

Warrington, PA), excised and immediately fixed in 10% ultrapure formaldehyde for 24-48

hours. The lungs were then transferred to 70% ethanol and subsequently mounted into

cassettes and paraffin embedded by personnel at The University of Texas Health Science

Center at San Antonio Histology and Immunohistochemistry Laboratory. After paraffin

embedding, 5-mm sections were cut and stained using hematoxylin-eosin (H&E) with

mucicarmine at McClinchey Histology Labs, Stockbridge, MI. Sections were analyzed with

light microscopy using a Nikon microscope and microphotographs taken using Digital

Microphotography system DFX1200 with ACT-1 software (Nikon Co, Tokyo, Japan) at the

Ann Arbor VA Health System.
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Macrophage Anti-cryptococcal Assay, ROS Detection Assay and NO Production Assay

Cell viability and quantity of F4/80+-enriched macrophage populations were assessed using

trypan blue exclusion in a hemacytometer. Macrophages were cultured at a density of 5 ×

105 cells per well in a 96-well tissue culture plate in RPMI 1640 (without phenol red) (Life

Technologies, Grand Island, NY) supplemented with 10% heat-inactivated fetal bovine

serum (FBS), 2mM L-glutamine, and 100 μg/ml penicillin-streptomycin (complete

medium). Macrophages were incubated in complete medium at 37°C with 5% CO2. Initial

fungal burden was determined by lysis of the macrophages using sterile deionized water

followed by serial dilution and plating on YPD agar supplemented with chloramphenicol

(Mediatech, Manassas, VA) for 48 h at 30°C. After 24 h incubation, cell supernatants were

collected and an aliquot (50ul) was used to determine NO production with Griess reagent

(Sigma-Aldrich) according to manufacturer’s instructions. Light absorbance values were

measured at 540 nm using a BioTek Elx808 absorbance microplate reader with Gen5

v1.04.5 software. Alternatively, F4/80+ macrophages were isolated and adjusted to 5 × 105

cells per well as described above and ROS measured using CellROX® Deep Red Reagent

(Life Technologies) according to manufacturer’s instructions and measured using BD

FACSArray software™ on a BD FACSArray flow cytometer (BD Biosciences).

Flow cytometry

Standard methodology was employed for the direct immunofluorescence of pulmonary

leukocytes. Briefly, in 96-well U-bottom plates, 100 μl containing 1 × 106 cells in PBS + 2%

FBS (FACS buffer) were incubated with 50 μl of Fc Block™ (BD Biosciences) diluted in

FACS buffer for 5 minutes to block non-specific binding of antibodies to cellular Fc

receptors. Subsequently, an optimal concentration of fluorochrome-conjugated antibodies

(between 0.06-0.5 μg/1 × 106 cells in 50 μl of FACS buffer) were added in various

combinations to allow for dual or triple staining experiments, and cells were incubated for

30 minutes at 4°C. Following incubation, the cells were washed three times with FACS

buffer and were fixed in 200 μl of 2% ultrapure formaldehyde (Polysciences, Inc.,

Warrington, PA) diluted in FACS buffer (fixation buffer). Cells incubated with either FACS

buffer alone or single fluorochrome-conjugated antibodies were used to determine positive

staining and spillover/compensation calculations and the flow cytometer determined

background fluorescence. The samples were analyzed using BD FACSArray software™ on a

BD FACSArray flow cytometer (BD Biosciences). Dead cells were excluded on the basis of

forward angle and 90° light scatter. For data analyses, 30,000 events (cells) were evaluated

from a predominantly leukocyte population identified by back-gating from CD45+-stained

cells. The absolute number of total leukocytes was quantified by multiplying the total

number of cells observed by hemacytometer counting by the percentage of CD45+ cells

determined by flow cytometry. The absolute number of leukocytes (CD45+ cells),

CD4+/CD3+ T cells, CD8+/CD3+ T cells, CD19+/B220+ B cells, PMNs (1A8+/CD45+),

MΦs (F4/80+/CD45+), DCs (CD11bint/CD11c+/CD45+), NK cells (Nkp46+/DX5+), NKT

cells (Nkp46+/DX5+/CD4+), and eosinophils (SiglecF+/CD11bint) was determined by

multiplying the percentage of each gated population by the total number of CD45+ cells.
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Statistical analysis

The unpaired Student’s t test was used to analyze fungal burden, cytokine/chemokine levels,

pulmonary cell populations, ROS and NO Assays (two-tailed) using GraphPad Prism

version 5.00 for Windows (GraphPad Software, San Diego, CA) to detect statistically

significant differences. The One-Way ANOVA with Tukey’s Post-Test was used for real-

time PCR analysis (GraphPad Software) to detect significant differences. Survival data was

analyzed using the log-rank test (GraphPad Software). Significant differences were defined

as *p < 0.01, **p < 0.001 or ***p < 0.0001.

Results

STAT1 is critical for the induction of protection against C. neoformans infection in mice

Previous studies in our lab demonstrated that experimental pulmonary infection with C.

neoformans strain H99γ in BALB/c and A/Jcr mice (24, 26, 50-52) and C129 mice

(unpublished results) results in clearance of the acute infection and the induction of

protective immunity against a subsequent challenge with a WT C. neoformans strain that

does not produce IFN-γ. Protection in H99γ-immunized mice against WT C. neoformans

challenge occurred concurrent to the induction of STAT1 signaling within macrophages and

M1 macrophage activation (24). To determine the requirement for STAT1 signaling in

mediating protection against pulmonary cryptococcosis, STAT1 KO (129S6/SvEv-

Stat1tm1Rds) and WT controls (129S6/SvEvTac) were intranasally inoculated with H99γ.

