Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o928–o929. doi: 10.1107/S1600536814016511

Crystal structure of (E)-N-phenyl-N′-[1-(thio­phen-2-yl)ethyl­idene]formo­hydrazide

C S Dileep a, K R Raghavendra b, N K Lokanath a, K Ajay Kumar c, M A Sridhar a,*
PMCID: PMC4186119  PMID: 25309259

Abstract

In the title compound, C13H12N2OS, the planes of the thio­phene and phenyl rings are nearly perpendicular to each other, making a dihedral angle of 86.42 (12)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a helical chain along the b-axis direction.

Keywords: crystal structure, thio­phene derivative, hydrogen bonding

Related literature  

For the biological activity of thio­phene derivatives, see: Bondock et al. (2010); Bellina et al. (2007); Konstanti­nova et al. (2009); Al-Said et al. (2011). For the crystal structure of a similar compound, viz. (E)-N′-[1-(thio­phen-2-yl)ethyl­idene]benzohydrazide, see: Shan et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-70-0o928-scheme1.jpg

Experimental  

Crystal data  

  • C13H12N2OS

  • M r = 244.32

  • Orthorhombic, Inline graphic

  • a = 5.4960 (7) Å

  • b = 11.0177 (13) Å

  • c = 20.249 (2) Å

  • V = 1226.1 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.22 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.20 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.604, T max = 0.662

  • 6298 measured reflections

  • 2010 independent reflections

  • 1904 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.102

  • S = 1.10

  • 2010 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 805 Friedel pairs

  • Absolute structure parameter: 0.02 (2)

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814016511/is5369sup1.cif

e-70-0o928-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016511/is5369Isup2.hkl

e-70-0o928-Isup2.hkl (98.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016511/is5369Isup3.cml

ORTEP . DOI: 10.1107/S1600536814016511/is5369fig1.tif

ORTEP view of the mol­ecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S1600536814016511/is5369fig2.tif

A mol­ecular packing view of the title compound down the a-axis.

CCDC reference: 1014287

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.39 3.202 (3) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank the University of Mysore for providing the diffractometer facility under the Institution of Excellence. CSD would like to thank the University of Mysore for the award of an RFSMS fellowship under the head DV5/Physics/389/RFSMS/2009–2010/10.07.2012.

supplementary crystallographic information

S1. Comment

In medicinal chemistry, thiophene derivatives have been very well known for their therapeutic applications. Many thiophene derivatives have been developed as chemotherapeutic agents and are extensively used. Thiophene nucleus is one of the most important heterocycles exhibiting remarkable pharmacological activities. The great interest in the synthesis of thiophene derivatives due to their diverse biological and chemical properties. Thiophene, as a prominent structural motif, is found in numerous active compounds, which contain 5-membered heterocyclic structure have attracted a lot of interests in many fields, and its rich biological activity in medicinal chemistry owing to their biological properties. Thiophene and thiazole derivatives are known to possess interesting biological properties like anticancer (Bondock et al., 2010; Bellina et al., 2007; Konstantinova et al., 2009). Thiophene or benzothiophene moieties due to the well documented anti-cancer activity of these moieties to study their SAR and their anti-breast cancer activity (Al-Said et al., 2011). In view of their importance as discussed above, thiophene derivatives were taken for their conformational studies to get better structural activity correlation.

In the title compound (Fig. 1), the bond lengths do not show much variation in the core structure of the derivatives, and are similar to the standard values (Allen et al., 2002). The thiophene (S1/C1–C4) and phenyl (C8–C13) rings are nearly perpendicular with a dihedral angle of 86.42 (12)° between their mean planes. The bond lengths and bond angles do not show large deviations and are comparable with those reported for a similar structure (Shan et al., 2011). The conformation of the attachment of the thiophene and phenyl rings can also be characterized by torsion angles of (C4—C5—N1—N2), (C5—N1—N2—C8), (O1—C7—N2—C8) and (S1—C4—C5—C6) being 178.38, 127.73, 171.34 and -170.31°, respectively. The crystal structure has an intermolecular C—H···O hydrogen bond. The molecular packing viewed down the a axis is shown in Fig. 2.

