Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 23;70(Pt 9):o1043–o1044. doi: 10.1107/S1600536814018030

Crystal structure of 1′-(2-methyl­prop­yl)-2,3-di­hydro­spiro­[1-benzo­thio­pyran-4,4′-imidazolidine]-2′,5′-dione

Cynthia E Theodore a, S Naveen b, S B Benaka Prasad a, M Madaiah c, C S Ananda Kumar d, N K Lokanath e,*
PMCID: PMC4186156  PMID: 25309216

Abstract

In the title compound, C15H18N2O2S, the 2,3-di­hydro-1-benzo­thio­pyran ring adopts a sofa conformation and the hydantoin ring is twisted with respect to the benzene ring at 78.73 (17)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

Keywords: crystal structure; hydantoin compounds; hydrogen bonding; spiro­[1-benzo­thio­pyran-4,4′-imidazolidine]

Related literature  

For background and applications of hydantoin compounds, see: Nefzi et al. (2002); Park & Kurth (2000); Manjunath et al. (2012); Hussein et al. (2014). For related structures, see: Manjunath et al. (2011); Hussein et al. (2014).graphic file with name e-70-o1043-scheme1.jpg

Experimental  

Crystal data  

  • C15H18N2O2S

  • M r = 290.38

  • Monoclinic, Inline graphic

  • a = 13.279 (3) Å

  • b = 9.939 (3) Å

  • c = 13.264 (3) Å

  • β = 118.56 (1)°

  • V = 1537.6 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.90 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.15 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.747, T max = 0.753

  • 5024 measured reflections

  • 2397 independent reflections

  • 1959 reflections with I > 2σ(I)

  • R int = 0.067

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.195

  • S = 1.06

  • 2397 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814018030/xu5809sup1.cif

e-70-o1043-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814018030/xu5809Isup2.hkl

e-70-o1043-Isup2.hkl (117.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814018030/xu5809Isup3.cml

. DOI: 10.1107/S1600536814018030/xu5809fig1.tif

A view of the title mol­ecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

. DOI: 10.1107/S1600536814018030/xu5809fig2.tif

A view of the crystal packing of the title compound showing inverted dimers.

CCDC reference: 1018087

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O16i 0.86 2.03 2.850 (3) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are thankful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

supplementary crystallographic information

S1. Comment

The combinatorial generation of organic compound libraries has emerged as a powerful tool for drug discovery. Small substituted heterocyclic compounds play an important role in the development of biologically active substances by offering a high structural diversity. Among such heterocycles, particularly the hydantoin scaffold opens the possibility of different kinds and degrees of substitution. They have been the focus of attention as a ubiquitous moiety incorporated into compounds with numerous biological activities and therapeutic applications (Nefzi et al., 2002). A variety of combinatorial approaches have been described by which pharmacophoric groups were attached to such a relatively rigid scaffold (Park & Kurth, 2000). Therefore, the chemistry of multiple substituted hydantoins has newly attracted much interest, and traditional approaches have been combined with recently developed strategies. Hence as a part of our ongoing research on hydantoins (Manjunath et al., 2012; Hussein et al., 2014), the synthesis, characterization and the structural work of the title compound was undertaken and herein we report its crystal structure.

The hydantoin ring in the structure is planar within the experimental limits with a maximum deviation of 0.012 (2) Å for N1 atom from the least-squares plane of the hydantoin ring. The N—C bong length values of N11—C12 = 1.349 (3) Å, N13—C12 = 1.400 (4) Å and N13—C14 = 1.359 (2) Å are comparable with the values reported earlier (Manjunath et al., 2011; Hussein et al., 2014). The shortened bond length values can be attributed to the π conjugation in the hydantoin ring. The isobutyl group is twisted out of the plane of the hydantoin ring as indicated by the torsion angle values of -175.6 (3)° and 61.5 (3)° for the atoms N13—C17—C18—C20 and N13—C17—C18—C19 indicating that they are in antiperiplanar and synclinal conformations respectively.