Mice survival (morbidity) was monitored for 60 days post-inoculation in one subgroup,

while pulmonary fungal burden was quantified in another subgroup of infected animals at

selected time points. WT mice had a 90% survival rate at day 60 post-inoculation with H99γ

(Figure 1A). In comparison, STAT1 KO mice began to succumb to H99γ infection on day

12 post-inoculation and had only a 10% survival rate by day 60 post-inoculation (p <

0.0001; Figure 1A) with a median survival time of 18 days. The fungal burden was

evaluated on days 7 and 10 post-inoculation with H99γ, i.e. at the time points prior to the

onset of mortality in STAT1 KO mice, which ensured the most accurate statistical analysis

of the fungal burden. STAT1 KO mice showed significantly higher pulmonary fungal

burden on day 10 post-inoculation compared to infected WT mice (p < 0.0001; Figure 1B).

Fungal burden in the WT mice did not increase from day 7 to day 10, indicating that the host

was able to control the growth of the yeast. However, fungal burden in STAT1 KO mice

was significantly increased on day 10 compared to day 7 in these mice (p < 0.0001),

revealing that they were unable to control proliferation of C. neoformans in the lungs.

Therefore, STAT1 signaling is required for control of pulmonary infection with C.

neoformans strain H99γ in mice.

To determine the requirement of STAT1 signaling for protection against infection with a

WT strain of C. neoformans, WT and STAT1 KO mice were intranasally inoculated with an

unmodified clinical isolate, C. neoformans strain 52D, and survival monitored for 45 days

post-infection. Inoculation with this strain is generally controlled in BALB/c mice, however,

it is capable of inducing a chronic infection in C57BL/6 mice (53, 54). All WT mice

infected with C. neoformans strain 52D were alive and appeared healthy upon conclusion of

the experiment (Figure 2A). In contrast, all STAT1 KO mice succumbed to the infection or
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were moribund by day 28 with a median survival time of 26.5 days. Post-mortem analysis

showed that moribund STAT1 KO mice had significantly higher pulmonary fungal burden

compared to WT mice (p < 0.01; Figure 2B). In addition, STAT1 KO mice showed evidence

of massive CNS dissemination (Figure 2B) unlike the WT mice which were negative for

CNS fungal cultures with the exception of 1 out of 10 WT mice that had detectable (1

colony) C. neoformans in the brain. These results indicate that STAT1 signaling is required

for the induction of immune protection against C. neoformans and prevention of fungal

dissemination into the CNS.

STAT1 deletion results in the development of severe pathology in C. neoformans strain
H99γ infected lungs

To further characterize the defect in pulmonary control of cryptococcal growth in STAT1

KO compared to WT mice, we examined histological sections of the infected and uninfected

mouse lungs at day 10 post-inoculation. While the uninfected lungs of WT and STAT1 KO

mice showed normal morphology (Figure 3A-B), histological examination of infected lungs

at day 10 post-inoculation revealed the development of severe lung pathology in the absence

of STAT1 expression (Figure 3D,F). The inflamed areas in the lungs of the WT mice at day

10 show that both infection and the inflammatory response are well contained within

granulomatous foci, while the majority of the lung tissue remains clear of the infection/

inflammation (Figure 3C). In contrast, virtually all lung tissue from STAT1 KO mice is

severely laden with cryptococcal organisms and infiltrated with inflammatory cells (Figure

3D), consistent with uncontrolled growth of the microbe and a non-protective immune/

inflammatory response. Analysis of histological sections under high power magnification

demonstrates that in addition to major differences in fungal burden, cellular composition of

inflammatory infiltrates varies between the WT and STAT1 KO mice. Minimal presence of

cryptococcal organisms and predominance of lymphoid cells and macrophage-type cells

within the infiltrates of WT mice is consistent with the development of a protective immune

response (Figure 3E). In contrast, the abundance of cryptococcal organisms accompanied by

mixed inflammatory infiltrates with enhanced presence of granulocytes (eosinophils and

PMNs) and lower frequency of lymphoid cells characterize the lesions within the infected

lungs of STAT1 KO mice (Figure 3F). Such severe pneumonia and lung consolidation could

explain the mortality observed in STAT1 KO mice, and indicate that the immune response

in the lungs of STAT1 KO mice, albeit robust, is non-protective.