S2. Experimental

A mixture of (E)-1-phenyl-2-[(1-thiophen-2-yl)ethylidene]hydrazine (0.176 mmol) were added to the Vilsmeier-Haack reagent prepared by drop-wise addition of POCl3 (1.2 ml) in ice cooled DMF (5 ml). The mixture was stirred at 60–65 °C for 6 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was poured into ice cold water, neutralized with NaHCO3, the solid separated was filtered, washed with water and recrystallized from ethanol to get the compound in 93% yield.

S3. Refinement

All H atoms were located from difference maps and were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A molecular packing view of the title compound down the a-axis.

Crystal data

C13H12N2OS F(000) = 512
Mr = 244.32 Dx = 1.324 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 6298 reflections
a = 5.4960 (7) Å θ = 4.4–64.6°
b = 11.0177 (13) Å µ = 2.22 mm1
c = 20.249 (2) Å T = 296 K
V = 1226.1 (2) Å3 Block, pale yellow
Z = 4 0.25 × 0.22 × 0.20 mm

Data collection

Bruker X8 Proteum diffractometer 2010 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode 1904 reflections with I > 2σ(I)
Helios multilayer optics monochromator Rint = 0.042
Detector resolution: 10.7 pixels mm-1 θmax = 64.6°, θmin = 4.4°
φ and ω scans h = −2→6
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −12→12
Tmin = 0.604, Tmax = 0.662 l = −23→22
6298 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.0861P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max = 0.001
S = 1.10 Δρmax = 0.21 e Å3
2010 reflections Δρmin = −0.20 e Å3
165 parameters Extinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraints Extinction coefficient: 0.0158 (16)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 805 Friedel pairs
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.02 (2)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.05502 (12) 0.12455 (6) 0.72104 (3) 0.0539 (2)
O1 0.0434 (4) −0.24121 (15) 0.55887 (8) 0.0526 (6)
N1 0.0078 (3) 0.00557 (16) 0.59394 (8) 0.0348 (5)
N2 0.0086 (3) −0.04249 (15) 0.52882 (8) 0.0344 (5)
C1 −0.0682 (6) 0.1399 (3) 0.79702 (12) 0.0623 (10)
C2 −0.2635 (6) 0.0712 (3) 0.80591 (13) 0.0648 (10)
C3 −0.3227 (5) 0.0016 (2) 0.74907 (11) 0.0513 (8)
C4 −0.1639 (4) 0.02325 (18) 0.69777 (10) 0.0358 (6)
C5 −0.1724 (4) −0.02503 (18) 0.63061 (10) 0.0331 (6)
C6 −0.3905 (4) −0.0972 (2) 0.61062 (13) 0.0509 (8)
C7 0.0373 (4) −0.16179 (19) 0.51733 (10) 0.0410 (7)
C8 0.0373 (4) 0.04484 (17) 0.47710 (9) 0.0325 (6)
C9 0.2273 (4) 0.0366 (2) 0.43330 (11) 0.0397 (6)
C10 0.2429 (4) 0.1192 (2) 0.38203 (12) 0.0479 (7)
C11 0.0710 (5) 0.2091 (2) 0.37516 (11) 0.0469 (7)
C12 −0.1151 (5) 0.2185 (2) 0.41975 (12) 0.0463 (8)
C13 −0.1322 (4) 0.1365 (2) 0.47156 (11) 0.0413 (6)
H1 −0.00560 0.19130 0.82930 0.0750*
H2 −0.35200 0.06880 0.84500 0.0780*
H3 −0.45300 −0.05220 0.74680 0.0620*
H6A −0.39060 −0.10770 0.56360 0.0760*
H6B −0.53550 −0.05510 0.62380 0.0760*
H6C −0.38540 −0.17530 0.63170 0.0760*
H7 0.05420 −0.18570 0.47350 0.0490*
H9 0.34410 −0.02390 0.43800 0.0480*
H10 0.37060 0.11400 0.35200 0.0570*
H11 0.08130 0.26340 0.34010 0.0560*
H12 −0.23010 0.27990 0.41530 0.0560*
H13 −0.25720 0.14340 0.50230 0.0500*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0546 (4) 0.0703 (5) 0.0368 (3) −0.0147 (3) −0.0029 (3) −0.0071 (3)
O1 0.0729 (11) 0.0375 (9) 0.0474 (9) 0.0049 (8) 0.0049 (8) 0.0096 (7)
N1 0.0402 (10) 0.0379 (9) 0.0263 (8) −0.0024 (8) −0.0012 (7) −0.0037 (6)
N2 0.0452 (10) 0.0313 (8) 0.0266 (8) 0.0006 (8) −0.0005 (7) −0.0022 (7)
C1 0.085 (2) 0.0689 (17) 0.0330 (12) 0.0037 (16) −0.0059 (13) −0.0095 (11)
C2 0.0757 (18) 0.0819 (19) 0.0368 (13) 0.0055 (16) 0.0152 (13) 0.0000 (13)
C3 0.0524 (14) 0.0590 (15) 0.0426 (13) −0.0041 (12) 0.0127 (11) −0.0022 (11)
C4 0.0373 (10) 0.0370 (11) 0.0332 (10) 0.0038 (9) 0.0009 (8) 0.0026 (8)
C5 0.0317 (10) 0.0314 (10) 0.0362 (11) 0.0037 (8) −0.0030 (8) 0.0008 (8)
C6 0.0372 (12) 0.0564 (15) 0.0592 (14) −0.0111 (10) 0.0008 (11) −0.0119 (12)
C7 0.0511 (12) 0.0353 (11) 0.0366 (11) 0.0020 (9) 0.0024 (10) −0.0018 (9)
C8 0.0388 (10) 0.0296 (10) 0.0291 (9) −0.0017 (8) −0.0051 (8) −0.0012 (8)
C9 0.0355 (10) 0.0392 (11) 0.0444 (12) 0.0049 (9) 0.0011 (9) 0.0016 (10)
C10 0.0456 (12) 0.0511 (13) 0.0469 (13) −0.0056 (11) 0.0089 (10) 0.0094 (11)
C11 0.0604 (14) 0.0365 (11) 0.0439 (12) −0.0080 (11) −0.0054 (11) 0.0088 (9)
C12 0.0536 (14) 0.0350 (12) 0.0503 (13) 0.0084 (11) −0.0087 (11) 0.0024 (10)
C13 0.0429 (11) 0.0416 (11) 0.0395 (11) 0.0083 (10) 0.0012 (10) −0.0035 (10)

Geometric parameters (Å, º)

S1—C1 1.690 (3) C10—C11 1.376 (3)
S1—C4 1.707 (2) C11—C12 1.368 (4)
O1—C7 1.214 (3) C12—C13 1.388 (3)
N1—N2 1.421 (2) C1—H1 0.9300
N1—C5 1.283 (3) C2—H2 0.9300
N2—C7 1.344 (3) C3—H3 0.9300
N2—C8 1.431 (2) C6—H6A 0.9600
C1—C2 1.326 (5) C6—H6B 0.9600
C2—C3 1.421 (4) C6—H6C 0.9600
C3—C4 1.378 (3) C7—H7 0.9300
C4—C5 1.461 (3) C9—H9 0.9300
C5—C6 1.494 (3) C10—H10 0.9300
C8—C9 1.373 (3) C11—H11 0.9300
C8—C13 1.379 (3) C12—H12 0.9300
C9—C10 1.383 (3) C13—H13 0.9300
C1—S1—C4 91.96 (13) C2—C1—H1 123.00
N2—N1—C5 116.20 (17) C1—C2—H2 124.00
N1—N2—C7 121.70 (16) C3—C2—H2 124.00
N1—N2—C8 115.40 (15) C2—C3—H3 124.00
C7—N2—C8 121.19 (16) C4—C3—H3 124.00
S1—C1—C2 113.0 (2) C5—C6—H6A 109.00
C1—C2—C3 112.6 (2) C5—C6—H6B 109.00
C2—C3—C4 111.9 (2) C5—C6—H6C 109.00
S1—C4—C3 110.58 (16) H6A—C6—H6B 109.00
S1—C4—C5 121.16 (16) H6A—C6—H6C 109.00
C3—C4—C5 128.2 (2) H6B—C6—H6C 109.00
N1—C5—C4 114.73 (19) O1—C7—H7 117.00
N1—C5—C6 127.04 (19) N2—C7—H7 117.00
C4—C5—C6 118.13 (19) C8—C9—H9 120.00
O1—C7—N2 126.02 (19) C10—C9—H9 120.00
N2—C8—C9 120.81 (18) C9—C10—H10 120.00
N2—C8—C13 118.53 (18) C11—C10—H10 120.00
C9—C8—C13 120.65 (19) C10—C11—H11 120.00
C8—C9—C10 119.2 (2) C12—C11—H11 120.00
C9—C10—C11 120.5 (2) C11—C12—H12 120.00
C10—C11—C12 120.1 (2) C13—C12—H12 120.00
C11—C12—C13 120.0 (2) C8—C13—H13 120.00
C8—C13—C12 119.5 (2) C12—C13—H13 120.00
S1—C1—H1 124.00
C4—S1—C1—C2 0.9 (3) C2—C3—C4—C5 −176.1 (2)
C1—S1—C4—C3 −1.3 (2) C2—C3—C4—S1 1.4 (3)
C1—S1—C4—C5 176.4 (2) S1—C4—C5—N1 6.3 (3)
C5—N1—N2—C7 −67.0 (2) C3—C4—C5—N1 −176.4 (2)
C5—N1—N2—C8 127.7 (2) C3—C4—C5—C6 7.0 (3)
N2—N1—C5—C4 178.38 (16) S1—C4—C5—C6 −170.31 (16)
N2—N1—C5—C6 −5.3 (3) N2—C8—C9—C10 176.94 (19)
C7—N2—C8—C13 135.3 (2) C13—C8—C9—C10 −2.1 (3)
N1—N2—C7—O1 6.9 (3) N2—C8—C13—C12 −176.7 (2)
C8—N2—C7—O1 171.3 (2) C9—C8—C13—C12 2.3 (3)
N1—N2—C8—C9 121.6 (2) C8—C9—C10—C11 0.4 (3)
C7—N2—C8—C9 −43.7 (3) C9—C10—C11—C12 1.0 (4)
N1—N2—C8—C13 −59.4 (2) C10—C11—C12—C13 −0.7 (4)
S1—C1—C2—C3 −0.3 (4) C11—C12—C13—C8 −0.9 (3)
C1—C2—C3—C4 −0.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1i 0.93 2.39 3.202 (3) 145

Symmetry code: (i) −x, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5369).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Al-Said, M. S., Bashandy, M. S., Al-qasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137–141. [DOI] [PubMed]
  3. Bellina, F., Cauteruccio, S. & Rossi, R. (2007). Tetrahedron, 63, 4571–4624.
  4. Bondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692–3701. [DOI] [PubMed]
  5. Bruker (2013). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Konstantinova, L. S., Bolshakov, O. I., Obruchnikova, N. V., Laborie, H., Tanga, A., Sopena, V., Lanneluc, I., Picot, L., Sable, S., Thiery, V. & Rakitin, O. A. (2009). Bioorg. Med. Chem. Lett. 19, 136–141. [DOI] [PubMed]
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Shan, S., Huang, Y.-L., Guo, H.-Q., Li, D.-F. & Sun, J. (2011). Acta Cryst. E67, o2498. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814016511/is5369sup1.cif

e-70-0o928-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016511/is5369Isup2.hkl

e-70-0o928-Isup2.hkl (98.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016511/is5369Isup3.cml

ORTEP . DOI: 10.1107/S1600536814016511/is5369fig1.tif

ORTEP view of the mol­ecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S1600536814016511/is5369fig2.tif

A mol­ecular packing view of the title compound down the a-axis.

CCDC reference: 1014287

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES