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The minimal ecological requirements for the for-
mation of regular vegetation patterns in semiarid
systems have been recently questioned. Against
the general belief that a combination of facilitative
and competitive interactions is necessary, recent
theoretical studies suggest that, under broad condi-
tions, non-local competition among plants alone may
induce patterns. In this paper, we review results along
this line, presenting a series of models that yield
spatial patterns when finite-range competition is the
only driving force. A preliminary derivation of this
type of model from a more detailed one that considers
water–biomass dynamics is also presented.

1. Introduction
Vegetation in semiarid regions around the world
can form striking, highly organized patterns. Many
approaches have been used to tackle the study of
vegetation patterns from both a theoretical and an
empirical perspective. Many studies have focused on
measuring the different types of interactions among
plants that are present in water-limited systems as well as
their spatial ranges and strength [1,2]. On the theoretical
side, which is the focus of this paper, mathematical
models have been proposed accounting either for the
evolution of the vegetation biomass alone [3–6] or
coupled with the dynamics of the water in the system
[7,8]. A common point of all these studies is the view
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that the pattern formation phenomenon is a symmetry-breaking process that induces instability
in the uniform vegetation state [4,9,10].

Interest in plant patterns stems from the idea that these structures provide information about
the physical and biological processes that generate them. However, the strength of the modern
approach to vegetation patterns—that is, its universality—becomes a great disadvantage when
searching for relationships between patterns and processes, as many different processes can give
rise to the same spatial structures. As a result, it is useful on the theoretical side to find the
minimal set of biophysical mechanisms under which typically observed patterns may appear
in water-limited systems. Most existing mathematical models of vegetation pattern formation
assume an interplay between short-range facilitation and long-range competition. While it is clear
that such a combination of mechanisms is probably responsible for patterns in some conditions—
for example, regular stripes on hillsides [9]—whether or not both mechanisms must always be
present for pattern formation is an open question. While competition for water is likely to be
the key factor for semiarid systems, some studies [11,12] have suggested that local facilitative
interactions may be unnecessary, or of only minor importance, for pattern formation. Following
these ideas, the authors have recently introduced a model of vegetation density for water-limited
regions where only competition among plants is considered [3]. Here, the interaction enters by
allowing the growth rate of a plant to diminish with the number of other individuals competing
with it for resources (water). Despite the fact that facilitation is ignored, this non-local competition
model produces a spectrum of spatial patterns similar to the one observed in models assuming
that both facilitation and competition are necessary.

In this paper, we extend the results of Martínez-García et al. [3] to address several open
questions. (i) Do patterns depend on how competition enters in the dynamical equations?
(ii) What is the role of nonlinearities? (iii) Can simple models featuring non-local competition be
derived from more fundamental ones that consider the dynamics of plants and water sources? To
answer these questions, we present a set of non-local models with only competitive interactions
that enter in the equations either linearly or nonlinearly. In the latter case, we complement our
previous work by also allowing non-local competition to enter in the death term. Patterns emerge
in all of these models, and in a sequence related to the one observed in standard facilitative–
competitive models. We also present preliminary results on how the non-local density equations
can be derived from a more mechanistic dynamics that considers biomass and water interactions.

The outline of the paper is as follows. In §2, we give an overview of previous non-local models
and describe new ones: §2a shows a review of standard kernel-based descriptions with facilitative
and competitive interactions; in §2b, we review the competition-only model introduced by
Martínez-García et al. [3]; then in §2c, we study the model where the non-locality enters in the
death term; in §2d, the model studied is of competition entering linearly in the equations. In §3,
the derivation of density models from water–biomass dynamics is discussed, and in §4, we give
our conclusion and summary.

2. Spatially non-local models for tree density
Vegetation patterns arise from a self-organization mechanism as a result of dynamic interactions
among plants, and between plants and their environmental conditions. Existing studies [2,
4,7,9,10,13,14] consider two typical length scales to account for facilitative (short-range) and
competitive (long-range) interactions. As mentioned above, the need for these two types of
mechanism has been recently questioned by Martínez-García et al. [3] from a mathematical
point of view. In this section, we review the standard models that include both facilitation and
competition, and then present the competition-only model described by Martínez-García et al. [3].

(a) Kernel-based models with facilitative and competitive mechanisms
The kernel-based models [15] express vegetation density mathematically as integro-differential
equations with a spatially non-local interaction function. Roughly speaking, two types exist:
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Figure 1. (a) Kernel function of standard one-dimensional kernel-based models considering both competitive and facilitative
interactions. It is built with a combination of positive and negative Gaussian functions, g(x)= 1.5 exp(−(x/2)2) −
exp(−(x/4)2). (b) Competitive-only top-hat kernel G(x) with range R= 8.

(i) those where the non-locality enters linearly (nonlinearities appear but without spatial
coupling) and (ii) those where the non-locality enters multiplicatively [4]. For simplicity here,
we discuss only the linear class, the so-called neural models [16]. The dynamics of the vegetation-
density field, ρ(r, t), is given by

∂ρ

∂t
= F(ρ) +

∫
Γ

g(r, r′)(ρ(r′) − ρ0), (2.1)

where F(ρ) denotes the local dynamics whose steady state is ρ0, and Γ is the spatial domain
over which the kernel function g(r, r′) is defined. The term

∫
Γ g(r, r′)ρ(r′) (assuming isotropy

and homogeneity it is more commonly expressed as g(|r − r′|)) indicates that spatial interactions
positively affect (facilitation) the growth when g > 0, and the opposite (competition) happens
when g < 0. Interaction kernels in these models typically exhibit the shape shown for the one-
dimensional case in figure 1a, and are thus positive at short scales and negative at long range.
In fact, the way the spatial structure emerges from equation (2.1) is easy to understand: small
perturbations larger than the homogeneous state, ρ0, tend to increase locally because of the
positive interaction with nearby points, whereas those with ρ < ρ0 decrease in the interaction
neighbourhood. Thus, short-range facilitation enhances spatial heterogeneity and the long-range
inhibition (the negative part of the kernel) limits the indefinite growth of the perturbation.
A justification and deeper analysis of these type of kernels for vegetation models is given in
Borgogno et al. [15]. Biologically speaking, the facilitation range is usually assumed to be similar to
the crown radius, while the competition range is related to the lateral root length. While negative
vegetation densities are mathematically possible under these models, they are biologically
nonsensical. Therefore, works using kernel-based models usually set negative densities to zero
in numerical simulations [15].

(b) A kernel-based model including only competitive interactions
Following previous studies [11,12] suggesting that vegetation patterns could emerge without
short-range facilitation, and assuming that competition for water is the unavoidable interaction
in arid and semiarid systems, Martínez-García et al. [3] proposed a non-local model with only
competitive interactions. The equation for vegetation density is

∂ρ(x, t)
∂t

= β0r(ρ̃, δ)ρ(x, t)(1 − ρ(x, t)) − αρ(x, t), (2.2)

where ρ̃ is the mean vegetation density within a neighbourhood, weighted with the kernel G(x),
around a given spatial point

ρ̃(x, t) =
∫

G(|x − x’|)ρ(x’, t) dx’. (2.3)
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Figure 2. Close-to-stationary spatial structures shown by model (2.2) using r(ρ̃, δ) given by equation (2.5). Darker grey levels
represent smaller densities. (a) Vegetation stripes, δ = 16.0, (b) vegetation spots, δ = 17.0, and other parameters: β0 = 1.0
andα = 0.5.

The different terms in the model come from considering the growth and death dynamics
of vegetation. Population growth follows a sequence of seed production, dispersal and
establishment:

1. Production happens at rate β0 per plant. Assuming local seed dispersion and that all
seeds may give rise to new plants, the growth rate is β0ρ. After a seed lands, it has to
overcome competition to establish. The following two competing mechanisms are taken
into account.

2. Space availability limits the density to a maximum value ρmax, so the proportion of
available space at a point x is 1 − ρ(x, t)/ρmax. Density can be scaled such that ρmax = 1
and thus the growth term is limited by a factor (1 − ρ(x, t)).

3. Once the seed has germinated, it competes with other plants for water and other resources
in the soil. The probability of overcoming this competition is given by r(ρ̃, δ). This
function decreases when ρ̃ increases, so that r′(ρ0, δ) ≡ (∂r/∂ρ̃)ρ̃=ρ0 < 0. We assume that
plants compete with other plants in their neighbourhood, which is defined by a distance
of the order of twice the typical root length.

It is worth stressing the difference between the function G in this description and the g in §2a.
g contains information about the interactions (cooperative when positive and competitive when
negative) present in the system [4,17]. Since these are of facilitative and competitive type, the
kernels are positive (at short scales) and negative (at long scales). On the contrary, G is strictly
positive and defines an influence region of a focal plant which is used to compute an averaged
density of other plants around it. Also, non-local competition enters nonlinearly, at variance with
equation (2.1), so that negative densities no longer appear.

Performing a linear stability analysis of the stationary solution, ρ0, of equation (2.3) the
perturbation growth rate is (see [3] for details)

λ(k) = −αρ0

[
1

1 − ρ0
− r′(ρ0, δ)

r(ρ0, δ)
Ĝ(k)

]
, (2.4)

where Ĝ(k) is the Fourier transform of the kernel, Ĝ(k) = ∫
G(x) exp(ik · x) dx.

Since r′ < 0 equation (2.4) indicates that patterns may appear (λ > 0) in the model when Ĝ(k)
takes negative values, provided that competition is strong enough. This may happen, for example,
when the kernel has a finite range (an example is shown in figure 1b), so that it is only different
from zero (positive) in a finite domain around x = 0. In plant dynamics, this finite range arises
naturally from the length of the roots. The model recovers the gapped and striped patterns
observed in arid and semiarid landscapes. Figure 2 shows the stationary patterns obtained
by integrating equation (2.13) in a patch of 104 m2 with periodic boundary conditions and a
competition range of R = 8 m. G is a two-dimensional top-hat function (a cut across it will be
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similar to figure 1b) and the probability of overcoming non-local competition is given by

r(ρ̃, δ) = 1
(1 + δρ̃)

, (2.5)

which makes ρ0 analytically solvable. The patterns only appear if the Fourier transform of the
kernel function has negative values. For the two-dimensional top-hat kernel of width 2R, the
Fourier transform is Ĝ(k) = 2J1(kR)/kR, where J1 is the first-order Bessel function [18], which takes
negative values.

(c) Competition through a non-local nonlinear death term
As a complement to the vegetation dynamics in equation (2.3), we next discuss a system, again
without facilitation, where resource competition enters through the death rate. There is now a
non-local nonlinear death term resulting in a higher death rate when the surrounding vegetation
density increases. This is mathematically expressed as follows:

∂ρ(x, t)
∂t

= βρ(x, t)(1 − ρ(x, t)) − αdρ(x, t), (2.6)

where αd = α0h(ρ̃(x, t), δ) is the non-local death rate (α0 is a constant and h an arbitrary function)
and β is the constant birth rate. Non-local competition affecting mortality has been shown to
promote clustering in individual-based population models [19].

As before, ρ̃(x, t) is the non-local density of vegetation at point x, where ρ̃(x, t) = ∫
ρ(x’, t)G(|x −

x’|) dx′. G is the kernel function that defines an interaction range and modulates its strength with
the distance from the focal plant. Space availability for a seed to establish appears in the birth
term via 1 − ρ(x, t) (local competition). h(ρ̃(x, t), δ) gives the probability that a plant dies as a
function of competition for water with the roots of other plants. Since it is a probability, 0 < h < 1,
and it increases with increasing values of the averaged density, ρ̄, and the (positive) competition
parameter, δ. The stationary solutions of equation (2.6), ρ0, are obtained by solving

βρ0(1 − ρ0) − α0h(ρ0, δ)ρ0 = 0, (2.7)

which has a trivial solution, ρ0 = 0 referring to the bare-ground state, and a vegetated state that is
obtained from

β(1 − ρ0) − α0h(ρ0, δ) = 0, (2.8)

once the function h has been chosen.
A linear stability analysis of the stationary homogeneous state, ρ0, yields the growth rate

λ(k) = β(1 − 2ρ0) − αh(ρ0, δ) − αρ0h′(ρ0, δ)Ĝ(k), (2.9)

where Ĝ(k) is the Fourier transform of the kernel function.
The simplest function h that fulfils the above-mentioned properties is a linear function,

h(ρ̃, δ) = δρ̃, which limits the values of the competition parameter to 0 < δ < 1 so that h < 1. Then

ρ0 = β

β + α0δ
, (2.10)

while the perturbation growth rate is given by

λ(k) = − β

β + α0δ
[β + α0δĜ(k)], (2.11)

from which we obtain a transition to pattern (λ becomes positive) at a competition strength

δc = − β

α0Ĝ(kc)
, (2.12)

where kc is the most unstable mode, which yields the most negative value of Ĝ and is the mode
with the highest growth rate. First note that again the Fourier transform of G must take negative
values for patterns to form. Also, α0 and β have to be chosen properly to have δc ≤ 1. In particular,
if we take α0 = 1, β = 0.1 and a top-hat kernel of radius R = 8, we get δc ≈ 0.75. It is important
to remark that spatial structures result when the maximum death rate, i.e. the death rate in



6

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20140068

.........................................................

0.30

0.25

0.20

0.15

0.10

0.05

0

0.45

0.35

0.25

0.15

0.05

0.130

0.128

0.126

0.124

0.122

0.120

(a)

(b) (c)

Figure 3. (a−c) Distribution of vegetation produced by model (2.6) with a linear probability h for different values of the
competition parameter. δ = 0.7 (a), δ = 0.8 (b), δ = 0.9 (c).α0 = 1,β = 0.1.

fully vegetated areas, is much higher than the birth rate (α0 � β). Otherwise, the model shows
standard logistic growth despite the non-local spatial couplings and the distribution of vegetation
is homogeneous. Figure 3 shows the different spatial distributions of vegetation in the stationary
state. The homogeneous distribution is stable when δ < δc (3a), while patterns (stripes and spots)
exist for δ > δc (3b) and (3c), respectively.

(d) Competition through a non-local linear death term
We next study a natural extension of the kernel-based model as presented in equation (2.1) and
previous studies [15], but with purely competitive interactions. The local density of vegetation
changes with time because of its local dynamics (logistic growth) and the spatial interactions
(competition) with other points in the domain

∂ρ(x, t)
∂t

= D∇2ρ(x, t) + ρ(x, t)
[

1 − ρ(x, t)
κ

]

− Ω

∫
Ga(|x − x′|)ρ(x′, t) dx′, (2.13)

where κ is the carrying capacity and Ω is the interaction parameter. We have added a diffusive
term modelling seed dispersal. Competitive interactions are determined by considering both
the strength of the interactions parameter, Ω , and the kernel function, Ga, always positive.
This description is equivalent to considering a non-local linear death term which arises from
competition among plants. As mentioned in §2a, the density can take negative values. This is a
consequence of the non-local interactions reinforcing the death of vegetation and entering linearly
on the model; these models are, therefore, mathematically ill-posed. This is a weakness that these
models share with many related kernel-based models (see §2a), but which is absent when non-
local competition enters nonlinearly. Negative densities are nonsensical from a biological point of
view, so, following Borgogno et al. [15], we set ρ(x, t) = 0 in model (2.13) when this occurs. The
stationary solutions are ρ0 = 0 (no vegetated state), and a non-trivial solution,

ρ0 = (1 − Ω)κ , (2.14)

that imposes a constraint on the values of Ω < 1.
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Figure 4. Spatial distribution of vegetation for the model described by equation (2.13). (a) D= 1,Ω = 0.7 and (b) D= 1,
Ω = 0.9. R= 8 in both panels.

The growth rate of the perturbations is now

λ(k) = −D|k|2 + 1 − 2κ−1ρ0 − ΩĜ(k), (2.15)

and using the expression of the homogeneous steady state, ρ0, given by equation (2.14), it becomes

λ(k) = −D|k|2 − 1 + 2Ω − ΩĜ(k). (2.16)

There is, in this model, no restriction on the shape of the Fourier transform of the kernel for
the appearance of patterns (note that Ω is always lower than 1). We have numerically integrated
equation (2.13) in the regime of patterned solutions and the results are shown in figure 4a,b for two
different values of Ω . The same sequence of spatial structures is obtained as in the other models.

3. Derivation of the effective non-local description from tree-water dynamics
The models presented in §2 are all given by a phenomenological evolution equation for vegetation
density. An open problem is to infer this type of description from a mechanistic one where the
explicit interactive dynamics of vegetation competing for water is considered. This would help,
in particular, to unveil the origin and properties of the kernel function. In this section, we present
a preliminary (and not fully satisfactory) attempt to derive the model presented by Martínez-
García et al. [3] and discussed in §2b (the derivation corresponding to the non-local death model
in §2c is a straightforward extension of this calculation).

Let us consider a system involving dimensionless vegetation density, ρ, and soil-water, w. The
dynamics is purely local and competitive and takes the form

∂tρ = βρ(1 − ρ)w − αρ (3.1)

and

∂tw = −μρw − γ w + I + Dw∇2w, (3.2)

where the non-dimensional positive parameters are: the seed production rate β; the vegetation
death rate α; the consumption rate of water by vegetation μ; the evaporation rate γ ; and the
rainfall I. Water percolation in the ground is modelled by a diffusion constant Dw. Note that
this model is a simplified version, which only includes competitive interactions, of the model
presented by Gilad et al. [8].

As the characteristic time scale of the water is much faster than that of the biomass, we can
carry out an adiabatic elimination of the variable w (i.e. ∂tw = 0) so that

− μρw − γ w + I + Dw∇2w = 0 (3.3)

and thus

(Dw∇2 − γ )w = μρw − I, (3.4)



8

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20140068

.........................................................

whose formal solution can be obtained using Green’s functions, Gd,

w(x) =
∫

Gd(x − s)(μρ(s)w(s) − I) ds, (3.5)

with the boundary conditions w(x → ±∞) = 0. For simplicity, we now consider a one-dimensional
situation, although analogous calculations can be done in two dimensions. Green’s function is the
solution of

Dw∂2
x Gd − γ Gd = δ(x − s), (3.6)

and it is given by

Gd(x, s) = −1
2

exp
(

−
√

γ

Dw
|x − s|

)
. (3.7)

Taking the non-dimensional small number μ as the perturbative parameter, we can further obtain
an approximate expression for w from equation (3.5)

w(x) = −IGd0

[
1 + μ

∫
Gd(x − s)ρ(s) ds + O(μ2)

]
, (3.8)

where Gd0 = ∫
Gd(x − s) ds < 0, since Green’s function is always negative. Plugging this in the

equation for the biomass density (3.1), we obtain the closed expression

∂tρ = βρ(1 − ρ)
{
−IGd0

[
μ

∫
Gd(x − s)ρ(s) ds + 1

]}
− αρ. (3.9)

Defining the positive non-local density ρ̃ = ∫
Gc(x − s)ρ(s) ds, where Gc = −Gd, we can write

equation (3.9) as
∂tρ = β r̄(ρ̃)ρ(1 − ρ) − αρ, (3.10)

where we have defined r̄(ρ̃) = I|Gd0|(1 − μρ̃).
To have a good agreement with the effective non-local dynamics equation (2.2), r̄ > 0 since

it represents a probability. This is certainly the case for small μ. Note that some additional
conditions on the normalization of Green’s function have to be imposed to limit r to values less
than 1. Also r̄′(ρ̃) = −Iμ|Gd0| is always negative, as we expected.

In this particular example, we obtained an exponential kernel which does not have the finite-
range support that would be associated with the finite root extent. As a consequence, the Fourier
transform of this kernel has no negative components and so does not lead to pattern formation.
The simple modelling of water dispersion by means of a diffusion constant does not contain
the additional spatial scale associated with root size and should be replaced by some mechanism
implementing root effects. In contrast, the finite range of the kernel is a sufficient but not necessary
condition for its Fourier transform to have negative values. It is well known that infinite-range
kernels exist whose Fourier transform has negative values. This is the case for all stretched
exponentials G(x) ∝ exp(−|x|p) with p > 2 [20]. Kernels satisfying this are more platykurtic than
the Gaussian function. Work is in progress on this possible route to obtaining pattern-forming
kernels.

4. Conclusion
In this paper, we have reviewed different non-local competitive models of vegetation in water-
limited regions where, despite the absence of facilitative interactions, patterns may still appear.
The obtained sequence of patterns consists of a striped structure and spots of vegetation
interspersed on the bare soil forming a hexagonal lattice. We have not been able to find patterns
consisting of spots of bare soil, which are also typical in models with both competition and
facilitation among plants. In fact, previous studies [12] in which the range of facilitation was
taken to its infinitesimally shortest value (i.e. local) showed these gapped distributions but only
in a very narrow parameter region close to the transition to patterns line. This is different from
standard models with non-local facilitation in which the whole sequence of patterns (gaps, stripes
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and spots) appears in a wider parameter interval. This may suggest that facilitative interactions,
although not indispensable for the formation of patterns, could be important in order to promote
some of the structures that have been reported in field observations. We note in this context that
a careful study of the bifurcation sequences in local vegetation models reveals that the standard
sequence is not fully robust and depends on nonlinear details of particular models [21].

From a mathematical point of view, non-locality enters through an influence function that
determines the number of plants competing within a range with any given plant. A first-order
approximation of this distance can be given by (twice) the typical length of the roots, but field
measurements are needed in order to determine the range over which individuals of a given
plant species can influence their neighbours. A necessary condition for pattern transitions, for the
models under study where the non-locality is in the nonlinear term, is the existence of negative
values of the Fourier transform of the influence function, which always happens, among other
situations, for kernel functions with finite range.

From a biological point of view, competitive interactions alone may give rise to spatial
structures because of the development of spatial regions (typically located between maxima of
the plant density) where competition is stronger, preventing the growth of more vegetation [3].

An unfortunate consequence of the universal character of these models is that the information
it is possible to gain on the underlying biophysical mechanisms operating in the system just by
studying the spatial distribution of the vegetation is limited. Many different mechanisms lead to
the same patterns. Although patterns are universal, models should be specific to each system.
This emphasizes the importance that empirical studies have in developing reasonable models of
the behaviour of different systems. Field work may help theoretical efforts by placing biologically
reasonable bounds on the shape and extent of the kernel functions used in the models and also
by approximations to the probability of overcoming competition, r(ρ̃, δ).

It is important to note that the type of non-local models presented may have localized
solutions. This has been studied, in a different context [22], for a model that reduces to
equation (2.6) when the kernels enhance self-interactions, i.e. they are of the type G(x) = F(x) +
aδ(x) [23]. In plant ecology, mathematical approaches where the interactions among plants depend
on the local biomass density show localized structures as a consequence of the bistable behaviour
between the desert state (ρ0 = 0) and the spatially extended solutions [24]. This result also extends
to non-local models either considering the interplay between water and vegetation dynamics [25]
or, in more recent studies, using effective equations for the vegetation density [26]. In this latter
case, the authors explain the formation of fairy circles (localized barren patches of vegetation) as
localized solutions of spatially non-local models.

Finally, with this work we aimed to show that, under certain conditions, non-local competition
alone may be responsible for the formation of patterns in semiarid systems. More interestingly,
spatially regular distributions of vegetation appear regardless of how competitive interactions
are introduced in the different modelling approaches. Certainly, while it may not be possible
to unambiguously identify the model that generates an observed pattern, the study of the
minimal mechanisms giving rise to pattern formation limits the set of candidate models (and
biological mechanisms) that need to be considered. We hope that our results shed light on the task
of understanding the fundamental mechanisms—and the possible absence of facilitation—that
could be at the origin of pattern formation in semiarid systems.
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