STAT1 deletion results in altered inflammatory cell accumulation in C. neoformans strain
H99γ infected lungs

Our histology data suggest that STAT1 deletion results in a significantly altered immune/

inflammatory response in H99γ infected lungs. To further characterize and quantify these

differences, flow cytometry analysis of isolated pulmonary leukocytes from enzymatically

dispersed lungs of WT and STAT1 KO mice was performed at days 7 and 10 post-

inoculation. A trend towards increased leukocyte infiltration to the lungs of the STAT1 KO

mice has been noted at day 10. However, we observed no statistically significant differences

in total CD45+ leukocyte numbers (Figure 4A), suggesting that the differences in

histological appearance of the inflammatory response were caused predominantly by

differential distribution/density of the inflammatory infiltrates, rather than the major changes
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in total leukocyte number. Additionally, there were no significant differences in the numbers

of infiltrating leukocyte subsets including macrophages, dendritic cells, CD4+ and CD8+ T

cells, B cells, and neutrophils (Figures 4B-G) at days 7 and 10 post-inoculation with H99γ in

STAT1 KO mice compared to WT mice. However, the absolute number of NK cells in

STAT1 KO mice were significantly lower (p < 0.01; Figure 4I) and the absolute number of

CD4+ T cells in STAT1 KO mice trended lower (p < 0.08; Figure 4D) at day 10 post-

inoculation compared to WT mice. In contrast, eosinophils, which are associated with a

Th2-type immune response and a hallmark of disease progression, were significantly

increased in STAT1 KO mice at days 7 and 10 post-inoculation compared to WT mice (p <

0.01; Figure 4H). Neutrophils also showed an increasing trend (p < 0.146; Figure 4G) in

STAT1 KO mice at day 10 post-inoculation. Collectively, these data suggest that STAT1 is

not required for induction of the inflammatory response/recruitment of leukocytes into the

lungs; however, STAT1 ablation does impact the phenotype of the cellular response to C.

neoformans strain H99γ.

STAT1 signaling does not affect the induction of a cell-mediated immune response, but
does contribute to an increased pro-inflammatory cytokine response and a shift in Th1-
type/Th2-type cytokine bias

The changes in fungal control and cellular composition of the inflammatory infiltrates

suggested that STAT1 expression affected the type of immune response/cytokine response

during pulmonary inoculation with C. neoformans strain H99γ. We next determined how

STAT1 deletion impacted cytokine expression in the infected lungs by analyzing lung

homogenates from STAT1 KO and WT mice on days 7 and 10 post-inoculation with C.

neoformans strain H99γ for cytokine protein content. The levels of Th1-type cytokines IL-2,

IL-12p40 and IL-12p70 in STAT1 KO mice were similar relative to WT mice on day 7 post-

inoculation (Table 1). IL-12p70 was significantly increased in the STAT1 KO mice

compared to WT mice at day 10 post-inoculation (p < 0.01), however, IL-12p40 levels were

significantly decreased at day 10 post-inoculation in STAT1 KO mice compared to WT

mice (p < 0.001). IFN-γ levels were significantly decreased at days 7 (p < 0.01) and 10 (p <

0.001) post-inoculation in STAT1 KO mice compared to WT mice, despite the increase in

pulmonary fungal burden of the IFN-γ producing C. neoformans strain in the lungs of

STAT1 KO mice (Fig 1B). The available methodology does not allow us to directly

distinguish what portion of the IFN-γ measured in vivo is derived from the IFN-γ producing

C. neoformans strain versus the host leukocytes. To evaluate whether differences in IFN-γ

levels are due to changes in production by the host or the IFN-γ producing C. neoformans

strain, IFN-γ KO (C.129S7(B6)-Ifngtm1Ts/J) and WT controls (BALB/cJ) were inoculated

with C. neoformans strain H99γ as described above and IFN-γ protein levels quantified from

lung homogenates at day 7 post-inoculation (4-6 mice per group). There was no significant

difference in pulmonary IFN-γ production in WT mice (17.6 ± 1.947 pg/ml) compared to

IFN-γ KO mice (11.00 ± 2.203 pg/ml) and overall amounts of IFN-γ were low. This

comparison suggests that the majority of IFN-γ detected in the STAT1 KO mice was

produced by the microbe. In contrast, H99γ infected WT mice have greater levels of IFN-γ

in the lungs, indicating that the host's cells produce a detectable amount of IFN-γ (p < 0.05)

above what is produced by the microbe alone and that this amount contributes to the global

level of IFN-γ in the infected lungs of the WT mice. Thus, the data acquired from IFN-γ KO
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mice suggests that the pulmonary leukocytes in STAT1 KO mice have diminished IFN-γ

production when infected with the IFN-γ producing C. neoformans strain.

The STAT1 KO mice demonstrated significantly higher levels of Th2-type cytokine IL-4 in

the lungs at day 7 post-inoculation compared to WT mice (p < 0.01). However, IL-4 levels

on day 10 and levels of IL-5 and immune-regulatory cytokine IL-10 in STAT1 KO and WT

mice were not significantly different during the time course evaluated. Overall, the cytokine

milieu indicates that a drift in Th1/Th2 cytokine balance away from Th1 and towards Th2

occurred early in C. neoformans strain H99γ inoculated STAT1 deficient mice. However,

the subsequent increases in pro-inflammatory cytokine and chemokine production in the

lungs of STAT1 KO mice compared to WT type mice during H99γ infection were much

more dramatic, an indication of aberrant immune responses.

We observed significant increases in IL-17A at days 7 and 10 post-inoculation (p < 0.0001)

and of IL-1β, IL-6, G-CSF, and TNF-α at day 10 post-inoculation (p < 0.01) within lung

homogenates of STAT1 KO mice compared to WT mice during C. neoformans strain H99γ

infection (Table 1). IL-1α levels were also increased, though not significantly, at day 10

post-inoculation in the STAT1 KO mice compared to WT mice. Additionally, we observed

significantly decreased CCL5 production (p < 0.0001) at day 7 and 10 post-inoculation in

STAT1 KO mice compared to WT mice but significantly increased CXCL1 and CCL2

production (p < 0.001) at day 10 post-inoculation in STAT1 KO mice compared to WT

mice. These data show that more robust pro-inflammatory and altered chemokine responses

occur in STAT1 KO mice compared to the WT mice during infection with C. neoformans

strain H99γ. This increase in inflammatory cytokines was highly pronounced at day 10,

consistent with an increasingly dysregulated inflammatory response promoting

inflammatory pathology in response to the expansion of C. neoformans in the lungs.

STAT1 signaling is required for the induction of classically activated macrophages

While STAT1 signaling was required to mediate protection against pulmonary

cryptococcosis, the changes in inflammatory responses and cytokine profiles could only

partially explain the severe defect in fungal clearance of STAT1 KO mice. We sought to

establish a causal link between STAT1 signaling and M1 macrophage activation, which we

have previously shown correlates with disease resolution (24). Therefore, to examine

macrophage polarization, we quantified the expression of genes associated with M1 and M2

macrophage activation in macrophages isolated from H99γ infected lungs of STAT1 KO

compared to WT mice. Pulmonary F4/80+ macrophages were isolated at days 7 and 10 post-

inoculation with H99γ and total RNA was evaluated for the expression of genes commonly

associated with macrophage activation using real-time PCR (Figure 5). Gene expression of

the M1 activation marker iNOS was significantly decreased in STAT1 KO mice compared

to WT mice at day 7 by 200-fold (p < 0.0001; Figure 5A) and at day 10 by 10-fold (p <

0.001). Conversely, mRNA expression for M2 macrophage activation markers Arg1 and

CD206 were significantly increased at days 7 (p < 0.01 and p < 0.001, respectively; Figure

5B) and 10 (p < 0.01) post-inoculation in STAT1 KO mice compared to WT mice. M2

activation marker FIZZ1 expression was also increased in macrophages from STAT1 KO

mice, though not significantly, and Ym1 expression was significantly increased in
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macrophages from STAT1 KO mice at day 7 post-inoculation (p < 0.001; Figure 5B) and

increased, though not significantly, at day 10 post-inoculation compared to expression in

macrophages from WT mice. Gene expression of the pro-inflammatory cytokine IFN-γ was

increased in macrophages from WT mice, though not significantly, compared to

macrophages from STAT1 KO mice at days 7 and 10, however no difference was observed

in the expression of TNF-α or IL-17A. Gene expression for cytokines IL-4 and IL-13, which

are associated with a non-protective Th2-type response and M2 macrophages, was not

different in macrophages from STAT1 KO mice compared to WT mice. Also, gene

expression of CXCL9 and CXCL10, downstream chemokines in the STAT1 signaling

pathway, was significantly decreased in macrophages from STAT1 KO mice compared to

WT mice (p < 0.0001; Figure 5A). Gene expression of CXCL9 was increased by

approximately 13,000-fold and CXCL10 was increased by 300-fold at day 7 post-

inoculation, suggesting an increase in chemokine-induced infiltration of leukocytes to the

site of infection. Furthermore, gene expression for transcription factor IRF-1, which is

induced by STAT1, was significantly decreased in macrophages from STAT1 KO mice

compared to macrophages WT from mice (p < 0.0001; Figure 5A). Altogether, the gene

expression profile demonstrates that STAT1 signaling is required for M1 macrophage

polarization during pulmonary C. neoformans H99γ infection.

STAT1 signaling is important for optimal macrophage nitric oxide production and anti-
fungal activity against C. neoformans

NO and reactive oxygen species (ROS) are by-products of M1 activated macrophages and

these molecules together account for the oxidative microbicidal arsenal of phagocytes. Both

NO and ROS are thought to be important for C. neoformans killing by host cells (24, 55-60).

To assess the anti-fungal activity of STAT1 deficient macrophages in response to C.

neoformans strain H99γ, we isolated pulmonary macrophages from STAT1 KO and WT

mice at days 7 and 10 post-inoculation. The macrophages were lysed to release any

intracellular cryptococci and the fungal burden was determined in order to quantify anti-

fungal efficiency of macrophages. Macrophages were also examined for ROS production or

cultured for 24 hours in vitro and nitrite production measured in the culture supernatants.

Additional C. neoformans cells were not added to the cell culture medium as the

macrophages were already infected in vivo.

We observed no significant difference in the number of cryptococci found within

macrophages obtained from STAT1 KO and WT mice at day 7 post-inoculation; however,

significantly more yeast were found within macrophages isolated from STAT1 deficient

mice compared to macrophages from WT mice at day 10 post-inoculation (p < 0.001; Figure

6A). Furthermore, the morphology of intracellular organisms was different between WT and

STAT1 KO mice. By day 10, macrophages from WT mice contained predominantly

degraded organisms as documented by the presence of vacuoles that contained contracted

and/or fragmented yeasts, or the capsular material alone (Figure 6B). In contrast,

macrophages from STAT1 KO mice contained large and heavily capsulated yeast cells that

grouped in multi-cellular clusters and robustly stained with mucicarmine (Figure 6B),

consistent with viable and intracellular proliferating yeasts and illustrating the diminished

capacity of the macrophages for control of intracellular fungal proliferation.
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To further demonstrate a molecular basis for the diminished control of intracellular

cryptococci by STAT1 KO mice, we assessed ROS and NO production by macrophages

isolated from WT and STAT1 KO mice at days 7 and 10 post-inoculation. At day 7 post-

inoculation, a small but significant reduction of ROS was detected in macrophages from

STAT1 KO mice compared to WT mice (p < 0.0001; Figure 6C). However, at day 10 post-

inoculation, there was no difference in the ROS production by macrophages between the

two groups. This suggests that STAT1 plays only a minor role in induction of ROS

production by macrophages and that ROS generation is insufficient for control of C.

neoformans proliferation within macrophages (Figure 6A). NO production was assessed by

measuring nitrite accumulation in the supernatants of the 24h macrophage cell cultures.

Macrophages isolated from STAT1 KO mice inoculated with C. neoformans strain H99γ at

days 7 and 10 post-inoculation had a profound decrease in nitrite accumulation following

24h of culture compared to macrophages from H99γ infected WT mice (p < 0.01, p <

0.0001, respectively; Figure 6D). These data correlate with the significant decrease in gene

expression for iNOS, the enzyme that catalyzes NO production and hallmark marker of M1

macrophage activation, in macrophages from STAT1 KO mice compared to WT mice

(Figure 5A). Thus, loss of STAT1 signaling results in profound defect in NO production by

macrophages in response to C. neoformans H99γ infection which correlates with decreased

anti-fungal efficiency and increased intra-macrophage residence of cryptococci.

Discussion

The identification of specific mechanisms that mediate the induction of protective immune

responses following C. neoformans infection are likely to aid in the development of novel

immunotherapies for treatment of cryptococcosis. We have developed a murine infection

model with C. neoformans strain H99γ, a strain that secretes murine IFN-γ, which rapidly

induces: 1) a protective Th1-type immune response in mice, 2) classical, M1, macrophage

activation, and 3) resolution of infection with a protective memory (24, 26, 42, 50-52). This

immune response to C. neoformans strain H99γ results in up-regulation of the STAT1

pathway in macrophages. STAT1 has been shown to play a major role in mediating immune

and pro-inflammatory actions of IFN-γ (61), a cytokine important for regulation of the

immune response (reviewed in (62)). Signaling via the IFN-γ-JAK1/2-STAT1 pathway is

imperative for resistance to various intracellular pathogens including Listeria

monocytogenes and Toxoplasma gondii (61, 63-65). Previous studies have shown that loss

of STAT1 signaling in mice results in a complete lack of responsiveness to IFN-γ and IFN-

α, correlating with high sensitivity to infection by some microbial pathogens (61, 65, 66).

However, the role of STAT1 in the development of protective immunity to C. neoformans

has not been investigated. Here we present for the first time that STAT1 is required for the

generation of immune protection against C. neoformans. Our data further highlight that

STAT1 is not absolutely required for the development of T cell mediated immune responses;

however, it contributes to Th1 development and is critical for M1 polarization of

macrophages and their fungicidal function.

The present studies were designed to evaluate a putative role of STAT1 signaling in

mediating protection against pulmonary infection with C. neoformans. We previously

examined the JAK/STAT pathway and TLR pathways in which we observed increased gene
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expression of members of the IFN-γR pathway, including STAT1, IRF-1, CXCL9, and

CXCL10 (24). However, we detected no changes in expression of other STAT genes,

MAPK genes, or genes within the TLR pathways (24). Our results demonstrate that STAT1

deficiency in mice results in increased fungal burden and decreased survival when

inoculated with C. neoformans strain 52D and C. neoformans strain H99γ, while WT mice

were able to clear infection with both of these strains. Furthermore, inoculation with C.

neoformans strain 52D resulted in increased dissemination to the brain in STAT1 KO mice

compared to WT mice. A similar trend occurred during inoculation with C. neoformans

strain H99γ where lack of STAT1 signaling also resulted in increased trafficking of the yeast

to the brain (data not shown). The increased trafficking to the CNS in the STAT1 deficient

mice may be due to the loss of control of the pulmonary infection which then leads to

dissemination. Altogether, these data indicate that STAT1 signaling has a role in prevention

of dissemination to the CNS. Collectively, these results indicate that STAT1 signaling is

essential for the generation of the protective immune response to C. neoformans infection in

mice.

The data further show that loss of STAT1 signaling did not result in deficient leukocyte

accumulation in the lungs. A trend towards increased leukocyte recruitment and an increase

in the production of some but not all pro-inflammatory cytokines and chemokines occurred

within the lungs of STAT1 KO mice. These data imply that the deficient cryptococcal

clearance from the lungs of inoculated STAT1 KO mice is a result of a dysregulated

immune response. Consistent with this view, the overall magnitude of the T cell response

did not appear to be defective in the STAT1 KO mice. IFN-γ and STAT1 induce the

transcription factor T-bet, which in turn promotes Th-1 type T cell development (67, 68).

Additionally, T-bet suppresses GATA3, a transcription factor that aids in regulation of Th2-

type immune responses (69-72). Interestingly, while some decrease in Th1 cytokines was

observed, the levels of Th2-associated cytokines IL-4, IL-5, and IL-13 were not dramatically

different between WT and STAT1 deficient mice, except for IL-4 at day 7 post-inoculation.

The lack of major changes in expression of these cytokines that are transcriptionally

enhanced by GATA3, suggest that STAT1 deletion did not significantly affect GATA3

levels. These findings suggest that STAT1 is more important for execution of downstream

effector mechanisms, such as M1 macrophage activation, rather than the upstream regulation

of T cell polarizing responses during cryptococcal infection. However, further studies

including T-bet and GATA3 expression levels by T cells during cryptococcal infection in

STAT1 KO mice are needed to definitively address this point.

Apart from the increased cryptococcal antigen load, the uncontrolled inflammation may be a

result of the loss of regulatory proteins that are induced down-stream of STAT1 signaling.

We observed that transcripts for IRF-1, a regulatory protein induced by STAT1 (62, 73, 74),

were decreased in macrophages from STAT1 KO mice compared to WT mice. While IRF-1

participates in regulation of the IFN-γ/STAT1 pathway, this protein also plays a role in other

pathways to restrain the pro-inflammatory immune response, thus limiting damage to the

host. Macrophages from STAT1 KO mice also had a decrease in transcripts for CXCL9 and

CXCL10, IFN-γ induced chemokines that play a role in attracting other immune cells

including antigen-specific Th1 cells and NK cells (46, 75). This may partially explain the
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decreasing trend in CD4+ T cells and the significant decrease in NK cells trafficking into the

lungs of the STAT1 deficient mice at day 10 post-inoculation. The necessity of NK cell

activity during cryptococcal infection is unclear. While it has been demonstrated that the

absence of NK cells results in a reduction of fungal clearance from the lungs and spleens

(76, 77), studies conducted in our laboratory show that mice depleted of NK cells maintain a

protective immune response to C. neoformans strain H99γ (unpublished results).

Additionally, CXCL9 has been reported to inhibit eosinophil infiltration (78, 79), therefore,

the decrease in CXCL9 gene expression by macrophages may be, to some degree,

responsible for the increased eosinophilia observed in the STAT1 KO mice.

It is very important for the host to be able to respond to an invading pathogen with a balance

between pro- and anti-inflammatory factors as excessive inflammation can result in severe

lung pathology and ultimately death (80, 81). Cytokine analysis of pulmonary tissue from

STAT1 KO mice showed increased levels of pro-inflammatory cytokines and a substantial

increase in pulmonary leukocyte infiltrates compared to WT mice, however, the STAT1

deficient mice were unable to eradicate the yeast and permitted rapid fungal proliferation.

This increase in pulmonary fungal burden could contribute to the increased production of

pro-inflammatory factors leading to increased inflammation. Taken together, these studies

demonstrate that though STAT1 is not required for leukocyte recruitment in response to C.

neoformans strain H99γ infection, they strongly suggest that STAT1 signaling may be

directly (through the regulatory negative feedback loops) and/or indirectly (increased fungal

burden) responsible for limiting damage-inducing inflammation.

It is accepted that macrophage activation phenotype is important for host defense against

Cryptococcus infection (24-26, 35, 36, 42, 82). Our data show that when STAT1 signaling is

ablated in the host, there is an increase in Arg1 gene expression and a decrease in iNOS

gene expression compared to WT mice. Overall, this indicates a shift in the Arg1: iNOS

ratio favoring Arg1 and M2 macrophage activation, suggesting that the loss of STAT1

signaling leads to alternative activation of macrophages which are associated with non-

protective responses to C. neoformans. Though loss of STAT1 signaling does not

significantly alter the total numbers of macrophages trafficking into the lungs during

inoculation with C. neoformans strain H99γ, it appears that it is the quality and not quantity

of macrophages that aids in eradication of the yeast. Assays measuring macrophage

production of ROS and NO, molecules associated with anti-cryptococcal activity, reveal that

STAT1 has minimal effect in promoting ROS generation but has a profound effect on NO

production. While sufficient in ROS generation, STAT1 deficient macrophages produced

significantly less NO compared to WT macrophages, which correlated with a defect in

cryptococcal killing. These effects are attributed to dramatically decreased iNOS expression

but also significantly increased Arg1. Arg1 competes with iNOS for the substrate L-arginine

(37), therefore, the observed decrease in NO production in STAT1 deficient macrophages

could be linked to the changes in both of these enzymes. In support of this theory, previous

studies have shown that the ratio Arg1/iNOS is predictive of the fungicidal activity of

macrophages during C. neoformans infection (31, 54, 83). Our results showing that STAT1

deficiency result in an over one hundred-fold change in Arg1/iNOS ratio at day 7 and day 10

post-infection is consistent with the diminished fungicidal capacity observed by
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macrophages from STAT1 KO mice infected with C. neoformans strain H99γ. Collectively,

our data indicate that the most important function of STAT1 in anti-cryptococcal immunity

is to mediate M1 polarization of macrophages, which is then crucial for protection against

pulmonary cryptococcosis by the production of NO with possible contribution of other

factors such as activation of lysosome enzymes, which was not investigated at this time. Our

new data combined with our previous observation of increased STAT1 phosphorylation in

macrophages from protectively immunized mice strongly suggests that this is an intrinsic

effect of STAT1 determining the fate of macrophage polarization down-stream of IFN-γ

signaling. One caveat to this conclusion is that the general STAT1 deletion also resulted in

diminished IFN-γ production in the infected lungs. Since IFN-γ is the major factor driving

M1 polarization, some of the in vivo effects of the STAT1 deletion could be associated with

an indirect effect of STAT1 on IFN-γ production. Future studies using transgenic mice with

cell-restricted STAT1 abrogation will be useful tools to specifically address this point.

The applications of these findings have the potential to spread beyond the scope of

cryptococcosis. IFN-γ activated macrophages have been shown to have fungicidal activity

against Histoplasma capsulatum (84-86) while presence of IL-4 and IL-10 results in

inhibition of apoptosis and increase in disease severity (87). M1 activated macrophages have

also been associated with antifungal effects against Aspergillus fumigatus (88), Blastomyces

dermatitidis (89-91), and Paracoccidioides brasiliensis (90, 92, 93). Therefore, the

development of therapeutics that induce M1 macrophage activation via an IFN-γ/STAT1

mechanism may provide protection against a myriad of microbial pathogens.

Collectively, our data show that STAT1 plays an essential role in the development and

execution of crucial effector mechanisms in protective immunity to pulmonary

cryptococcosis: Th1 and M1 polarizations of T cells and macrophages, respectively.

Activation of M2 macrophages, as demonstrated in the H99γ-inoculated STAT1 KO mice,

does not appear to aid in clearance of Cryptococcus from the lungs, but instead hinders anti-

fungal mechanisms. Furthermore, NO but not ROS production appears to be critical for

control of C. neoformans strain H99γ proliferation within macrophages. This is consistent

with the hypothesis that STAT1-induced M1 macrophages are essential to mount a

protective immune response against C. neoformans. These data represent the first evidence

of an intracellular signaling mechanism in an effector cell population by which the host

executes a protective immune response to C. neoformans.
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Figure 1. STAT1 signaling is required for control of pulmonary fungal burden and survival
following inoculation with C. neoformans strain H99γ

129S6/SvEv (WT) and STAT1 KO mice were given an intranasal inoculation with 1 × 104

CFU of C. neoformans strain H99γ. Mice were observed for up to 60 days for survival

analysis (A) or pulmonary fungal burden was analyzed at days 7 and 10 post inoculation

(B). Experiments are cumulative of 2 experiments using 5 mice per group per time point (A)

or 2 experiments using 4 mice per group per time point (B). (**p < 0.001; ***p < 0.0001)
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Figure 2. Control of pulmonary fungal burden, CNS dissemination, and survival during WT C.
neoformans strain 52D inoculation are dependent on STAT1 signaling
129S6/SvEv (WT) and STAT1 KO mice were given an intranasal inoculation with 1 × 104

CFU of C. neoformans strain 52D. Mice were observed for up to 45 days for survival

analysis (A) and pulmonary and brain fungal burden was analyzed post-mortem (B).

Experiments are cumulative of 2 experiments using 5 mice per group per time point. (**p <

0.001; ***p < 0.0001)
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Figure 3. Uncontrolled C. neoformans expansion and severe lung pathology develop in H99γ-
infected STAT1 KO mice by day 10 post-infection
129S6/SvEv (WT) and STAT1 KO mice were given an intranasal inoculation with 1 × 104

CFU of C. neoformans strain H99γ or left uninfected. Lungs of uninfected (A-B) and H99γ-

infected (C-F), WT (upper row) and STAT1 KO mice (lower row) were collected on day 10

post-inoculation, processed and analyzed using light microscope. Deletion of STAT1 that

did not affect morphology of uninfected lungs has resulted in the development of severe

lung pathology and massive expansion of fungus by day 10 post-inoculation. Note that the

infection and inflammatory response are contained within portions of the lungs in the WT

mice (C), while virtually all lungs are infected and consolidated in STAT1 KO mice (D).

High power images show minimal presence of cryptococcal organisms and predominantly

mononuclear cell infiltrates with lymphoid and macrophage-type morphologies within

infected lungs areas in the WT mice (E), contrasting with granulocyte-enriched mixed

cellular infiltrate surrounding clusters of proliferating cryptococci (green arrows) and in the

lungs of STAT1 KO mice (F). Histological slides were stained with H&E and mucicarmine,

and images were taken at 10X (A-D) and 40X (E-F) objective power. Images are

representative of images derived from 2 experiments using 3 mice per group.
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Figure 4. STAT1 is not required for pulmonary infiltration by immune cells in response to C.
neoformans strain H99γ infection
129S6/SvEv (WT) and STAT1 KO mice were given a pulmonary inoculation with 1 × 104

C. neoformans strain H99γ yeast cells. At days 7 and 10 post-inoculation, lungs were

excised, tissue digested, and pulmonary infiltrates were analyzed by flow cytometry.

Leukocytes were labeled with anti-CD45 antibodies for total leukocytes (A) or dual labeled

with anti-CD45 and antibodies for specific cell types (B-I) and analyzed by flow cytometry.

Data shown are the mean ± SEM of absolute cell numbers from 3 independent experiments

performed using 4 mice per group per experiment. (*p < 0.01)
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Figure 5. STAT1 signaling is required for polarization of M1 macrophages in response to
Cryptococcus strain H99γ infection
129S6/SvEv (WT) and STAT1 KO mice were inoculated with 1 × 104 CFU of C.

neoformans strain H99γ. Pulmonary F4/80+ macrophages were isolated from the lungs of

WT and STAT1 KO mice at days 7 and 10 post-inoculation with C. neoformans strain

H99γ. Total RNA was extracted and transcripts were analyzed for markers and cytokines

associated with M1 (A) and M2 (B) macrophage activation. The indicated mRNA levels

were normalized to GAPDH. Results are expressed as mean ± SEM and are cumulative of 3

experiments utilizing 5 mice per group per time point. (*p < 0.01, **p < 0.001, ***p <

0.0001)
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Figure 6. Anti-cryptococcal activity of pulmonary macrophages requires STAT1-dependent NO
production
129S6/SvEv (WT) and STAT1 KO mice were intranasally inoculated with 1 × 104 CFU of

C. neoformans strain H99γ. Macrophages were isolated from the lungs of WT and STAT1

KO mice at days 7 and 10 post-inoculation and intracellular cryptococci enumerated (A).

Lungs of H99γ -infected WT and STAT1 KO mice at day 10 post-inoculation were

processed and analyzed using a light microscope (B). Note that pulmonary macrophages in

the WT mice contain small vacuoles/inclusions consistent with degraded cryptococci and no

evidence of intracellular growth. Macrophages in STAT1 KO mice harbor large cryptococci

with well-developed capsules grouped in clusters of newly divided cells. Isolated pulmonary

macrophages were examined for ROS production (C) or cultured ex vivo for 24 h and

supernatants analyzed for the presence of NO (D). Data are expressed as the mean ± SEM

and are cumulative of 3 experiments utilizing 3-5 mice per group per time point (A, C, D) or

are representative images derived from 2 experiments utilizing 3 mice per group and

photographed at 100X objective power (B). (*p < 0.01, **p < 0.001, ***p < 0.0001)
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Table 1

Cytokine analysis of lung homogenates in WT mice compared to STAT1 KO mice

Cytokine or Chemokine

Level (pg/ml) in pulmonary homogenate tissue at day:

7 10

WT STAT 1 KO WT STAT 1 KO

Th1-type cytokine

IFN-γ 21.1 ± 3.89 12.48 ± 0.74* 20.48 ± 1.96 13.74 ± 0.79**

IL-2 32.57 ± 3.19 46.33 ± 3.47 23.34 ± 1.47 20.12 ± 1.39

IL-12 p40 81.27 ± 9.62 53.26 ± 12.15 227.46 ± 18.73 147.26 ± 18.48**

IL-12 p70 78.98 ± 12.20 88.52 ± 13.28 106.59 ± 15.52 153.50 ± 10.94*

Th2-type cytokine

IL-4 18.37 ± 5.98 41.31 ± 5.00* 10.01 ± 2.08 12.67 ± 1.58

IL-5 7.35 ± 1.02 18.02 ± 3.75 7.06 ± 0.85 8.14 ± 0.68

IL-10 31.75 ± 2.94 31.95 ± 1.74 48.52 ± 4.23 47.80 ± 2.81

IL-13 101.54 ± 14.09 106.21 ± 5.39 96.84 ± 8.14 109.80 ± 4.60

Pro-inflammatory cytokine

IL-1α 461.78 ± 114.37 310.38 ± 95.16 842.92 ± 185.14 1340.21 ± 153.47

IL-1β 2114.39 ± 549.41 2759.83 ± 845.82 3403.94 ± 654.74 5891.87 ± 611.89*

IL-6 112.10 ± 23.18 155.52 ± 59.42 72.76 ± 15.66 453.48 ± 86.54***

IL-17A 26.32 ± 3.63 240.85 ± 59.96*** 20.15 ± 1.96 209.17 ± 33.27***

TNF-α 130.3 ± 21.03 157.33 ± 17.90 239.29 ± 59.03 458.83 ± 37.63*

G-CSF 348.32 ± 43.58 909.00 ± 281.48 294.15 ± 54.97 2709.22 ± 214.13**

GM-CSF 102.30 ± 8.10 103.72 ± 10.42 100.22 ± 3.59 129.84 ± 2.87

Chemokine

Eotaxin 719.54 ± 171.16 606.13 ± 87.17 647.81 ± 35.75 705.59 ± 32.28

CXCL1/KC 765.54 ± 109.51 955.89 ± 213.18 729.03 ± 141.35 1838.48 ± 178.00***

CCL5/RANTES 715.31 ± 160.53 212.17 ± 42.91*** 1058.68 ± 110.91 132.78 ± 24.12***

CCL3/MIP-lα 770.42 ± 160.53 1114.23 ± 301.66 1215.11 ± 314.48 2080.93 ± 254.31

CCL4/MIP-1β 175.68 ± 41.64 157.79 ± 38.92 255.24 ± 43.82 305.41 ± 39.42

CCL2/MCP-1 924.17 ± 98.47 497.23 ± 98.31** 883.19 ± 146.02 1874.04 ± 192.94**

Data shown are expressed as mean ± SEM and are cumulative of 2 experiments utilizing 4 mice per group per time point.

*
p < 0.01,

**
p < 0.001,

***
p < 0.0001 compared to the infected counterpart on the same day postinoculation
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