The study of torsion angles, asymmetric parameters and least-squares plane reveals that the 2,3-dihydro-1-benzothiopyran ring in the structure adopts envelope conformation with S1 atom deviating by 0.0851 (14) Å from the least-squares plane. This is confirmed by the puckering amplitude Q = 0.519 (3) Å. The hydantoin ring is in a equatorial position with the 2,3-dihydro-1-benzothiopyran ring which is evident by the dihedral angle of 81.15 (15)°. This value is slightly lesser than the value reported earlier (Hussein et al., 2014) for 1-ethyl-2',3'-dihydrospiro[imidazoline-4,1-indene]-2,5-dione. The molecules are interlinked by N—H···O hydrogen bonds to form inverted dimers.

S2. Experimental

A solution of spiro[1-benzothiopyran-4,4'-imidazolidine]-2',5'-dione (1.0 eq) in N,N-dimethylformamide was taken, anhydrous K2CO3 (3.0 eq) was added to the solution and stirred for 10 min. 1-Bromo–2 methyl propane (1–1.1 eq) was then added. The reaction mixture was stirred at room temperature for 8 h and the progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was taken in water and extracted with ethyl acetate. Finally water wash was given to the organic layer and dried over anhydrous sodium sulfate. The solvent was evaporated. The crude product was purified by column chromatography using chloroform:methanol (9:1) as an eluent. Single crystals were obtained from slow evaporation of its solvent.

S3. Refinement

The C-bound hydrogen atom were fixed geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was included in the model with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

A view of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound showing inverted dimers.

Crystal data

C15H18N2O2S Z = 4
Mr = 290.38 F(000) = 616
Monoclinic, P21/c Dx = 1.254 Mg m3
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54178 Å
a = 13.279 (3) Å µ = 1.90 mm1
b = 9.939 (3) Å T = 296 K
c = 13.264 (3) Å Block, yellow
β = 118.56 (1)° 0.20 × 0.15 × 0.15 mm
V = 1537.6 (7) Å3

Data collection

Bruker X8 Proteum diffractometer 1959 reflections with I > 2σ(I)
Detector resolution: 18.4 pixels mm-1 Rint = 0.067
φ and ω scans θmax = 64.2°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −15→14
Tmin = 0.747, Tmax = 0.753 k = −8→11
5024 measured reflections l = −11→15
2397 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.1345P)2 + 0.3286P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2397 reflections Δρmax = 0.43 e Å3
184 parameters Δρmin = −0.47 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0092 (15)

Special details

Experimental. H1NMR (DMSO, 400 MHz) δ:9.0(s, 1H, –NH), δ:7.2(m, 2H, Ar—H) δ:7.1(m, 2H, Ar—H) δ:3.3(d, 2H, –CH2–)δ:3.1(m, 2H, –CH2–) δ:2.1(m, 1H, –CH–) δ:0.9(m, 6H, –CH3–). Melting point 636.52 K.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.50647 (7) 0.34459 (8) 0.13658 (6) 0.0529 (3)
O15 0.8299 (2) 0.2088 (3) 0.52413 (19) 0.0547 (8)
O16 0.62741 (16) 0.4706 (2) 0.64774 (16) 0.0400 (6)
N11 0.59964 (19) 0.4235 (2) 0.46550 (18) 0.0348 (7)
N13 0.75117 (18) 0.3354 (2) 0.61452 (18) 0.0305 (7)
C2 0.4715 (3) 0.2679 (3) 0.2388 (3) 0.0490 (10)
C3 0.5783 (3) 0.2225 (3) 0.3462 (2) 0.0426 (9)
C4 0.6545 (2) 0.3412 (2) 0.4141 (2) 0.0302 (8)
C5 0.6935 (2) 0.4273 (3) 0.3446 (2) 0.0343 (8)
C6 0.7916 (3) 0.5061 (3) 0.4013 (3) 0.0487 (10)
C7 0.8306 (3) 0.5889 (4) 0.3438 (3) 0.0629 (12)
C8 0.7704 (4) 0.5939 (4) 0.2254 (3) 0.0637 (12)
C9 0.6728 (3) 0.5174 (4) 0.1671 (3) 0.0521 (11)
C10 0.6325 (3) 0.4346 (3) 0.2243 (2) 0.0374 (8)
C12 0.6543 (2) 0.4167 (3) 0.5811 (2) 0.0299 (7)
C14 0.7571 (2) 0.2853 (3) 0.5222 (2) 0.0342 (8)
C17 0.8345 (2) 0.3059 (3) 0.7353 (2) 0.0362 (8)
C18 0.9406 (3) 0.3929 (4) 0.7806 (2) 0.0475 (10)
C19 0.9119 (4) 0.5421 (4) 0.7785 (4) 0.0785 (16)
C20 1.0243 (3) 0.3466 (5) 0.9022 (3) 0.0727 (16)
H2A 0.42970 0.33190 0.26000 0.0590*
H2B 0.42210 0.19100 0.20360 0.0590*
H3A 0.62210 0.16230 0.32440 0.0510*
H3B 0.55560 0.17280 0.39500 0.0510*
H6 0.83250 0.50270 0.48100 0.0580*
H7 0.89640 0.64050 0.38410 0.0760*
H8 0.79560 0.64880 0.18520 0.0770*
H9 0.63290 0.52130 0.08730 0.0630*
H11 0.53910 0.47100 0.42630 0.0420*
H17A 0.85700 0.21210 0.74160 0.0430*
H17B 0.79780 0.31930 0.78250 0.0430*
H18 0.97670 0.37940 0.73190 0.0570*
H19A 0.86290 0.56990 0.70070 0.1180*
H19B 0.98140 0.59390 0.81030 0.1180*
H19C 0.87330 0.55640 0.82310 0.1180*
H20A 0.99140 0.36250 0.95170 0.1090*
H20B 1.09470 0.39600 0.92990 0.1090*
H20C 1.03950 0.25230 0.90150 0.1090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0564 (6) 0.0552 (6) 0.0243 (5) 0.0026 (4) 0.0009 (4) 0.0035 (3)
O15 0.0531 (13) 0.0668 (15) 0.0394 (12) 0.0333 (12) 0.0183 (10) 0.0072 (11)
O16 0.0359 (10) 0.0554 (12) 0.0244 (10) 0.0082 (9) 0.0109 (8) −0.0034 (8)
N11 0.0302 (11) 0.0462 (13) 0.0214 (11) 0.0122 (10) 0.0071 (9) 0.0028 (9)
N13 0.0249 (11) 0.0396 (12) 0.0168 (11) 0.0062 (9) 0.0017 (9) 0.0031 (9)
C2 0.0441 (17) 0.0490 (17) 0.0367 (16) −0.0070 (13) 0.0055 (14) −0.0110 (13)
C3 0.0496 (17) 0.0408 (16) 0.0319 (15) −0.0034 (13) 0.0151 (13) 0.0008 (12)
C4 0.0347 (14) 0.0328 (14) 0.0190 (13) 0.0056 (10) 0.0096 (11) −0.0007 (10)
C5 0.0384 (14) 0.0352 (14) 0.0269 (14) 0.0059 (11) 0.0136 (11) 0.0001 (11)
C6 0.0464 (17) 0.0569 (19) 0.0367 (17) −0.0064 (14) 0.0149 (14) −0.0048 (14)
C7 0.060 (2) 0.072 (2) 0.059 (2) −0.0149 (18) 0.0302 (18) 0.0002 (19)
C8 0.070 (2) 0.068 (2) 0.065 (2) 0.0000 (19) 0.042 (2) 0.0157 (19)
C9 0.064 (2) 0.0580 (19) 0.0363 (16) 0.0142 (16) 0.0257 (15) 0.0160 (15)
C10 0.0446 (15) 0.0382 (14) 0.0251 (13) 0.0128 (12) 0.0133 (12) 0.0049 (11)
C12 0.0256 (12) 0.0374 (13) 0.0217 (13) 0.0014 (10) 0.0073 (10) 0.0003 (10)
C14 0.0326 (13) 0.0360 (14) 0.0288 (14) 0.0089 (11) 0.0105 (11) 0.0032 (11)
C17 0.0296 (13) 0.0460 (15) 0.0220 (13) 0.0051 (11) 0.0034 (11) 0.0096 (11)
C18 0.0305 (14) 0.078 (2) 0.0244 (15) −0.0055 (14) 0.0053 (12) 0.0011 (14)
C19 0.074 (3) 0.063 (2) 0.062 (3) −0.026 (2) 0.003 (2) −0.0043 (19)
C20 0.0395 (18) 0.125 (4) 0.0326 (18) 0.005 (2) 0.0003 (15) 0.007 (2)

Geometric parameters (Å, º)

S1—C2 1.799 (4) C17—C18 1.511 (5)
S1—C10 1.759 (3) C18—C19 1.528 (6)
O15—C14 1.221 (4) C18—C20 1.528 (5)
O16—C12 1.224 (3) C2—H2A 0.9700
N11—C4 1.463 (4) C2—H2B 0.9700
N11—C12 1.349 (3) C3—H3A 0.9700
N13—C12 1.400 (4) C3—H3B 0.9700
N13—C14 1.359 (3) C6—H6 0.9300
N13—C17 1.477 (3) C7—H7 0.9300
N11—H11 0.8600 C8—H8 0.9300
C2—C3 1.521 (5) C9—H9 0.9300
C3—C4 1.535 (4) C17—H17A 0.9700
C4—C5 1.519 (4) C17—H17B 0.9700
C4—C14 1.534 (4) C18—H18 0.9800
C5—C6 1.393 (5) C19—H19A 0.9600
C5—C10 1.404 (3) C19—H19B 0.9600
C6—C7 1.380 (6) C19—H19C 0.9600
C7—C8 1.381 (5) C20—H20A 0.9600
C8—C9 1.378 (6) C20—H20B 0.9600
C9—C10 1.388 (5) C20—H20C 0.9600
C2—S1—C10 102.93 (16) C3—C2—H2A 109.00
C4—N11—C12 112.6 (2) C3—C2—H2B 109.00
C12—N13—C14 111.5 (2) H2A—C2—H2B 108.00
C12—N13—C17 123.8 (2) C2—C3—H3A 109.00
C14—N13—C17 124.7 (2) C2—C3—H3B 109.00
C12—N11—H11 124.00 C4—C3—H3A 109.00
C4—N11—H11 124.00 C4—C3—H3B 109.00
S1—C2—C3 111.8 (3) H3A—C3—H3B 108.00
C2—C3—C4 112.3 (2) C5—C6—H6 119.00
N11—C4—C3 111.6 (3) C7—C6—H6 119.00
C3—C4—C5 113.4 (2) C6—C7—H7 121.00
N11—C4—C5 110.99 (19) C8—C7—H7 120.00
N11—C4—C14 100.64 (19) C7—C8—H8 120.00
C5—C4—C14 111.3 (2) C9—C8—H8 120.00
C3—C4—C14 108.2 (2) C8—C9—H9 119.00
C4—C5—C10 122.7 (3) C10—C9—H9 119.00
C4—C5—C6 119.4 (2) N13—C17—H17A 109.00
C6—C5—C10 117.9 (3) N13—C17—H17B 109.00
C5—C6—C7 122.6 (3) C18—C17—H17A 109.00
C6—C7—C8 118.9 (4) C18—C17—H17B 109.00
C7—C8—C9 119.8 (4) H17A—C17—H17B 108.00
C8—C9—C10 121.7 (3) C17—C18—H18 108.00
S1—C10—C9 115.7 (2) C19—C18—H18 108.00
C5—C10—C9 119.2 (3) C20—C18—H18 108.00
S1—C10—C5 125.1 (3) C18—C19—H19A 109.00
N11—C12—N13 107.6 (2) C18—C19—H19B 109.00
O16—C12—N11 128.0 (3) C18—C19—H19C 110.00
O16—C12—N13 124.4 (2) H19A—C19—H19B 109.00
N13—C14—C4 107.6 (2) H19A—C19—H19C 109.00
O15—C14—N13 126.6 (2) H19B—C19—H19C 110.00
O15—C14—C4 125.9 (2) C18—C20—H20A 109.00
N13—C17—C18 113.0 (2) C18—C20—H20B 109.00
C19—C18—C20 111.2 (3) C18—C20—H20C 110.00
C17—C18—C19 111.8 (3) H20A—C20—H20B 109.00
C17—C18—C20 108.5 (3) H20A—C20—H20C 110.00
S1—C2—H2A 109.00 H20B—C20—H20C 109.00
S1—C2—H2B 109.00
C10—S1—C2—C3 −37.5 (3) N11—C4—C14—N13 0.2 (3)
C2—S1—C10—C5 7.6 (3) C14—C4—C5—C10 146.9 (3)
C2—S1—C10—C9 −173.0 (3) N11—C4—C5—C6 76.0 (3)
C4—N11—C12—N13 2.7 (3) N11—C4—C5—C10 −101.9 (3)
C4—N11—C12—O16 −177.7 (3) C3—C4—C5—C6 −157.4 (3)
C12—N11—C4—C5 −119.6 (2) C3—C4—C5—C10 24.6 (4)
C12—N11—C4—C14 −1.8 (3) C3—C4—C14—O15 62.5 (4)
C12—N11—C4—C3 112.8 (3) C3—C4—C14—N13 −117.0 (3)
C17—N13—C12—O16 −0.9 (4) C5—C4—C14—O15 −62.8 (4)
C14—N13—C12—N11 −2.6 (3) C5—C4—C14—N13 117.8 (2)
C12—N13—C14—C4 1.4 (3) C10—C5—C6—C7 −0.6 (5)
C14—N13—C12—O16 177.8 (3) C4—C5—C10—S1 −1.6 (5)
C12—N13—C17—C18 −99.0 (3) C4—C5—C6—C7 −178.6 (3)
C14—N13—C17—C18 82.5 (3) C4—C5—C10—C9 179.0 (3)
C12—N13—C14—O15 −178.0 (3) C6—C5—C10—S1 −179.6 (3)
C17—N13—C14—C4 −179.9 (2) C6—C5—C10—C9 1.0 (5)
C17—N13—C12—N11 178.8 (2) C5—C6—C7—C8 −0.2 (6)
C17—N13—C14—O15 0.7 (5) C6—C7—C8—C9 0.4 (7)
S1—C2—C3—C4 65.3 (3) C7—C8—C9—C10 0.1 (7)
C2—C3—C4—C5 −57.9 (4) C8—C9—C10—C5 −0.8 (6)
C2—C3—C4—C14 178.1 (3) C8—C9—C10—S1 179.8 (3)
C2—C3—C4—N11 68.3 (3) N13—C17—C18—C19 61.5 (3)
C14—C4—C5—C6 −35.2 (4) N13—C17—C18—C20 −175.6 (3)
N11—C4—C14—O15 179.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11···O16i 0.86 2.03 2.850 (3) 160

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5809).

References

  1. Bruker (2013). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hussein, W. M., Theodore, C. E., Benaka Prasad, S. B., Madaiah, M., Naveen, S. & Lokanath, N. K. (2014). Acta Cryst. E70, o954. [DOI] [PMC free article] [PubMed]
  3. Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2011). J. Struct. Chem. 52, 986–990.
  4. Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2012). J. Chem. Crystallogr. 42, 505–507.
  5. Nefzi, A., Giulianotti, M., Truong, L., Rattan, S., Ostresh, J. M. & Houghten, R. A. (2002). J. Comb. Chem. 4, 175–178. [DOI] [PubMed]
  6. Park, K. H. & Kurth, M. J. (2000). Tetrahedron Lett. 41, 7409–7413.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814018030/xu5809sup1.cif

e-70-o1043-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814018030/xu5809Isup2.hkl

e-70-o1043-Isup2.hkl (117.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814018030/xu5809Isup3.cml

. DOI: 10.1107/S1600536814018030/xu5809fig1.tif

A view of the title mol­ecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

. DOI: 10.1107/S1600536814018030/xu5809fig2.tif

A view of the crystal packing of the title compound showing inverted dimers.

CCDC reference: 1018087

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES